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Tampere University of Technology, (Finland), Gustavo Bouzon from University of Santa 
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Structure of the text 

First part (Chapters 1-5) introduces the framework and modelling language of Net 

Condition/Event Systems (NCES) as follows. Chapter 1 introduces the formal 

verification framework. Chapter 2 starts with providing informal introduction into the 

formalism of Signal/Event nets. Chapter 3 introduces modular Signal/Event nets called 

Net Condition/Event Systems. Chapter 4 discusses some challenges to the S/E net 

semantics brought by the modularity of NCES, and Chapter 5 adds time to the 

Signal/Event nets.  

Second part (Chapters 6-12) presents basics of modelling automation systems and 

technique of their formal verification in the Visual Verification Framework as follows. 

Chapter 6 introduces the framework of closed-loop modelling and verification, Chapter 7 

presents some basic techniques for modelling objects and physical processes (plant) using 

NCES, Chapter 8 introduces basic NCES elements to be used in controller models, such 

as models of variables and operations over them. Chapter 9 discuses some challenges 

arising from the need to combine purely deterministic and synchronous objects 

(controller) with asynchronous and non-deterministic processes (plant). Chapter 10 

presents an example of a simple automation system modelled and verified in the 

presented framework. Chapter 11 considers the use of the Visual Verifier tool in more 

detail, and Chapter 12 presents more details on the properties to be verified.  

The third part (Chapters 13-15) presents some additional techniques and facts and is 

structured as follows: Chapter 13 discusses specifics of distributed controller modelling. 

Modelling of Programmable Logic Controllers is exemplified in Chapter 14. Chapter 15 

is devoted to systematic modelling of plants. Chapter 16 introduces the ideas of 

hierarchical model composition in NCES.  

 

Annex 1 provides examples of XML representation of NCES models.  

Annex 2 contains more rigorous definitions of NCES.  
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1 Introduction: modelling and verification of 

cyber-physical systems 

In computer science formal verification is an act of proving the correctness of programs 

by using mathematical methods and models. It can be used as an automatic alternative to 

the simulation-based testing and debugging, improving dependability and reliability of 

automation systems. Unlike testing via simulation, the formal verification can explore the 

complete set of system’s state space and prove mathematically that no undesirable or 

dangerous behaviour occurs. This can reduce the effort spent on validation the same time 

increasing its quality which especially important in safety critical applications. Formal 

verification be also very helpful in proving the compliance with various certification 

requirements. 

Cyber-physical systems is a novel view on embedded systems that takes into account 

the dynamics and the structure of the environment where the embedded device works. In 

many control and monitoring applications this view has proven to be beneficial as 

compared to a more narrow focus only on the computing hardware and software. 

In particular, in control systems, usually the control software is the target of 

verification. This software is further referred to as controller, and it is the essential part of 

the embedded control device connected to the plant under control. Plant and controller 

form the interconnected closed-loop control system. For example, in industrial 

automation, the controller code usually is a variable part of the system, while the 

hardware remains unchanged. The controller can be programmed in one of general-

purpose or specialized programming languages, e.g. following the IEC61131-3 standard 

[38].  

1. The closed-loop system is modeled using an appropriate finite-state or hybrid 

formalism, e.g. finite state machines, Petri nets, etc. In closed-loop modeling the 

model of the plant needs to be present explicitly. It has to be designed manually by 

control engineers, while the model of the controller can be built automatically given 

the code. In open-loop modeling only the controller part is verified under some 

assumptions about its inputs.  

2. The desired or forbidden behavior of the plant-controller system needs to be 

described in form of specifications, i.e. the properties to hold or to avoid. The 

specifications have to be formalized using a formal language compatible with the 

description of the model.  
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3. Given the model and a number of formal specifications, it can be formally checked 

whether the specifications hold with respect to the model. This process is called 

model-checking.  

4. The results of the model-checking have to be interpreted in terms understandable by 

the engineers. For this purpose, a bi-directional mapping from the original system to 

its model and back has to be provided.  

This text presents a framework for modelling and verification which is based on the 

formalism of Net Condition/Event Systems (NCES). 

1.1 Supporting Tool Framework 

To facilitate the use of NCES by engineers, the formalism is supported by tools and 

methodologies. The framework is presented in Figure 1.  

 

Figure 1. Tool framework for modelling and verification 

 

The functions of the tools are as follows:  

 Visual NCES editor (ViEd) providing full graphical authoring and editing of the 

models. Its manual is provided in a separate document; 
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 Visual Verifier (ViVe) – an integrated tool that contains a model builder (assembler), 

a translator to the flat format for subsequent model-checking, interfaces to several 

model-checkers, and the means for analysis of scenarios (e.g. their visualization in 

form of state/time diagrams), or even system simulation along the selected scenarios. 

 The model checker SESA allows for efficient model-checking of fairly complex 

systems (millions of discrete states); 

 The application methodologies are represented as libraries of standard model 

elements and by the web-based documentation; 

The NCES modelling language is open – an XML based data format allows the 

development of add-ons to the existing tools, for example model-generators for particular 

programming languages in which the controllers are programmed. 

The graphical editor provides full graphical authoring and editing of the models. The 

editor uses an open XML-based data format for basic and composite NCES models. The 

data format of composite model blocks intentionally was made identical with that of 

IEC61499 function blocks, supported by tool (FBDK).  

The integrated environment Visual Verifier inputs the model type files given in XML and 

is capable of: 

 Assembling a composite, hierarchically organized model from modules contained in 

different libraries. The component model types are instantiated into NCES modules.  

 Translating the model into a “flat” NCES with the through numbering of places and 

transitions. The inter-module connections are converted into event and condition arcs 

between places and transitions. Thus the module boundaries are removed and the 

model-checking tools can be applied. In particular, the translator generates files in the 

input format of SESA model checker.  

To enjoy the benefits of graphical formalisms the model authoring and maintenance have 

to be supported in a visual intuitive way. The evolution of graphical tools is described in 

the following section.  

 

1.2 History of NCES developments 

The first version of the tool for editing Timed NCES (TNCES) for was implemented 

at the University of Halle, (Germany) as a template to Visio universal graphic editor. The 

editor supported only the non-typed approach which did not allow for convenient re-use 

of previously developed model components. The whole model needed to be developed 
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from scratch and the re-use was possible only by “cut and paste” of some model 

elements.   

 

 

Figure 2. Visio TNCES Template. 

The need to re-use models pushed the development of an open XML-based data format 

for basic and composite NCES models. The data format of composite blocks was 

intentionally made identical with that of IEC61499 function blocks, supported by tools 

[17, 18]. Then the export to the XML format was added to the editor in order to create a 

model type out of a single NCES module. This way the former Visio-based editor could 

be used for populating the library of basic model types, while FBDK could be used for 

creating complex model types.  

However, FBDK is lacking convenience in dealing with module connections. Besides 

the use of three software tools just for editing models is too complicated. For this reason 

another editor (ViEd) was conceived that integrates editing of basic and composite 

models in fully intuitive visual way.   

The model of a controller can be generated by the MOVIDA NCES Generator (Fig. 

10). The generator takes as an input source code of controllers in several PLC 

programming languages (for example Omron
TM

) LD project represented as a textual file), 

converts it into TNCES, and saves the data in XML based format. The openness and self-

explanatory XML representation simplifies the development of the tools that may work 

with TNCES. 
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Figure 3. MOVIDA NCES Generator. 
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2 Signal/Event Nets 

2.1 Introduction 

In this chapter we give informal definition of Signal/Event nets (S/E nets). A more 

formal definition is presented in Annex 1 and in the document “Analyzing Signal / Event 

Nets” [21]. 

The formalism of Condition/Event systems, suggested by Sreenivasan and Krogh in 

(1990), provides a convenient framework for modular modelling of discrete-event 

systems. Internal content of modules can be different: so far finite state and hybrid 

automata [3, 4], as well as Petri net-like formalisms [7] have been studied in this role.  

The Condition/Event model can serve to represent systems’ interface abstractions, 

internal structure and behaviour of single elements. This model can be easily mapped 

then onto IEC61499 function blocks [23], thanks to many similarities, namely event and 

data interfaces and State Chart definition of functionality of single modules.  

2.2 Syntax 

A Signal/Event net is a place/transition model similar to Petri nets [4-11]. Basic 

artefacts of the place/transition models are: places, which can bear tokens; (net) 

transitions, and arcs connecting places with transitions and transitions with places, 

known as token flow arcs. S/E nets in addition have two types of arcs: event arcs from 

transitions to transitions (e.g. (t2, t4)), and condition arcs from places to transitions e.g. 

(p2, t5). The model in Figure 1 is an S/E net.  

A state of a place/transition model is determined by marking of its places, i.e. 

allocation of tokens across the places. Tokens can “flow” from state to state in some 

discrete moments according to the set of rules, known as “model semantics”. Such a 

“jump” of tokens leads to a new state of the model, and is called a state transition.  

It is said that net transitions can fire and transfer hereby tokens from a place to place. 
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Figure 4.  A Signal/Event Net (book/example1).  

 

2.3 Semantics 

The semantics of Signal/Event nets is defined by the firing rules of net transitions. There 

are several conditions to be fulfilled to enable a net transition to fire.  

First, as in the ordinary Petri nets, an enabled transition has to have a token 

concession. That means that all pre-places have to be marked with at least one token as 

shown in Figure 5 (or, in case of weighted arcs, with as many tokens as the weight of the 

corresponding arc from the pre-place to the transition.) 

a)                b)  

Figure 5. Token concession of transition: a) transition t has token concession; b) there is no token 

concession. 

In addition to the flow arcs from places, a transition in S/E net may have incoming 

condition arcs from places and event arcs from other transitions. A transition is enabled 

by condition signals if all source places of the condition signals are marked by at least 

one token (more rigorously – as many tokens as the capacity of the flow arc), i.e. if more 

than one condition arc is connected to a place, the overall influence of the condition arcs 

is decided by the “AND” of each single arc enableness, as shown in Figure 5. 
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Figure 6. If more than one condition arc is connected to a place, the overall influence of the condition arcs 

is decided by the “AND” of the each single arc ‘enableness’. 

 

Another type of influence on the firing can be described by event signals which come 

to the transition from some other transitions in the net. With respect to incoming event 

arcs a transition can have either OR or AND mode (event signal sensitivity mode). The 

default event signal sensitivity mode of transition is OR, as shown in Figure 7. 

 

 

Figure 7. The default event signal sensitivity function of forced transition is OR.  

Transitions having no incoming event arcs are called independent, otherwise forced. 

A forced transition is enabled if it has token concession and it is enabled by condition and 

event signals.  

 

Figure 8. Firing mode of transition. 
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Several S/E net transitions can fire simultaneously. A set of such simultaneously 

firing net transitions is called step.  

A step is formed by first picking up a nonempty subset of enabled spontaneous 

transitions, and then by adding as many as possible of enabled transitions which are 

forced to fire by event signals produced by the transitions already included in the step. 

Such a step is called maximal with respect to its forced transitions. 

2.4 Conflicts and non-determinism 

A conflict in classic Petri nets occurs when the number of tokens in some places is “not 

sufficient” to fire all transitions connected to them by flow arcs. This situation is 

exemplified in Figure 9, a.  

 

a)                    b)  

Figure 9. Conflict (a) and reachability graph (b) (book/simple_conflict). 

 

In case of a conflict, not all transitions can fire simultaneously. The reachability graph 

in Figure 9,b shows that there are two steps ‘fireble’ in this state of the model: {t1} and 

{t2}. Since both these steps can happen, it is said that the choice is non-deterministic. In 

case if such a model is used for simulation either of this transition steps can happen. In 

the reachability graph, however, both options are included. 
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2.5 Condition arcs 

Tokens do not flow through condition arcs, so one place with a single token in it can 

enable many transitions and no conflict will arise, as illustrated in Figure 10 for the place 

p3. 

 

 

Figure 10.  Single token in p3 is sufficient to enable transitions t1,t2 and t3, so no conflict is observed in 

this situation.  

 

2.6 Arcs with capacities (weights) 

The token flow and condition arcs can have capacities determining the number of 

tokens that will flow through the arc (for token flow arcs), or needed to enable the 

corresponding destination transition (for condition arcs). If a source place has less tokens 

than is required then the transition would not get the concession. A net with arc capacities 

is illustrated in Figure 11. 

 

Figure 11. S/E Net with arc capacities. 
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For example, the flow arc from p1 to t1 has capacity 2, and the condition arc from p3 to 

t1 has capacity 1. Both places p1 and p3 have 2 tokens, so the transition t1 is enabled. 

The transition t2 is enabled because it has only one flow arc from p3 and there are enough 

tokens in p3. The transition t3 is enabled because p5 has as many tokens as required (1) 

and p3 has as many tokens as required (2). Note, that only one token moved from p1 to 

p2 and one got lost since the capacity of the arc (t1, p2) is only 1.  

Also note, that in the next state transition t3 would not be enabled although p3 still has 

one token. This is due to insufficient number of tokens in p3 to ‘activate’ the condition 

arc (p3,t3) which has capacity 2.  

 

2.7 State and reachability 

A state of an S/E net is defined by marking of all places. A tuple M=<Z,R,s0> denotes 

the reachability structure of a S/E net, where Z is a finite set of reachable states, R is a 

finite set of state transitions
1
, and s0 is an initial state.  

A state trajectory is a sequence of states (si)= s0, s1, …, si, … , such that for each pair  

sj, sj+1  Z  there is   R such that sj+1 is reachable from sj by the transition  (in 

mathematical terms denoted as sj [> sj+1) . Figure 12 presents the reachability graph for 

the S/E net from Figure 4. 

 

                                                           

1 Note the fundamental difference between net transition and state transition.  
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Figure 12. Reachability graph of the model from Figure 4. 

 

Nodes of the graph correspond to the states while the arcs correspond to the state 

transitions. The arcs are marked with their respective steps of net transitions.   

2.8 State transition modes 

There are three ways to generate the transition step w.r.t. spontaneous transitions: 

1. Include all possible combinations of spontaneous transitions (this was illustrated in the 

previous section in Figure 12); 

2. Include only one spontaneous in a step (The corresponding reachability graph is shown 

in Figure 13, a); 

3. Include maximum number of spontaneous transitions (the reachability graph is shown 

in Figure 13, b); 
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a) b)  

Figure 13. Reachability graphs of the model corresponding to a) single spontaneous transition; b) maximal 

set of spontaneous transitions. 

In all cases forced transitions are included in steps according to the principle of 

maximal set of forced as discussed in the previous section. 

2.9 Synchronous transitions 

There are special means provided for description of both asynchronous and 

synchronous behaviour in the same net, which are especially useful for modelling of 

interconnected plant/controller systems. This is achieved either by introduction of 

synchronous transitions, firing whenever they are enabled, or by timing.  

If a transition is marked with the synchronous (or greedy) attribute, it fires always 

when enabled. Synchronous transitions should not have incoming event arcs. When a 

firing step is formed, these are treated as spontaneous, with exception of that all enabled 

greedy transitions are always included in the step. Let us illustrate the work of greedy 

transitions on the example in Figure 14.  
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Figure 14. Reachability graph of the model with all spontaneous transitions. 

 

As one sees, the model’s behaviour includes all possible combinations of t1 and t2 

with t3 and t4. 

This example is provided in the Visual Verifier set of samples as 

TestSimple2Spont.xml. Check it with the options: Maximal set of greedy transitions and 

Combinations of spontaneous transitions as illustrated in Figure 15. The selected firing 

mode implies that all greedy transitions will be included in the step and all possible 

combinations of enabled spontaneous transitions will be added. If the set of Greedy is not 

empty, then the combination with empty spontaneous set will be also considered.  
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Figure 15. Selection of the firing modes in the Visual Verifier. 

In the next example (Figure 15, TestSimple1Spont1Greedy.xml) two transitions are 

left spontaneous, while two others are made greedy. As a result, some trajectories have 

disappeared from the reachability graph.  

 

Figure 8. In case if two transitions are spontaneous and two others are greedy, the possible step 

combinations are limited to those where a greedy transition is always included in the step. 

If there is more than one greedy transitions enabled in the moment, they are included into 

step similarly to spontaneous transitions, i.e. steps are formed from all possible 

combinations of greedy, as shown in Figure 16, where all four transitions are greedy.  
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Figure 16. All transitions are greedy. 

Note: The “greediness” of transitions can be only used in non-timed models. A 

similar concept can be achieved in timed models by using synchro sets introduced later in 

Chapter 14.2. 

2.10 Transitions without incoming arcs 

A transition without any incoming arcs is always enabled.  

2.11 Priorities  

In place-transition modelling formalisms a priority is an integer attribute of a transition 

determining preference of its firing with respect to other enable transitions. Only the 

transitions with the highest priority (from the set of currently enabled transitions) are 

included in the executable step. To avoid ambiguities, in S/E Nets priorities can be 

assigned only to spontaneous transitions. 

2.12 Firing rules 

Visual Verifier supports several firing rules. The set of firing rules of SESA is a bit 

different. The reasons for having different firing rules are in the history of these tools. 

However, having several firing rules available may better fit to particular details of 

different models.  

The firing rules of the Visual Verifier are as follows: 

- single spontaneous can fire ; 

- all combinations of spontaneous transitions will be considered;  

- only the maximal combination of spontaneous can fire. 
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Certainly for each set of spontaneous transitions as many as possible forced 

transitions are added to form a step. This is called “maximum step”.  

 

In SESA two firing rules are supported: 

- single spontaneous can fire ; 

- all combinations of spontaneous transitions will be considered to form the 

maximum steps on their base;  

 

In addition, the “greedy” transitions are treated in the VisualVerifier a bit 

differently from SESA.  

 

In ViVe two options are provided:  

- fire all enabled greedy transitions together or 

- consider all combinations of the greedy; 

This is applied ‘on top’ of the spontaneous firing rule. 

In SESA greedy transitions are treated as normal spontaneous transitions. 
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3 Modular S/E Nets = Net Condition/Event 

Systems 

The formalism of Net Condition/Event Systems (NCES) was introduced by Rausch 

and Hanisch in (Rausch and Hanisch, 1995) and further developed through the last years, 

in particular in (Hanisch and Lüder, 1999). 

3.1 Encapsulation of models into modules 

The general idea of Net Condition/Event systems supports the way of thinking of and 

modelling a system as a set of modules with a particular dynamic behaviour and their 

interconnection via signals. An illustrative example of the graphical notation of a module 

is provided in Figure 17.  

 

 

Figure 17. Graphical notation of a module. 

 

Once designed, the modules can be re-used over and over again. Each module has 

inputs and outputs of two types:  

1. Condition inputs/outputs carrying information on marking of places in other 

modules, and  

2. Event inputs/outputs carrying information on firing transitions in other modules.  

Condition and event inputs are connected with some transitions inside the module by 

condition and event arcs. Places of the module can be connected to the condition outputs 

by condition arcs, and transitions can be connected to the event outputs by event arcs. 
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This concept provides a basis for a compositional approach to build larger models 

from smaller components. The "composition" is performed by "gluing" inputs of one 

module with outputs of another module as shown in Figure 18.  

 

 

Figure 18. Modular composition. 

The result of the composition of two NCES N1 and N2 is an NCES Nc obtained as a 

union of the components and which can be represented as a new module. Inputs and 

outputs of the "composition" are unions of the components' inputs and outputs, except for 

those which are interconnected to each other, and hereby "glued", i.e. substituted by the 

corresponding condition and event arcs, as shown in Figure 19. By the way, the resulting 

module is equivalent to the S/E from Figure 4. 

 

 

Figure 19. Result of the modular composition. 

3.2 Model type definition 

In the version of NCES implemented in Visual Verifier a model must be encapsulated 

in a module. A module is defined by its interface and content. The interface contains a 

model name and names of event and condition inputs and outputs. The content can be 

either a place-transition model, i.e. consist of places, transitions and arcs as described in 

the previous section (such model types are called basic), or be a network of modules 

interconnected via event and condition arcs (such models are called complex).  
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Once defined and placed in the library, a module defines a model type. The module 

name serves as the type identifier. Type instances can be used over and over again in the 

complex models (strictly speaking, the modules forming the complex models have to be 

instances of other modules). 

As a consequence of the above definition a model can have a hierarchical structure as 

the one presented in Figure 20. The hierarchical structure can be transformed into a plain 

S/E Net by instantiation of a model types. 

 

 

Figure 20. A hierarchical NCES model. 

 

Dynamic models of complex objects usually consist of models of their constituent 

components interconnected by event and condition signals. They may also include an 

additional model that integrates and coordinates them. Such a “master supervisor model” 

can also take care about input-output behaviour of the composite model. 

3.3 Typed NCES 

Further in this text we are using only the typed NCES modelling. This approach is based 

on the following postulates:  

1. All NCES models are encapsulated into modules. A module has interface that is 

defined by event and condition inputs and outputs. A modular model, stored in a 

separate file, defines a model type that can be later instantiated.  
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2. NCES models can be basic or composite. 

3. A basic NCES model type consists of places, transitions and arcs. It cannot 

have any nested modules.  

4. A composite NCES model type consists of module instances and arcs 

connecting I/Os of the modules to each other and to the interface elements of the 

model. The instances are obtained by instantiation of the model types, basic or 

composite, existing in a storage media (library).  

The process of model development can follow both top-down and bottom-up 

approach. In the former case you may create new module interfaces and as needed 

specify them and store as model types in the library. After that you can reuse the models 

over and over again. 

In the latter case you start with development of most basic model elements and save 

them as basic model types in the library. More complex models can be created as 

composite types using instances of the basic ones. This way you can create hierarchical 

models of arbitrary complexity always remaining flexible and reusing the repetitive sub-

models.  

3.4 Capacities of condition arcs 

Condition arcs between NCES modules, or between a module and inputs/outputs of 

another module where its instance is included, can have capacities, that are integer 

numbers >= 1. 

The capacities between modules can differ from the capacities of arcs within 

modules. When the modules are “glued” into a single S/E net, the capacities of resulting 

condition arcs are calculated as the minimum capacity of the segments forming them.  
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Figure 21. The capacity 2 of the condition arc (p2, t5) is obtained as the minimum of capacities of the arcs 

forming its segments within modules and between modules. 

3.5 Benefits of NCES 

There are two main reasons to prefer place-transition formalisms to many others 

formalisms, e.g. finite automata. The first is their non-interleaving semantics (i.e. 

possibility of firing several transitions simultaneously), which better fits to modelling of 

distributed processes and of their interaction. 

 

Figure 22. Model of two processes as parallel composition of state machines or NCES. 
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The second reason is the more compact reachability space, explained as follows. 

Modelling of complex distributed systems with automata usually ends up in many 

concurrent automata models communicating via common variables, as illustrated in Figure 

23, left, where two state machines A and B are combined under “asynchronous parallel 

operator”. Thus, the overall system model is a cross-product of the component automata, 

and to do model analysis it is necessary to build the cross-product consisting in this case 

of 9 states, as one sees in the right part of the Figure.  

 

 

Figure 23. Modelling of two communicating processes by means of concurrent state machines and their cross-product 

automaton. 

 

Alternatively, in Signal/Event Nets a state of a model is determined by the marking of 

model places, so any global state of a distributed system is just one state of the model. 

This is shown in Figure 24 where the same model is implemented in Signal/Event Nets 

with places (p1-p6) corresponding to states of the automata A or B (in the obvious 

manner)  (Find it in the concurrent.xml file).  
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Figure 24. The same model implemented using place–transition nets (S/E Net) and its reachability graph.  

In the given initial state the reachability space of the model consists of only 4 states. 

The same behaviour obviously will be shown by the automata model in Figure 23 (the 

outlined path A1B2→ A1B2→ A2B2→ A2B3→ A3B1→ A3B2), but to get it the whole 

cross-product automata needs to be built. 
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4 Semantics of Modular Models 

The modularity of NCES does not bring any extra semantic issues if compared to S/E 

nets since the module boundaries are removed during the flattening process. However, 

some “tricky” issues in S/E nets and NCES semantics need to be discussed. 

4.1 A condition/event input of a module is not assigned 

When an input is not assigned as shown in Figure 25 there are several possible 

interpretations. 

 

 

Figure 25. Not assigned input of a module. 

 

The one shown in Figure 26 removes the event arc (ei1, t2) making the transition t2 

spontaneous.  

 

Figure 26. First interpretation: the event arc is removed, transition t2 in  

the Module 2 becomes spontaneous. 

However, this interpretation might not always reflect the intentions of the developer 

of the module 2, as the presence of the incoming event arc might indicate the forced 

nature of the transition t2. Thus, the absence of any input arcs to the input ei1 may mean 

that t2 should not fire at all. This can be implemented as shown in Figure 27 by adding a 

module (Module 3) with a transition (t1) that never fires, connected to t2 of Module 2.   
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Figure 27. Second interpretation: an always dead transition 

4.2 Multiple arc assignments to a module’s input/output 

Multiple arc connections to inputs and outputs of modules as those shown in Figure 

28 were not allowed in the previous versions of NCES due to ambiguities in 

interpretation. 

 

 

Figure 28. Multiple assignments of arcs to I/Os. 

 

However, since the signal arcs eventually influence the firing of transitions, we can 

shift the semantic load to the definition of the firing function of transitions, and interpret 

the concentration of arcs at inputs and outputs by connecting places/transitions in the 

resulting S/EN with an arc if a connected path exists from the corresponding source 

place/transition to the target transition in the original NCES. This is illustrated in Figure 

29. 
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Figure 29. Signal arcs in S/E N as a result of multiple arc resolution in NCES. 

4.2.1 Condition arc weights between modules  

ViVe provides two options for resolving the weight of the condition arc appeared as a 

result of structural composition (Options/NCES tab). 

 

Thus, if the first option is selected, the arc with the minimum weight determines the 

weight of the resulting arc after the assembly.  

 

Figure 30. Multiplicity of the resulting condition arc. 

4.2.2 Several condition arcs originating in the same place 

In process of assembly there could be a situation of several condition arcs ending in the 

same transition and originating in the same place.  
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Figure 31. Two condition arcs originating in p2 end in t5.  

 

There are two options to resolve this situation. The first option is to take the 

maximum capacity across all paths leading from p2 to t5. The result in this case would be 

as shown in Figure 32. 

 

Figure 32. Maximum path capacity is taken (1 in this case). 

Another option is to assign the cumulative capacity to the resulting arc.  

 

Figure 33. Sum of capacities is taken. 

4.2.3 Visual Verifier support of non-assigned module inputs  

Ambiguous issue Support in 

ViVe 

Interpretation 

Non assigned event input Supported The destination transitions are connected 

to the “always dead transition”  

Non assigned condition 

input 

Supported The destination transitions are connected 

to the “always empty place” 

Multiple arcs to an event 

input or output 

Supported The destination transition is connected to 

the transitions where the arcs are 
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originating from. 

Multiple arcs to a condition 

input/ output 

Not supported  

 

 

 

 

Figure 34. Prohibited condition connections. 
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5 Timed models 

5.1 Discrete timing 

The concept of discrete timing is applied to the S/E nets as follows: to every pre-arc [p, t] 

of the transition t we attach an interval [l, h] of natural numbers with 0 < l < h <. The 

interval is also referred to as permeability interval. If a pre-arc has no explicitly 

designated permeability interval, it is assumed to be [0, ]. The interpretation is as 

follows. Every place p bears a clock u(p) which is running iff (if and only if) the place is 

marked (m(p)>0), and is switched off otherwise. All running clocks run at the same speed 

measuring the time the token status of its place has not been changed. If a firing transition 

t removes a token from the place p or adds a token to p, the clock of p is turned back to 0. 

A (marking-enabled) transition t is time-enabled only if for any pre-place p of t the clock 

at place p shows a time u(p) such that l(p,t) < u(p) < h(p,t).  

An example is given in Figure 35.  

 

 

Figure 35. Timed S/E net and firing of its transitions.  

 

Thus, in timed NCES a state is characterized by the marking of places plus the values 

of local clocks at the places.  

A state is called dead if no transition is time-enabled and no transition would become 

able to fire after any increments of the clocks.  

There are two slightly different interpretations of time in different NCES 

implementations. Let us consider illustration in Figure 36, a.  
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In one interpretation (implemented in SESA model checker), time delay is an attribute 

of the state where the transition originates. If in state Si there is such a minimum 

increment Δ that some of the transitions become enabled after elapsing it, then it is said 

that the state transition τ:Si→Sj has a “delay” Δ. Conversely, it can be interpreted as the 

state Si has a “duration” Δ that specifies the time increment of the clocks of this state 

required to make the transition enabled. So, first the time elapses, and then a state 

transition occurs. This is illustrated in Figure 36,b.  

 

 

  

a) b) c) 

Figure 36 An example of timed S/E net and reachability graphs for two time interpretations.  

 

Another interpretation (implemented in Visual Verifier) uses the concept of time 

increment. This attribute belongs to the state where the state transition leads to. The 

reachability graph generated along with this interpretation is in Figure 36,c. This 

interpretation allows interpret the elapsed time as an (implicit) attribute of the state 

transition.  

Although in this example, the number of states in both reachability graphs is the 

same, in general it can be different.  

5.2 Firing rules in TNCES 

At a given state all (time-) enabled steps have to be computed and placed into the list 

of enabled steps. Firing of each step brings one more state successor to the current state. 

Repetitive application of this procedure to every subsequent state forms the reachability 

space of the model. Time-enableness is a required but not sufficient condition to include 

transition to the firing step. The interpretation of the timing intervals is defined by the 

timing firing rule. 
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1.      Strong vs. weak firing: with the strong rule all marking enabled (spontaneous) 

transitions, which have pre-places with clock position equal to either low or high 

time limit, are obligatorily inserted into the step (can be specified to make e.g. 

either strong earliest firing rule, or strong latest firing rule). If the weak rule is 

chosen then at least one of the enabled spontaneous transitions has to be included 

in step.  

2.      Earliest vs. interval firing: In case of the interval firing a transition is time-

enabled at every clock position within the interval [l,h]. In the earliest firing rule a 

transition is time-enabled if it has a pre-place with the clock value equal to the 

low bound l of the time interval.     

3.      Ultimo firing: is a certain combination of the interval and strong rules: a 

transition is time-enabled at every discrete time moment within the interval and 

must fire at the latest at clock position equal to h.  

In case if a transition has several incoming arcs with permeability intervals 

[l1,h1],[l2,h2],…[ln,hn] then, to enable the transition all arcs have to be permeable, which is 

achieved in the interval [l,h], where l=max(li), h=min(hi).  

Among all possible combinations of time constants and time-firing rules, some were 

found of interest in some industrial applications. These combinations are presented in 

Table 1.  

   Time 

constants  

Firing rule  Interpretation  

1.  l>0,h  l  Interval, weak  Event is expected with minimum 

delay l, maximum delay h, or may 

not occur at all.  

2.  l>0,h  l  Ultimo  Process must get terminated within 

the interval [l, h]  

 

3.  
l>0,h=  Earliest, strong  Process has duration l, and all 

simultaneously started processes 

with the same duration finish 

simultaneously  

 

4.  
l>0,h=  Earliest, weak  Process has duration l, but 

termination of all processes with the 

same duration may be not 

synchronized .  

Table 1. Combinations of time-firing rule and time intervals commonly used for modelling. 
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The lower or higher time limits may or may not (depending on the corresponding 

rule) force transition to fire. The "interval" firing rule accepts presence of empty 

transition steps, when time elapses even in the absence of any enabled transitions. This 

option may be useful if aimed at finding of all possible combinations of overlapping 

processes and, correspondingly, simultaneous events. On the other hand it obviously 

explodes the reachability space. Perhaps, the variety of choices discussed in this Chapter 

is a bit confusing, but it extends the modelling horizons and allows more concise 

description of models. The following example explains the differences between firing 

options. 

 

Figure 37. Timed version of a plant-controller interaction model 

The following state-time diagrams illustrate different combinations of timed firing 

options. The earliest strong firing rule forces to fire all transitions when the low time 

bound is reached by clocks, at the earliest weak rule steps are formed from combinations 

of time-enabled transitions, at ultimo the firing may occur at every discrete time value 

within the permeability interval.  

 
  

a) b) c) 

Figure 38. State-time diagrams representing different combinations of timed firing options.  
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5.3 Implementation 

Not all timing modes are currently implemented in the available model-checkers.  

5.4 Restrictions 

A transition with incoming timed arcs (i.e. [l, h] where l>0) cannot be forced, i.e. cannot 

have incoming event arcs.  
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6 Modelling of closed-loop controller-plant 

systems 

An industrial automation system can be considered to be built from two conceptually 

different parts: controller and plant. The controller is a hardware device driven by 

software code that performs data processing, communication and decision making, the 

plant refers to the physical part of the equipment. 

Figure 39 shows examples of such control systems. Figure 2,a shows control of the 

liquid level in a tank The tank has an input valve that controls the liquid supply. Once the 

tank is filled the valve should be closed. A level sensor (L) indicates the level where the 

filling should terminate. 

a)   b)  

Figure 39. Examples of automated systems: a) control of the liquid level in the tank;  

b) manufacturing cell - an automated drilling station. 

Figure 2,b presents a model of an automated machining process: drilling station. 

Modelling of automation systems can be done in either open-loop or closed-loop way. 

The open loop modelling usually is a more economical solution which bases on the 

partial model of controller inputs which help to generate the outputs and then verify their 

correctness.  
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Figure 40 Closed-loop NCES model of the automated drilling station.  

In the closed-loop approach exemplified in Figure 40, the model of the automated 

drilling station system is composed of two independent components: a model of the 

object (also known as plant) and a model of the controller, connected in a closed-loop by 

control signals and process data. Both parts are modelled using a common formalism. 

This approach allows for specification of desired/prohibited behaviour of the automation 

system in terms of the events/statements related to the object rather than in terms of 

input/output variables. The closed-loop approach is also beneficial in terms of complexity 

as a feasible model of plant restricts the controller’s input combinations. The model of 

plant not only generates the inputs of the controller but also receives the outputs and 

correspondingly modifies its internal state.  

Certainly the latter approach is more complex as the modelling of uncontrolled 

reactive behaviour of objects is required. However its benefits overweight the extra work 

needed. Both parts of the system (plant and controller) are modelled by NCES modules 

with condition signal inputs and outputs. The connection between controller and plant is 

implemented via logic level signals which are modelled using condition arcs. Event 

signals are used in both models of plant and controller but not between them. In the 

model of plant events may be used, for example, to model the causal behaviour of sensors 

influenced from the observed processes. In controllers the event signals model the actions 

explicitly defined as event-driven (say, event-connected function blocks in IEC61499), as 

well as a lot of other internal operations: procedure calls, setting/resetting variables, etc. 

The closed-loop approach allows for a number of application scenarios that can be 

derived from the diagram in Figure 41. The scenarios include source-code based 

modelling of the controller or controller prototyping by a model, as well as formal 
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synthesis of the controller. In all cases, the model of controller is combined with a 

manually created model of plant.   

 

 

Figure 41. The framework for using formal methods in cyber-physical systems. 

 

The prototyping scenario can be less resource-consuming during the validation if 

compared to the source code based model generation as the model of controller may 

cover only essential issues without implementation details. 

Depending on the accuracy of modelling, the model of plant may include components 

for each drive, motor, valve, electric relay, sensor, actuator, and other elementary pieces 

of equipment. These component models may be integrated to composite models of 

equipment units, such as machine tool, or other material processing and storage units. 

Modelling of discrete controllers using NCES simplifies the assembling of the model 

from the components. Besides, such key features of NCES as event/data connections 

closely correspond to the latest trends in controller design methodology presented in the 

new international standard IEC61499. 



Modelling and Verification of Discrete Control Systems 

46 

 

7 Basics of Plant Process Modelling 

7.1 Processes 

The behavior of a plant can be seen as a concurrent (usually asynchronous) composition 

of several processes, each of which has a start event s and ending event e, and some 

duration D.  

 

 

Figure 42. Asynchronous concurrent processes.  

Process 3 initiates process 2 by sending a message. 

 

7.2 Simple process model 

Such simple processes can be modeled by the S/E Nets as shown in Figure 43.  

 

Figure 43. Model of a simple process. 
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Usually we model states of the plant components as S/E net places with safe (0/1) 

marking. In particular, for the processes with known minimal duration D>0 the time 

limits may look like l=D, h=∞; In this case the model contains no obligation for the 

action to occur. 

If duration of action is not defined by an exact value, but bounded within the interval 

[D1, D2] (0<D1<=D2) then l=D1 and h=D2. In each state with clock value as 

D1<=clk(p1)<=D2 the action may finish, i.e. t1 may occur. 

Combination [0, D2] is interpreted as “no minimal duration, but maximal time limit 

exists”. 

7.3 Process with exception 

To model a time consuming action (i.e. with l>0) with exception possibility the initial 

place p1 is connected with two transitions: one of which stands for the normal operation 

mode with duration as described in the previous case, while the other models the 

exception, which interrupts the normal operation and  may occur anytime within the 

normal operation time. 

In case if h≠∞, the reached upper time limit forces only one of the transitions: either 

ending the action normally, or abnormally with an exception thrown. 

 

 

Figure 44. Model of a state with an exception. 

7.4 Two time scales: ticks in controller and time-elapsing in plant  

Timing can be used in both plant and controller models to achieve adequate behavior of 

the model. In return it allows for quantitative time estimations, or for solving 

optimization problems like finding control strategy with minimal duration of the 

technological cycle, etc. Once all the NCES modules have been interconnected into 
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Signal/Event Net, the resulting net has common time unit. That is why for modeling of 

objects with different time scale the minimum basic time unit over all components has to 

be selected.  

Every time increment brings the model to a new state, which, obviously means state 

explosion if we try to decrease the basic time unit. This is especially sensitive in the 

closed-loop models. The common sense suggest to accept the time scale of the most 

relevant processes in the plant, and assume that processes in controller (or some electric 

units of the plant, such as sensors, or relais) as having zero duration.  

However some estimations in controller still can be done by measuring the number of 

executed commands (or number of transitions in S/E N). 

 

Figure 45. Program delay: model of the controller module which requires 100 commands for 

execution. 

Modeling of a program unit which takes 100 commands for execution can be modeled 

as shown in Figure: initial place p1 is loaded with 100 tokens, and with every transition t1 

one token flows from p1 to p2 through the flow arcs with multiplicity 1 until all the 

tokens come to p2. Then all the tokens come back to p1 in one transition t2 through the 

arcs with multiplicity 100. 
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8  Modelling Control Programs  

Special industrial programming languages are applied for implementation of the 

control algorithms in Programmable Logic Controllers (PLC). The most of the known 

programming languages in the field were standardized in IEC 61131-3 in 1993 

(IEC61131, 1993). The standard includes four programming languages: Instruction List 

(IL), Function Block Diagrams (FBD), Ladder Diagrams (LD) and Structured Text (ST), 

and a common element Sequential Function Chart (SFC) that serves for program 

organization into logical steps and expressing the transitions between the steps.  

Despite the successful standardization of PLC programming, there is a number 

vendor specific programming approaches that have not been included in IEC61131-3, 

although they are quite popular in certain application areas.  

A model of the controller can be built based on the source code of the control 

program. Relevant properties of system routines also have to be taken into consideration. 

The source code based validation gives an additional assurance in the correct behaviour 

of the system after commissioning.  

The basics of the modelling of discrete controllers using place-transition formalisms 

were developed in (Hanisch and Thieme, 1997). In general the modelling of controllers 

can be split into the following sub problems: 

 Modelling of system routines such as scan cycle; 

 Modelling of PLC execution is related to the performance of PLC hardware 

represented by times, instructions execution times, etc; 

 Modelling of basic Boolean data and operations; 

 Modelling of non-Boolean functions; 

The use of NCES simplifies the assembling of the model from the components. 

Besides, such NCES features as event/condition connections closely correspond to the 

latest trends in controller design methodology presented in new international standard 

IEC61499. 

The following examples serve to illustrate basic principles of mapping from 

commands of a programming language to NCES models.  
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8.1 Data storage and assignment  

Boolean variable cell can be modeled by the net having two places p0 and p1 and two 

transitions ts and tr as shown in the Figure 1. Setting of the variable is modeled by 

transition ts and resetting by tr.  

 

Figure 46.  Model of a Boolean variable implementing SET and RESET commands.  

 

Figure 47 Model of a Boolean variable implementing also ASSIGNMENT of a value. 

8.2 Linear sequence of commands  

Consider how a linear sequence of two commands (e.g. A; B) can be modeled in NCES. 

Transitions t0, t1 correspond to the commands A and B . Once t0 fires it forces to start the 

model of the command A. Upon completion of A, the transition t1 starts the model of 

command B. 
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Figure 48 Model of a two commands’ sequence.  

 

Figure 49. Model of an assignment operator. 

8.3 Conditional choice  

Conditional choice of type IF X THEN Sequence A ELSE Sequence B can be modelled 

in NCES as shown in Figure 5. Transition tA has incoming condition arc which relays 

value of X, and tB has incoming condition arc marked with not X. Since the conditions 

are orthogonal, only one of the transitions is able to fire.  
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Figure 50. Model of a conditional choice operator. 

8.4 Boolean operations  

Since every Boolean variable is modelled by two places (as was shown in Figure 46), we 

do not need a specific model for getting negation of a Boolean variable. As for the AND 

and OR operations, they can be modelled as shown in Figure 6, a) and b) 

correspondingly. Both models have two incoming event signals: compute and reset. 

Computation of the result takes one state transition.  

 

 a).  b).  

Figure 51 Models of Boolean operations. 
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8.5 Subroutine call 

An example of a flowchart calling a subroutine is presented in Figure 52. The example 

includes modelling of the data that is passed to subchart, modelling of the Boolean 

operation, the subchart call and all the flowchart blocks. 

 

Figure 52. Flowchart with a call to sub-chart 

 

The main flowchart has a sub-chart call block, which invokes the sub-chart. The 

flowchart passes five variables: IN1, IN2, OUT1, OUT2 and OUT3 to the sub-chart. Four 

arguments of these variables are passed by reference, one argument passed by value and 

one is a local variable of the sub-chart. The modelling of the given flowchart and sub-

chart starts with the modelling of the local and argument-by-value variables. 

The resultant model is shown in Figure 53. For the sake of simplicity it shows only 

the modules modelling variables VAR1 and IN2, the module implementing the operation 

AND over two operands; and two modules representing the logic of the main and sub-

chart respectively. 

The NCES model of local variable VAR1 is modified as compared with the model in 

Figure 46 as follows: an event input with an arc to the t1 transition is added. The input 

provides variable reset at the moment when sub-chart is called. A NCES module is 

necessary for the variable IN2 due to its passing by value (although IN2 does not get 

modified inside the sub-chart in this example). It is modelled as the Boolean input similar 

to the model in Figure 58. 
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Thus, the local variables and the variables passed by value to the sub-chart are 

represented as independent NCES modules. Variables passed by reference are treated as 

global PLC variables and they can be modified directly by the sub-chart.  

The NCES module corresponding to the main flowchart has two outputs that are 

related to the commands - “TURN ON Output2” and “TURN OFF Output4”. All the 

other provide the representation of sub-chart call mechanism - “SET SUBCH_VARS” 

and “CALL SUBCHART”, and “YIELD” serves for yielding the control after 

termination. 

 

 

Figure 53. Full model of the sub-chart and main chart. 

 

The sub-chart module has an event input labelled as “START SUBCHART”, which 

initiates the execution. The input is connected by event arc to the “CALL SUBCHART” 

event output of the main flow-chart module. 
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9 Co-existence of synchronous and asynchronous 

behaviour 

Usually transitions in models of plant represent start or finish of some time 

consuming actions, while transitions in the controller's part of the model represent almost 

instantaneously executed commands. Hence, when two transitions are enabled, one in the 

plant, and the other in the controller, first the latter has to be executed. Consider a simple 

example of process/controller communication as shown in Figure 54 

(PlantObserverTest.xml).  

 

 
Figure 54  Model of plant and observer. 

 

The process is represented by the basic unit of plant which has two flip-flop states (as 

up--down, left--right, on--off) modelled by places p1 and p2. The transitions t1 and t2 are 

spontaneous. First assume that the model is not timed (by ignoring the time intervals 

attached to the arcs).  

The block “Observer” makes an “instant photo" of the process, i.e. reads the value of 

state in the loop (input DETECT) and when it is "ON" (i.e. m(p2)=1), performs some 

computations and stores the value  in the memory. When the state becomes "OFF" (input 

“RELEASE”), the observer clears the memory and returns to the initial state.  
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Figure 55 Reachability graph of the model of plant/controller interaction.  

 

If transitions in the observer were also spontaneous then, in the state shown in the 

Figure 54, there would be the following enabled steps of transitions: s1={t2}, s2={t3}, 

s3={t2,t3}. However, the first step is not feasible: it reflects the situation when the event 

occurred (m(p2)=1), but the controller does not start the corresponding action though it 

was able to do so (was not busy), and the information about the action is lost.  

a)       b)  

Figure 56 Desirable and incorrect sequence of plant/controller states. The sequence presented in the right 

Figure can never occur on the reality but is generated by the model.  

9.1 Non-timed models 

The first, “greedy” transition approach is aimed at non-timed models. All spontaneous 

transitions in the controller (like those in the “execution logic” part) are marked as 
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greedy. According to the greedy firing rule, if a greedy transition is enabled, then each 

executable step must include at least one greedy. This guarantees that all enabled 

transitions (commands) in controller will be executed until the next action occurs in the 

plant. 

 

   
a) b) 

Figure 57 Reachability graph of the interconnected system. Trajectories eliminated by the “greedy” tick 

generator are dotted.  

To fix the behaviour of our model we introduce greedy transition tg connected to t3, 

t4, t5 via (dotted) event arc. Since tg is always enabled, it fires at every state transition 

sending forcing “ticks” to the commands in the controller no matter what is going on in 

the plant. All the transitions t3, t4, t5 could be marked as greedy instead and that would 

yield in this example the equivalent behaviour. But we prefer forcing such transitions 

from the greedy “tick” generator for the reasons which become clear in the next section. 

9.2 Timed models 

In case of timed models, the use of greedy transitions in the former example is 

obsolete - the desired behaviour is obtained automatically since at the clock value 

u(p2)=0 (i.e. right after place p2 gets marked) the process in the plant is delayed, and the 

only enabled transition is t3.  

The only possible sequence of firing is: t3 -> t4 -> (after 1 time unit) t2 -> t5, if all 

arcs in the controller model have zero-delay (i.e. time interval [0, ]). 
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Figure 58 Timed model and its reachability gaph.  

9.3 Testing timed NCES modules 

For testing of timed models one may develop a structure similar to that in Figure 58, 

but with non-timed left “tester” module emitting random values in a loop. However, this 

will lead to the situation when the time is not getting incremented in the right, timed part 

of the model.  

A cure can be to make the tester part also timed.  
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10 Complete Example: Cylinder control 

10.1 Object description  

As the first example let us consider a very primitive control system of a single linear 

drive implemented using a pneumatic cylinder.  

 

 

Figure 59. Cylinder with two end-position sensors (Start and End) and two control signals FWD and 

BACK.  

The operation of the object is straightforward. Suppose we want to retract the 

cylinder to its leftmost position and from there enter the eternal loop of moving forth and 

back. To achieve this suppose we write the following program in Sequential Function 

Charts (SFC) (as shown in the left part): 

a)  b)  

Figure 60. Control program in SFC language (a) and its model in NCES (b).  
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Now let us try to study this program applying the formal verification technique. For that 

we create NCES model of the controller, which is quite straightforward, the result is 

shown in Figure 60, b. Then we connect the model of controller with the model of plant 

as shown in Figure 61.  

 

Figure 61. Block diagram of the Plant-Controller NCES model. 

This model is provided with ViVe tool set and is called Cylinder. 

10.2 Modelling the plant: Linear drive 

The most typical motion process in automated machines can be modelled and 

encapsulated for further re-use in the model of linear drive shown in Figure 62.   

 

Figure 62. Linear drive. 

 

The model which quite precisely represents uncontrolled behaviour of the drive is 

shown in Figure 63. Main modelled parameter is linear coordinate of the drive x.  

There are 6 states distinguished in the behaviour of drive, two of which are dynamic 

that means the speed is more than 0. The dynamic states are shown as circles, while the 

other static states are represented by rectangles with rounded corners. Model’s inputs 

include two control signals FWD and RETR for forward and backward motion 

respectively. Input event STOP serves to relay all sorts of possible failure situations 

during the motion.  
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Figure 63 Continuous/discrete (hybrid) state-chart model of the linear drive. 

 

The source of the failure is external to the model of drive, but consequence of the 

failure has to be taken into account within the model. According to the model, input event 

STOP leads to the static state “failure”, and input event RESUME enables transition from 

that state to state “stop”. The model above provides the numeric value of x  as a function 

of time conditioned by the values of inputs.  

In order to represent similar model by means of a discrete state formalism we 

decompose functionality of the drive to most basic characteristics, for example as 

follows:  

- motion status (stands ready to move, moves forward, moves back, stands in 

failure); 

- motion position (depending on the used formalism can be either represented as a 

numeric coordinate value, or as a discrete position). 

This template is illustrated in Figure 64.  
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Figure 64. Status-Position-Sensors template illustrated on the cylinder’s example.  

 

Discrete model of the motion status is very similar in structure to the state-chart 

model. In contrast to that, it is purely discrete and does not include time.  

 

 

Figure 65. Motion status of the linear drive. 

 

The motion status model is illustrated in Figure 65. The model converts the values 

of Boolean control signals to the status of motion – thus when all control signals go 

off, the status must change from movement (either place 1 or 3) to stop (place 2). 

Besides, external event FAILURE causes transition to the state “Emergency stop”. 

Places in the model represent the following discrete states: 
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P1 Motion forward  

P2 Stands still 

P3 Motion back 

P4 Emergency stop 

 

The input signals of the model have the following meaning: 

 

FWD Control signal “Move forward”  

RETR Control signal “Retract” 

STOP Event causing failure  

RESUME Event that recovers failure 

 

A specific feature of NCES modelling is that control signals need to be represented 

by two condition inputs for positive and negative value of the signal. It explains by the 

fact that sources of condition inputs are places, so to obtain the negation of a certain place 

marking we would need to connect to a place complement to the source. 

Transitions between states are driven by the values of inputs relayed to NCES 

transitions by means of event and condition arcs. Thus, transition from state “Stands still” 

(p2) to “Moves forward” (p1) is conditioned by the input combination “FWD and not 

RETR”. The corresponding NCES transition t1 has two incoming condition arcs from 

inputs “FWD” and “not RETR”. Abnormal halt of the drive is conditioned by an external 

event delivered via event input “STOP”. This event brings model from whichever motion 

state to the state “Stands in failure”, which is recoverable by event signal “RESUME”. 

The model delivers information about its motion status by means of two condition 

outputs “Moves forward” and “Moves back”. Since we cannot get the continuous value 

of x  out of a discrete state model, there are several possible options exist how to 

approximate it.  

 



Modelling and Verification of Discrete Control Systems 

64 

 

 

Figure 66.  Simple timed model of the position change. 

 

The most primitive way to identify position is to distinguish three positions: start, end and 

in the moving in between the two. The model in Figure 66 gives correct results assuming 

that the status of the movement never changes once it has started. Place p2 stands for the 

state “in between” and it takes 75 ms to get in either state “start position” (p1) or “end 

position” (p2). Should both condition inputs go off while the token is in p2 there would be 

no way to figure out the coordinate of the drive. 

A more precise way to represent the coordinate with a discrete formalism could be to 

divide the interval on segments and represent each of them in a way similar to that in 

Figure 67.  

 

 

Figure 67. Model of position in the interval divided on 5 segments. 
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The resulting model of the cylinder can look like the one in Figure 68. Status and 

Position modules here are grouped under composite model “Cylinder”, although this is 

just a matter of convenience.  

 

 

Figure 68. Complete NCES model of the cylinder.  

 

 

Figure 69. Complete closed-loop plant-controller model. 
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10.3 Deadlocks 

The first step in analysis of this model (Cylinder) using the 

Visual Verifier (ViVe) is generation of its reachability graph. In 

this case it consists of just 3 states. While doing this ViVe 

reports that the reachability graph contains deadlocks. Thus, 

without spending any time for step-by-step testing of the 

program on the real object (or its model) we were able to tell 

that the program drives the object to a deadlock state! This 

already is quite significant result provided that for a more 

complex object the reachability space may include a lot more 

states and manual finding of a deadlock can take very long time. 

The reachability graph for this simple control system consists of 3 states as shown in 

Figure 70. Arcs of the graph are marked with the numbers of transitions of the NCES 

model. The graph contains 1 deadlock state. ViVe can help with understanding of why 

the model gets into the deadlock. 

Thus, as Figure 71 shows, in the deadlock state 3 the controller cannot leave the state 

MOVELEFT since the sensor START never becomes TRUE. The reason of that can be 

found in the model of the plant. Models of both sensors initially are in state ZERO and 

nothing makes them transiting to the state ONE. As a result, the controller stuck, waiting 

for sensor START to become TRUE  

 

Figure 70 Reachability 

graph of the plant-

controller model. 
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Figure 71. ViVe shows the controller status in state 3. 

The remedy for this would be initialization preceding model’s operation. The 

initialization needs to set parts of the model to the appropriate initial states, e.g. model of 

sensor START to the state 1. Given this hint we can modify the model of the plant so that 

the overall behavior gets closer to the desired.  

First, after introducing the INIT input signal as shown in Figure 73 (Cylinder_INIT 

model) the plant adjusts values of sensors before the controller starts its operation. 
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Figure 73. Closed-loop model with initialisation. 

As a result, the overall behavior changes to have 15 reachable states as 

shown in Figure 72. This model however also has a deadlock state. The 

reason for the deadlock becomes clear after looking into models behavior 

in the last 3 states before the deadlock. While the cylinder is in its 

extended state (END), the controller jumps to the 

‘STATE_MOVINGLEFT’ and waits for the sensor START to become 

true. However, the controller did not issue the control signal BACK !  

This problem can be easily fixed by modifying step 9 of the 

controller by adding the ‘BACK:=1’ command. The NCES model also 

needs to be modified accordingly. As a result the behavior becomes 

deadlock – free as expected in the system that operates in eternal loop 

(Figure 74). The corresponding model is provided in 

Cylinder_CTLcorrected. 

10.4 Branching 

The reachability graph, however, contains a few states with several 

outgoing branches and one may wonder what this model’s behavior 

corresponds to in the real object’s operation.  

Thus, state 3 has two alternatives: either t5 fires or t23,t21 fire 

together. The former corresponds to the model’s of plant evolution from 

the state stSTOPPED to stM_BACK in the module MovingStatus.  

The latter is controller’s transition from the state 

STATE_MOVELEFT to the STATE_LEFT with setting to zero the 

output signal BACK.  

Since plant and controller operate concurrently either of these actions can occur 

first in the real settings. However, if the latter occurs first it will make the former 

obsolete, as there is no more signal BACK present at the input of the plant and therefore 

there is no need to transition from the status stSTOPPED to the status stM_BACK. One 

can see that in the branch S3→S5→S7→… transition t5 never occurs, while in the branch 

S3→S4→S6→… the transition step t23,t21 occurs right after t5. 

 

Figure 72. 

Reachability graph 

of the model with 

initialization. 
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Technically speaking, the reason for branching is the 

interleaving semantics of spontaneous transitions used for 

generation of theses reachability graphs – only one spontaneous 

transition can fire at time (ViVe supports also other options: all 

combinations of enabled spontaneous and maximum set of 

enabled spontaneous transitions to fire simultaneously).  

Other branching cases in the states S6 and S12 are of the 

similar nature. 

10.5 Deeper analysis 

Although ViVe allows following various traces of a model’s 

behavior in the visual way, for more complex models more 

analytic methods of analysis are required, namely using 

specifications formulated in CTL. Usually the following classes 

of properties are of interest:  

a. Liveness – i.e. deadlock-free behaviour 

b. Checkpoints of the process or properties of the 

product – assurance that the product always 

satisfies specifications; 

c. Safety – not entering certain ‘prohibited 

behaviour’ scenarios. 

10.6 Exercises 

1. Develop an example plant – controller system where the controller gets into a 

deadlock while the whole model is alive. 

2. Develop a model illustrating the idea of a ‘dynamic trap’ where e.g. controller 

enters eternal loop but the model of plant stuck. 

10.7 Review questions 

1. Why branching is observed in the behavior of the automated cylinder? 

 

 

Figure 74. Deadlock-

free reachability graph. 
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11 Model Verification with Visual Verifier 

11.1 Visual Verifier functions 

The integrated environment for Model Assembly, Translation, and Checking (Visual 

Verifier) inputs the model type files (in the XML-based format) and is capable of 

assembling, translating and checking the models. 

 

Figure 75. Visual Verifier screenshot. 

Assembling means creation of a flat model from a composite, hierarchically organized 

modular model using the modules from different libraries of model types. The component 

model types are instantiated into NCES modules.  

Translating the model into a “flat” NCES with the through numbering of places and 

transitions (Figure 76). The inter-module connections are converted into event and 

condition arcs between places and transitions. Thus the module boundaries are removed 

and the model-checking tools can be applied. In particular, the translator generates files in 

the input format of SESA model checker.  
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Figure 76. Visual Verifier creates a flat model from a hierarchical model. 

Visual Verifier can prove specifications in the form of the first order predicates or can 

pass the temporal logic formulae to the SESA model checker. The internal model checker 

of Visual Verifier generates the reachability graph for the model, either completely or 

dynamically while it checks the formula. It can also import a reachability graph generated 

by SESA and visualize it. 

Once a state with particular properties is found in the reachability space, Visual Verifier 

can visualize a path from initial (or any other state) to the found one. The visualisation is 

done in a form of state-time diagram for a selected set of system variables (both from 

plant and controller). A user can select between different views and see the model in each 

state. The visualisation options proved to be very useful in practical verification. 

For documentation it is possible to export the picture of model or the reachability graph 

in the BMP format. 

 

 

Figure 77. Visualisation of a reachability graph 
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11.2 Data formats 

The data format of Condition/Event Nets is based on XML. The Document Type 

Definition (DTD) of the S/EN model types is given in Annex 1.  

The installation package of Visual Verifier contains a number of examples in that 

format that will be commented here.  

Model-checker SESA has its specific data formats which are explained in detail in its 

documentation. It is important to remember that input for SESA does not include any 

module information and has a through enumeration of network places and transitions 

each starting from 1. For this reason SESA input format will be referred to as “flat” 

model format.  

FBT format is used to provide compatibility with IEC61499 and its supporting tools. 

FBT is XML-based, but contains only a description of model interface. The XML format 

for S/E Nets also contains interface part but their syntax is different.  

The FBT files can be generated automatically for each S/EN module along with XML 

file containing full model description. Then they can be used for creating composite 

models as networks of interfaces interconnected via event and data connections in 

Function Block Editor.  

 

File extension: Basic S/EN module Composite module 

XML – full S/E 

model 

Created by S/EN editor Created by S/EN editor 

FBT – interface of 

the model 

Created by S/EN editor Created by FBEditor 

Visual Verifier currently supports several input formats on NCES models: 

For basic modules: 

S/EN editors: 

1. ViEd format: the editor of typed NCES developed at the University of Auckland, 

New Zealand. The centre of axes is in the middle of the picture. The coordinates are in 

pixels.  
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2. TNCES Editor  

The editor was developed in Martin Luther University of Halle-Wittenberg, Germany. 

The coordinates of elements are given in pixels, centre of coordinates is in the top left 

corner. 

Older editing tools and generators: 

3. VISIO format 

Coordinates are given in millimetres, the vertical coordinate axis is directed upwards; 

Element's coordinate indicates the centre of the element. 

4. Generated by MOVIDA generator 

In addition to position coordinates some elements may have explicitly assigned size, 

either via Width, Height or via Diameter parameter. 

Visual Verifier has default sizes for graphic elements. If the size is assigned once to any 

element in the model, Visual Verifier scales correspondingly sizes. If the size is not 

present, then Visual Verifier takes this default scaled size. 

  

For composite modules: 

1. FBDK format: coordinates are measured in basic units that are equal to 1/10th of 

interval between parameters of a module.  

2. ViEd and TNCES Editor format. 

3. MOVIDA Generator format. 

 

11.3 Limitations 

There are many input syntax limitations of ViVe which are not always properly 

detected by the input parser. 

1. Symbolic names of places, transitions, I/Os cannot contain spaces. Example: 

Correct: TrueToFalse , True_To_False 

Incorrect: True To False 

2. Objects within a module cannot have same symbolic names, even in different 

case. For example, event input “END” and place name “end” will be treated as the 

same. 
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11.4 A hint for clearer models 

Sometimes NCES models can be overloaded with arcs which reduces their clarity. To 

cope with this problem ViVe suggests 2 solutions. First you can select which graphical 

elements to show, and which not, on the pane NCES of Options, as illustrated in Figure 

78. 

  
a) All graphical elements are shown b) Only token flow arcs and numeric 

identifiers of elements (e.g. p1) are 

displayed)  

Figure 78. Hiding event and condition arcs and timing intervals.  

The second trick applies to the ViEd NCES editor. To make the picture in the editor 

clearer a special textual notation can be used in comments of the corresponding arc 

destination elements. For example, in Figure 79 the same cylinder2s.xml model is opened 

in ViEd. As one can see, not all inputs have graphical links. For example, the condition 

input RETR in ViEd has no outgoing graphical link connections.  
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Figure 79. Same model opened in ViEd.  

One of these links goes to the net transition t3. If this transition is selected, as 

illustrated in Figure 81 one would see its parameters in the right pane, including the 

comment: 

>PLANT_EV 

>RETR 

>negMOVE 

This comment defines arcs having their destination in t3 by enlisting their sources. 

Actual type of the arc (condition or event) is not important as far as it is not ambiguous. 

When the model will be opened in ViVe, the arcs will be created automatically.  
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Figure 80. Transition t3 is selected. 

 

Such “symbolic” arcs can be established between:  

Event input –> transition 

Condition input -> transition 

Place -> transition (condition arcs, not flow arcs) 

Transition -> transition 

Place -> condition output 

Transition -> event output 

In all cases, the link is defined at the destination elements using the syntax described 

below: 

> source [,source][,source] 
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12  User Interface of Visual Verifier 

A Visual Verifier screenshot with annotated screen areas is presented in Figure 81.  

 

Figure 81. Visual Verifier screen. 

12.1 Tabs 

 

 

Model tab – Viewer of NCES model currently opened (if Basic) or currently selected in 

the model tree view (after assembly).  

 

RG – Reachability Graph – shows the generated reachability graph if  

1) The graph has been generated (for that the model needs to be built); 

2) The Geo checkbox is checked; 

 

Editor – Edit the flat S/E Net. 

 

Check – provides the tools for specifying CTL formulae and verifying the current NCES 

model. 
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12.1.1 Functional toolbars 

Files toolbar 

 

 
 

1 Open model file (*.xml) 

2 Build flat model  

3 Create reachability graph in the memory area 1 

4 Interrupt the model checking/ reachability graph generation 

 

Specification toolbar: 

 

 

1 Open specification file; 

2 Save specification 

3 Look for a state complying with spec in the reachability space. If the space is not 

generated yet, it will be generated on the fly until the desired state is available 

 

Reachability graph toolbar 

 

 
 

1 Geo check box – creates geometry of the reachability graph. Needed to 

visualise the reachability graph (if unchecked the reachability graph still 

can be used for model checking but cannot be visualised) 

 

Trace toolbar  
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1 First state number of the trace 

2 List of intermediate state numbers. To add a number to the list: type the number in 

the field, press “Enter”. To delete number from the list: select the number in the 

pull-down menu and press “Space”. The path will be created trough all the 

selected states (if such path exists).  

3 Last (target) state number of the trace Generate Trace  

4 Generate Trace 

5 Load a trace from file 

6 Save trace to file 

 

 

Figure 82. To delete element from the states list: select it in the pull-down menu, and press 

“Space” 

 

Multiple reachability graphs toolbar 

 

 
 

1 Compare states of RG1 and RG2 (until first discrepancy is found) 

2 Compare topology of RG1 with RG2 (until first discrepancy is found) 

3 Compare topology of RG2 with RG1 (until first discrepancy is found) 

4 Navigation in reachability graph: Find the target state in RG1 and show it on 

screen 

5 Find the target state in RG2 and show it on screen 

12.2 Typical sequence of steps using Visual Verifier 

Step 1: Open the header file of the model 

The header file is the module of highest hierarchy. If the header is a composite model, 

then it refers to other model types whose instances make a network of modules. Open, for 

example, src/book/NewCompositeModel.xml and you will see the following: 
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Step 2: Build a flat Condition-Event net model 

 

Figure 83. Generation of the flat S/E net from hierarchically dependent NCES modules. 
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After the button “Build” is pressed, the model is assembled from model types. Then 

the nested structure of the model appears in the Tree View window, and the flat model in 

the Edit pane window.  

 

 

You can switch back to the Model view and 

you will see that after the “Build” operation one 

module has added to the network of modules. This 

is the module dummy of type “Service”. This 

module is needed to set values of those inputs of 

other modules which are not assigned.  

 

 

 

 

 

The dummy module has two places – one always 

empty and the other always full. It also has one 

transition which is never enabled.  

This transition is connected during the build to all 

unassigned event inputs of all modules in ALL 

LEVELS of hierarchy! 

The always empty place is connected to all condition 

inputs of all modules via condition arcs.   

Step3: Generate reachability space of the flat S/E model 

Then, if you check the “Geo” radio button the corresponding reachability graph will 

be created. It can be viewed under the RG tab in the main pane.  
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Figure 84. Reachability graph visualized in ViVe. 

Step 4. Check specifications using internal model checker 

The internal model checker allows check specifications given in predicate logic over 

the state (marking) variables.  

If the reachability graph has been already generated then the specification will be 

checked on that graph. Alternatively, the graph will be generated “on the fly” until a 

counterexample is found.  

12.3 Model-checkers 

ViVe has two built-in model-checkers and, additionally, can call external model-

checker SESA. The first built-in model-checker checks only specifications in form of first 

order predicates, the other understands temporal logic formulae in CTL. As illustrated in 

Figure 85, access to both built in model-checkers is provided from the pane “Check”. The 

CTL checker (also referred to as STARk) is based on SESA and supports the same syntax 

of the specifications as SESA.  
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Figure 85. The Check pane contains controls of both built in model-checkers.  

12.4 Command line SESA 

The command line version software tool SESA for the analysis of Signal-Net 

Systems. SESA has been developed in 1999-2002 at Humboldt University of Berlin 

(Germany) by Professor Peter Starke and his group. 

 

Figure 86. Screenshot of SESA. 
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SESA was developed in collaborative R&D project "Function Blocks" conducted 

with the group of Professor Hans-Michael Hanisch at Martin Luther University of Halle 

(Germany). The project was funded by DFG - German Research Foundation. After the 

retirement of Professor Starke SESA support by Humboldt University has been 

discontinued.  

In 2008, the group at The University of Auckland’s has created a new build of SESA 

(SESAcmd) which is 64-bit capable. This means it can use RAM beyond the 2GB limit 

of the 32-bit SESA.  

The description of the command line version is in (SESA Manual, 2005). 

With permission of Prof. Starke the code of SESA has been adapted and integrated 

into ViVe as the second model-checker STARK (also referred here as CTL-checker).  

12.5 SESA from ViVe 

Another version of SESA can be called from within Visual Verifier (Menu 

‘Analyze/Call SESA’). The built-in version of SESA allows checking specifications in 

both Computational Tree Logic (CTL) language and in Predicate Logic. 

 

Figure 87. Calling SESA from Visual Verifier produces such a window 

 

SESA goes through a particular verification scenario and stops after net pre-check is 

completed. The button “STOP” is a bit confusing: in reality it means “CONTINUE”! So, 

while SESA is busy pre-checking the “STOP” button is blocked, but when it stops, the 

button becomes available. Pressing the button will conclude the reachability graph 
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generations and will start the formulae verification. After formula has been proved, press 

EXIT. 

The current version of SESA does not support timed NCES checking. So, if the 

checkbox “Timed” in ViVe is ON SESA would stop reporting an error. In this case press 

the “STOP” button to continue model-checking as shown in Figure 88.  

   
a)  b)  

Figure 88 a) SESA stops after encountering the “Timed” option. Just press “STOP”; b) The model-

checking continues. 

The following table summarizes the dialects of NCES supported by these model 

checkers. 

 Features Editor SESA Visual Verifier 

 Timed firing rules    

 Interval ultimo - X X 

 Earliest weak - X X 

     

 Spontaneous transition 

firing 

 -maximal steps 

 

- single  

- all spontaneous,  

- all combinations,  

- single 

 Greedy transitions + X X 

 Synchro sets - X - 

 Specifications -   

 Predicate logic - X X 

 CTL - X  

     

 Analysis    

 Static analysis   X - 

 Reachability graph  X X 

     

 NCES    

 Colours  - X - 

 Priorities - X Yes:  

- for spontaneous 
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transitions 

12.6 Hints for analysing complex models 

The three available model-checkers have different performance. For that reason the 

following sequence of steps can be recommended.  

1. Assemble the model. 

2. Call external SESA (without entering any specification) in order to estimate the 

number of states in the reachability graph. You can also enter some CTL 

specifications, but SESA will be able to give only ‘YES’ or ‘NO’ answer without 

providing a counterexample. 

3. The built-in CTL checker is currently about 10 times slower than SESA as such, 

but it can export reachability graphs and provide counterexamples for CTL 

properties (which takes extra time).  

4. The predicate checker (which is 3 times slower than the CTL checker, but does 

not take extra time for loading the reachability graph) can be used for initial check 

of model’s feasibility. With it you can quickly create a smaller part of the 

reachability space and check if your model behaves reasonably. An indication of 

non-reasonable behaviour can be too large reachability space (generated by 

SESA). The predicate checker has two options: 

a. Breadth – first search (default) 

b. Depth – first search (selected by the “Recursive model-checking” check 

box); 

c. The “Check-on the fly” option allows checking a predicate without prior 

creation of reachability graph. Graph generation stops when a state 

satisfying the predicate is found. The created graph can be re-used for 

checking other predicates and it can be incrementally extended if 

necessary if the “->” button is pressed.  

5. The CTL checker provides a choice of two firing rules: ‘single spontaneous’ and 

‘maximal steps’. The first rule leads to interleaved firing of spontaneous 

transitions and can eliminate some effects of a modelled concurrency. The second 

rule handles concurrency better. 

6. The predicate checker offers an additional rule: “all combinations of spontaneous” 

which can be useful for modelling asynchronous concurrent processes.  

7. ViVe can store two reachability graphs, generated by different model-checkers 

and/or with different firing rules. The switch of the “Current RG” implies that a 

relevant operation (such as generation of a trace to a state) will be applied to the 

currently selected reachability graph. 

8. After reachability graph created by the CTL checker has been loaded, it can be 

also used for checking predicates with the “Predicate checker” using the “Search 

in the created graph” button. 
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12.7 Exploring reachability space 

ViVe provides an option of looking into the reachability space by visualising the 

reachability graph. After the reachability space is generated in either of the two internal 

model-checkers, it can be visualised by checking the “Geo” box, which will assign 

geometrical layout to the generated states. Then the reachability graph will appear in the 

“RG” pane. This option, however, is beneficial only until the space becomes large. Here 

the available navigation options are:  

- Zoom/ Unzoom the graph; 

- Select a particular state by clicking on it; The selected state becomes current, so 

marking of any model part will be shown in this particular state if selected in the 

navigation tree. 

 

Figure 89. Selected State 

window. 

Clicking on a state opens the new window providing a 

detail look on the state as shown in Figure 89. The 

state and its immediate successors are shown in the 

upper part. All states here are “clickable”, i.e. one can 

“travel” through the graph without having visualised 

the whole graph.  

The lower part of the window shows the transition 

steps from the selected state.  

Another navigation option is via the “Timing diagram view” of a particular path in 

the reachability space as shown in Figure 90. The path can be specified by its start 

state, end state and a number of intermediate states. 
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Figure 90. Navigating with timing diagram view of path. 
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12.8 Finding paths satisfying certain criteria 

ViVe can find a group of paths from the initial state to the target state. This facility is 

located in the “Check” tab. It works for a generated reachability graph.  

Currently, it can find either certain number of paths satisfying one of the criteria: 

maximum number of states or time duration not exceeding a limit. Clicking on a path in 

the list will display it in the timing diagram window.  

 

 

Figure 91. The paths search. 

12.9 Metrics 

The largest SNS model built with ViVe so far was built of 744 modules and contained 

more than 6700 places and 10000 transitions. Its reachability space, however, was quite 

small – less than 5000 states. 

SESA reportedly can deal with reachability spaces of millions of states. More hints 

for handling large model spaces in the CTL model-checker 

If the model-checker stops without notice, most likely it is due to the “Out of memory” 

problem. In this case, however, the reachability graph is saved to disc (file with the name 

of your model and extension *.arc). You can explore this reachability space without 

visualising the graph as follows:  
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1) Quit and Restart ViVe; 

2) Open and build the model again; 

3) To minimize memory requirements in Options/View unselect all variables and 

select just those needed; 

4) Read the reachability graph (but don't try to create its geometry!); 

5) Generate timing diagram to the last state; 

6) Go along the timing diagram and by clicking on states see in more details how 

many successors the state has. This may give you some idea of the RG structure. 

In case if the model-checker crashes without a message (which is a symptom of the 

“Out of memory” situation), you can do the model-checking in 2 steps.  

First, build the model, then exit ViVe, then open model but not build it and directly 

start generation of RG. The CTL checker takes the flat model saved during the previous 

run and starts RG generation. Then follow the steps described above. The model-building 

is taking extra memory which can be saved in this case. 
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13 Verification of Properties 

13.1 Overview 

The validation of automation systems modelled by NCES can be performed by 

simulation and formal verification via model checking. The simulation usually can follow 

a limited number of scenarios in the system’s behaviour while the potential flaws can be 

in those paths left out unvisited. The multiple scenarios may result from the influence of 

some unpredictable factors, such as variable durations of some operations, 

communication delays, malfunctions, etc. In contrast, the model-checking explores all the 

existing scenarios.  

The verification consists in proving specifications with respect to the dynamic 

behaviour of the model. The specifications can be given either in form of second order 

predicates, or in form of temporal logic expressions, for example in Computational Tree 

Logic (CTL). The basic terms of these expressions in most cases are the “values” of 

inputs and outputs (either of plant or controller) or, literally, the marking of the 

corresponding NCES modules modelling the data variables. As the hierarchical NCES 

model is converted into a flat S/E Net model this provides the through place/transition 

numbering, and these numbers are used as references to the values. 

In case of the lifter the following groups of specifications were of the primary 

interest:  

 Avoidance of potentially dangerous situations that may lead to a breakdown of the 

lifter or to damage of the product being transferred by the lifter. Example: when used 

in manufacturing of precise electronic components, such as hard drives, the lifter 

introduced and described in Section 15.12 must never allow the situations when the 

pallet leans or jumps. Such problem can be caused by inexact synchronization of 

conveyors’ levels, which, in turn, may be a result of wrong synchronization of control 

programs; 

 Robustness of the system in case of malfunctions of some sensors; 

 Control programs can have branching logic of execution. Formal verification helps to 

prove that the response time is never exceeded in any feasible I/O combination in any 

branch;   

 Avoidance of deadlocks or “dynamic traps” that may result from wrong 

synchronisation of operations;  
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 Presence of certain “checkpoints” in any possible scenario of behaviour that 

guarantees all necessary operations have been applied to the product in any 

circumstances;  

 

The overall model of the automated Lifter had 3 hierarchy levels and after assembly 

from modules encountered 571 places and 828 transitions. However, the model-checking 

of the normal behaviour (without modelling malfunctions in sensors) resulted in a 

reachability space not exceeding 60000 states which was generated on a usual laptop less 

than in a minute. This result reflects the efficiency of distributed state modelling with 

NCES. 

Besides the possibility to verify or falsify certain properties of the system, another 

important advantage is that the method may be applied in absence of physical controller 

and physical plant. Consider the following scenario: the manufacturing line where 

conveyor modules, lifters, workstations, robotic cells, etc., is being installed. Mechanical 

and electrical engineers do installations and tests of the equipments. The time for project 

runs out, the deadline is approaching, but the control engineer had no chance to test the 

line, since the physical equipment is not ready yet. In this situation the application of this 

method (model-based validation with the model of controller derived from the source 

code) may provide an environment for independent development of control, while the 

physical plant is being set up. 
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13.2 Syntax of specifications 

The combination of Visual Verifier and SESA allows verify specifications given as first 

order predicates, and temporal logic formulas given in Computation Tree Logic language 

(CTL). Note that at the moment syntax of specifications allowed by Visual Verifier and 

SESA is a bit different. 

A first order predicate is a Boolean expressions that uses marking of places or firing 

of transitions as variables along with usual Boolean operations such as & - and, ! – or, ~ - 

not, and brackets. In Visual Verifier specification can use only Boolean expressions over 

marking (i.e. place is marked or not marked).  

 

Example:  

Visual Verifier p1 & ~p4 

p1 and not p4 

Search for states where 

marking of place p1>0 and 

marking of place p4 is 0. 

SESA m(p1)=5 Search for states where 

marking of place p1 is 5 

SESA (m(p1)=5)AND (m(p2)=2) 

 

For Boolean marking: 

AG(p1ANDp2) 

No spaces are allowed 

between terms in SESA 

 

NOTE: In Visual Verifier operands and operations MUST be separated by spaces. No 

spaces are allowed between terms in SESA. 

13.3 How to check specifications 

1. Enter a specification, e.g. a CTL formula in the specification area. For example:  

EG ((m(p1)=1) AND (m(p4)=1))  
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Figure 92. Field for entering specifications in Visual Verifier. 

2. Go to the “Check” tab.  
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3. Press the “Check CTL formula” button. 

 

Examples of specifications are presented in 15.12 for the Lifter introduced in Section 

15.11. 
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14  Distributed controllers  

14.1 Discrete-state model 

Distributed control systems may include several autonomous controllers either 

working asynchronously (with data exchange via network), or co-existing within one 

device thus being synchronized. The distributed architecture may create new trajectories 

in the system’s state space which are not the case in local centralized architectures. 

Consider the case of two previously presented subsystems working concurrently. 

 

Figure 93 Two concurrent processes in the plant being observed by two independent controllers. 

 

In the non-timed model the greedy transitions ensure that the model generates all 

possible sequencing of commands. In the state presented in the Figure there 12 enabled 

steps: {{tg1,t3},{tg2,t8},{tg1,t3,tg2,t8}} X {{},{t2},{t7},{t2,t7}}.  

For example, { tg1,t3,t2},{tg2,t8,t2,t7}, {tg1,t3,tg2,t8}, etc. Thus, the step {tg1, t3} 

models the situation when the Observer1 has started processing, while the other observer 

still has not. 

The proposed solution allows easy change from distributed to centralized architecture. 

To model placing both observers in the same controller device (synchronisation), it is 

enough to substitute the two tick generating transitions tg1 and tg2 by tg12 as shown in 

the Figure 1. Then only 4 steps would be possible in the given state: {tg12, t3, t8} X 

{{t2},{t4},{}}. 
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14.2 Timed model 

In timed models behaviour similar to the “greedy” transitions can be modelled by 

means of synchro-sets. The synchro set model is implemented only in SESA model 

checker (and in STARK). All transitions in the controller part of the model, which are 

enforced by the arcs from “greedy” transitions in the non-timed model, are marked as 

members of a particular synchro-set, associated with the controller. Membership in a 

synchro-set has the only consequence on the firing of transitions: all enabled transitions 

belonging to the same set are included in the firing step only all together. It has no impact 

in the simplest case when a module has the safe marking and one firing spontaneous 

transition at once. But in case of several simultaneous actions taking place in controller 

there is need to separate them out from other groups of actions taking place in other 

controllers. 

 

 

Figure 94 Synchro sets. 

In the example in Figure 94 we defined two synchro sets: S1={t3,t4,t5} and 

S2={t8,t9,t10} to model the allocation of the observers to separate devices. The 

reachability graph for this model is presented in Figure with initial state S1 equivalent to 

that shown in Figure 95 and with clock values equal to 0 at all places. 
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Figure 95 Reachability graph for the timed model with two synchro-sets  

(The “observers” reside in independent devices). The bold arcs have duration 1. 

 

A path in the reachability graph corresponds to a particular scenario of system’s 

operation. Consider, for example, the path outlined in Figure 3. The state/time diagram of 

the model propagating along this path is shown in Figure 4. The behaviour along the path 

is as follows: the observer 1 starts computation in respond to occurrence of the marking 

in p2. It makes two computation steps before the observer 2 starts its execution in 

respond to another event (marking in p7). Since the results of computations may be used 

by other controllers, their sequence is important. 
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Figure 96 State/timing diagram of the outlined path in the reachability graph. (Small intervals represent 

states with zero-duration, larger intervals represent states with duration 1). 

14.3 Using synchronous transitions 

To use synchrosets in SESA one needs to create a file with ext ‘*.syn’ and same name 

as the model file. An example of such a file is as follows: 

  

Synchro for net 1: 

   1: 188, 189; 

   2: 173, 175; 

@ 

This file defines two synchro sets, one with transitions t188 and t189, and the other 

with t173 and t175. 

14.4 Synchro sets in ViVe 

The model generator of ViVe automatically creates the *.syn file when assembles the 

flat model if the parameter “timed” is ON and if the model includes greedy transitions. 

All greedy transitions are included into the same synchroset.  

To enable synchrosets when model checking with internal SESA, one needs to use the 

“Maximal steps” firing mode. In the “Single spontaneous” mode synchrosets are ignored.  

You can modify manually the *.syn file in order to define another “layout” of synchro 

sets and then use either command line SESA or STARK. 
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14.5 Example of different firing rules application 

We illustrate differences between available firing rules in both model-checkers using 

the following example. 

 

 

Figure 97. Test model of two concurrent processes. 

14.5.1 Non-timed 

In the non-timed mode the timing on arcs is ignored. 
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STARK 

Single spontaneous Maximal steps 

  

14.5.2 Timed 

ViVe model checker 

Single spontaneous All combinations Maximal 
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STARK model-checker 

Single spontaneous Maximal steps 

  

14.6 Model modification: synchronous transitions 

Let us consider how the behaviour of the model would change if we constrain the 

behaviour of a single process by making one of the transitions synchronous as show in 

the Figure below.  

 

Figure 98. One transition is made synchronous instead of spontaneous in each model.  
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14.6.1 Non-timed 

STARk: 

Single spontaneous Maximal steps 

 

 

 

ViVe 

Single spontaneous All combinations Maximal steps 

All Greedy together 

 

All Greedy together 

 

 Combinations of 

greedy 

 

Combinations of greedy 
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14.6.2 Timed 

ViVe checker 

Single spontaneous All combinations Maximal steps 

 

  

STARk 

In STARk, in timed mode only the “Maximal steps” firing rule is applicable if the model 

includes synchronous transitions. These are interpreted as one single synchro set. 

 

Single spontaneous Maximal steps 

- Not applicable 
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14.7 Modelling communicating processes 

Communication can be modelled using the standard buffer approach as illustrated 

below.  

 

Figure 99. Model of two processes communicating via buffer of a unit capacity. 

 

 

Figure 100. Message passing between process.  
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15 Example of a distributed system: two cylinders 

Now let us consider a more complicated example of a system with distributed control. In 

the system of two cylinders in Figure 101 each cylinder pushes a workpiece to the 

destination hole. The process starts when the workpiece appears in front of the 

corresponding cylinder as indicated by sensors P1 and P2 respectively.  

As it is clear from the Figure, cylinders can collide in the middle point, therefore the goal 

of controller design is to avoid such a situation.  

 

Figure 101. Two cylinders with a potential clash in the middle.  

There are many possible ways to achieve the desired behavior, which can be done by 

designing a “central” controller of both cylinders, or a protocol ensuring that distributed 

controllers collaborate correctly. Distributed control is of interest for many practical 

reasons: imagine that control logic is “embedded” in each cylinder, so they can start 

working as soon as powered on.  

15.1 Reusing original controllers 

What if we take the individual cylinder controller introduced in Chapter 10 and let the 

cylinders to operate? A slight modification will be required to start the operation only on 

appearance of a workpiece. For that we introduced new input “wps” (workpiece sensor) 

as shown in Figure 102.  
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Figure 102. Modified cylinder controller with the added “wps” input. 

15.2 Finding collision 

The entire model of two cylinders is presented in Figure 97. The module “materials” 

models the position of workpieces. The workpieces can be pushed by the corresponding 

cylinders. The cylinders have an additional output “exc_mid” indicating that the cylinder 

is extended so that its tip exceeds the middle position. Cylinders collide if both exceed 

the middle position.  
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Figure 103.  The model of two cylinders with a possible collision.  

 

The role of the “collide” model (Figure 104) is to emit the “stop” signal after which 

both cylinders will move to the “Emergency STOP” state encoded by the place p4 in 

Figure 65. When ci1 and ci2 are TRUE, the model jumps to the p2 state and emits the 

event “stop”. 

 

Figure 104. Model of collision. 

 

The model will automatically enter the deadlock in case of a collision. 
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15.3 Block – permit protocol 

Now, let us change the control logic so that one cylinder would allow the other to move 

only if it is not moving itself.  For that we add an input “can_move” and output “permit” 

to the controller module types. The model is shown in  

Figure 105.  

 

 

Figure 105. Model with controllers’ coordination.  

 

If this model is checked with the “single spontaneous rule” it shows no deadlocks, 

implying that no collision of cylinders can occur. 

 

15.4 Central controller 

 

15.5 Exercises  

1. Check the model of two cylinders with distributed coordinated control using the 

“all combinations” firing rule. Explain the results.  

2. Develop a central controller module for two cylinders. 

3. Develop a supervisor module for correct avoidance of collisions with minimum 

time losses on waiting.  
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16 Modelling Programmable Logic Controllers 

(PLCs) 

16.1 System routines 

Precise modelling of automation systems requires taking in account low level details 

of the control program execution in a PLC. The PLC programs are executed in a cyclic 

way. One cycle consists of the following phases: first the inputs are read, then the 

program logic is executed and then the outputs are written. Figure 26 depicts a NCES 

skeleton for a PLC model. Place p1 holds a token representing the initial state of the PLC 

execution, if the PLC program is enabled (condition input to the t1 transition) the cycle is 

started by the update of outputs and acquisition of input values. The firing of t1 transition 

generates these events. When a token is placed to p2, it resides there until a signal 

notifying about the change in the system enables transition t2. The monitoring of the 

changes in the systems is needed in order to not start a new PLC cycle unless something 

has changed in the system. 

 

 

Figure 106. PLC model skeleton 

 

The state of the NCES model is distributed and is defined by the marking of all 

places. Additionally to the marking, the state is characterized by the time stamp, e.g. the 

time the certain state (marking) is valid. Thus the two states representing the same 

marking but holding different times are different states. 

A special module that monitors the change in the system has to be added to the model 

(Figure 107). The module has two event inputs for retrieving information about any 
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change of the PLC program variables during the scan cycle. It does not make sense to run 

the model over the new scan-cycles if the markings in the model remain unchanged, i.e. 

when nothing would change during the next scan. The marking may change in the model 

of the plant or if the time dependent transition fires in a timer NCES module in the model 

of controller. 

 

Figure 107. Change monitoring NCES module. 

16.2 Ladder logic 

Let us consider an example of ladder diagram in Figure 108. Textual representation of 

the first rung of the diagram is given on the right. The textual representation of LD 

resembles the Instruction List programming language. 

 

 

Figure 108 Tank control program 

 

An LD instruction (that stands for Load) loads the value at IX_Tank_Full variable 

into accumulator. At the second row, the negated value of accumulator is stored to output 

variable QX_Valve_In that controls the valve. So, once the tank is filled, IX_Tank_Full 

becomes TRUE, the FALSE value is stored into the QX_Valve_In, that will close the 

valve. 

In the given example it is just an evaluation of a single bit variable IX_Tank_Full. If 

the variable was not met in previous racks its model will be added to the PLC model. The 

PLC model skeleton is extended by the rack representation. In the current example, which 

has only one rack, p3 place along with t3 and t4 transitions represent the rack 0. Figure 10 

represents the PLC logic model. The whole PLC model consists of interconnected I/O 
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modules (Figure 46), a change monitoring module (Figure 107), and a PLC logic model 

(Figure 109). 

 

Figure 109. PLC logic model for tank control program. 
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17 Modelling of Complex Plants 

In this Chapter we present more details on how the modelling of plant may benefit from 

the hierarchical model organisation and the reuse opportunities provided by the extended 

NCES. Thus, common modelling components may be reused in the same model and 

across different models. 

Models of the plant and model of the controller are interconnected into the closed-

loop providing the representation of entire system that consist of the controlled 

equipment and control device. The combined model is subject for making a judgement 

about modelled system properties by means of model-checking. 

Depending on the required accuracy of modelling, the model of plant may include 

components for each drive, motor, valve, electric relay, sensor, actuator, and other 

elementary pieces of equipment. These component models may be integrated to the 

complex models of equipment units, such as machine tools, other material processing and 

storage units, and the transportation means. The approach presented in this section 

extends the ideas of plant modelling of (Hanisch et al, 1998), (Hanisch and Lüder, 2000). 

17.1 Process/Sensor model 

Event arcs are able to express the variety of instantaneous actions, one of which is 

operation of sensor which detects the changes of the plant’s state. Once transition t1 in 

the model of the process fires, it also switches the sensor ON by means of the event arc. 

Model of sensor comes first to the transitional state (marking in p2) and after the delay D 

– to the state with p3=1. Reading of the sensor usually comes to controller as a logic 

value modeled in our formalism as a condition signal. The sensor itself can have internal 

dynamics, e.g. delay D, as it is shown in the Figure 110, or an additional “malfunction” 

state (not shown in the Figure, but similar to the “exception state” considered earlier. 

Note that in the figure we model the “malfunction free” sensor which always produces 

the required value upon elapsing the specified time D. Model of sensor can be either 

simpler (just a bi-stable) or much more complicated, depending on the required results of 

modelling. 
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Figure 110 Model of sensing: sensor detects when the process comes to the observed state and with delay 

produces the required logic value (places p1,p4 of the module “Sensor”). 

17.2 Tank 

Common modelling components may be reused in the same model and across different 

models. A common example of that is modelling of Boolean input and output variables 

that can be seen in Figure 111 that represents a plant model of the tank from Figure 39. 

The model of the plant has two Boolean variables corresponding to the valve and the 

level sensor. The valve is modelled by an input variable while the level sensor by an 

output variable. This is opposite to the model of the controller, where PLC program has a 

valve related variable as an output and the level sensor as an input. 

 

Figure 111 Model of the filling process –with valve input and level sensor output. 

Figure 111 shows the model of the plant that embodies all the low level modules and 

is ready to be interconnected with the model of the controller. The filling process model 

of the tank has one condition input valve_open and one event input turn_on_Sensor. 

Figure 112 shows (a very simplistic) model of the process in detail. This is a trivial 

abstraction of the real filling process that has only two states (p1 and p2) that may be 

seen as not filled (p1) and filled (p2). Once the incoming condition signal of the transition 

t1 is TRUE for at least of 10000 time units (here 1 unit = 1ms) the t1 fires generating 

output event that actually turns sensor on. 
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Figure 112. Model of the filling process 

 

Models of the plant and model of the controller are interconnected into the closed-

loop providing the representation of entire system that consist of the controlled 

equipment and control device. For the tank example, Figure 113 depicts the model of 

interconnected controller and plant. The combined model is subject for making a 

judgement about modelled system properties by means of model-checking. 

 

Figure 113. Closed-loop representation of the system at the highest level of hierarchy. 

 

17.3 Conveyor 

Let us consider the model of a conveyor shown in Figure 114, left side. 
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Figure 114. Conveyor and the NCES model interface 

 

We will use two different types of conveyors– one capable of moving only in one 

direction, and another moving in both directions. The model of the more complex 

conveyor can be created based on the simple model using the mechanism of inheritance. 

The interface of the model type “Conveyor” can be seen in Figure 114, right side. 

The model itself can be conceptually divided into three elements: Status, Position, and 

Sensor as shown in the class diagram in Figure 115, left. The Status element of type 

MovingStatus models the behaviour of the motor that drives the conveyor and converts 

the logic control signals into one of the states “Moving” or “Standing still” (that 

corresponds to the one-directional conveyor). Input “PRESENT” indicates if a pallet is 

present, and input “FORCED” is used to indicate the influence of a neighbour belt on the 

movement of the pallet. The output condition FW_ST is used by the model of belt 

position.  

The structure of the model of the bi-directional conveyor is identical to that of the 

uni-directional one. The difference is in the module Status that has type 

MovingStatus2D that inherits the interface properties of the one-directional 

MovingStatus and extends them with one more input and output for the retracted 

movement. This is shown in Figure 115(right). All transporters are equipped with a single 

position sensor indicating the presence of the pallet (fully loaded on the conveyor). 
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Conveyor

Position:

DiscretePosition

Status:

MovingStatus

Sensor:

LogicSensor

inputs

FWD: bool;

FAILURE: event;

RESUME: event;

outputs

FW_ST: bool

MovingStatus

MovingStatus 2D

inputs:

RETR:bool;

outputs:

RET_ST:bool;

 

Figure 115. Model type definition of the conveyor and inheritance of the MovingStatus model types. 

The condition and event flow connections between the sub-models constituting the 

model of the conveyor are represented in Figure 116.  

 

 

Figure 116. Modular view of the model of conveyor. 

 

The basic models can be described further in form of NCES modules. Figure 117,A 

shows an implementation of the MovingStatus in NCES. The model receives the control 

signal FWD and transforms it into the state of the belt: place p2 corresponds to the state 

“belt stands still”, place p1 – belt moves and p3 to the state indicating a failure. The belt 

moves when the control signal FWD is ON, and stops when the signal goes OFF (in the 

model the negation of the signal FWD goes on). 

An occurrence of a failure is indicated by an external event that may come from the 

corresponding model. For example, that can be a nondeterministic model of failures. Note 

that the model is sensitive to failures only when the belt moves, i.e. when the place p1 is 

marked. It is assumed that the failure can be fixed by an external interaction indicated by 

the event input RESUME. 
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The model MovingStatus2D for the bi-directional moving belt is shown in Figure 

117,B. It models an additional state of backwards moving, and correspondingly has more 

transitions between the possible states.  

The position of the pallet on the belt can be modelled with different precision. A 

qualitative model in Figure 118 distinguishes only 3 states of a pallet on the belt: no 

pallet, pallet on the belt with its front edge between the belt’s ends, and pallet’s front 

edge is beyond the right end of the belt. 

A more precise modelling of the position can be done using the timed version of 

NCES. Let us assume that the belt is three units long and the pallet is two units long as 

shown in Figure 119. The speed of the belt is one unit of the length per second. Then it 

will take three seconds for a pallet to reach the right end of the belt and 2 more seconds to 

leave the belt completely. 

 

 

Figure 117. Models of the moving status for uni-directional and bi-directional belts. 

 

Place p1 corresponds to the state “No pallet”. When a pallet appears (input condition 

“Present”) and the state of the moving belt is “Moving forward” (indicated by the input 

condition FWD) then the transition t1 occurs and the token goes to place p2.  

A B 
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Figure 118. A qualitative non-timed model of the pallet's position. 

 

This place indicates the state “Front edge of the pallet is in the interval 1 of the 

conveyor”. Another reason to transfer to this state is the presence of the input condition 

“Forced”. This condition indicates that the pallet is pushed onto the belt by some external 

force that maybe another moving belt positioned backwards to this one. This option is 

modelled by transition t12. In general, the moving in this case is slower than if driven by 

the own motor of the belt. The presented model, however, does not cover with enough 

precision the case when both forces are present simultaneously. Note that the transition 

from p1 to p2 (either via t1 or t12) is a qualitative one and does not take time (more 

precisely has zero delay). 

The places p2-p4 correspond to the location of the pallet (again the front edge) in the 

intervals 1-3 respectively. A transition from interval i to interval i+1 occurs in either case 

“FWD” and “Present” or “Forced” and “Present”.  

The latter, however, works only till less than the half of the pallet is on the belt – 

beyond this point the friction force would not let the pallet move driven only by the 

external force. The moving to the next interval takes 1000 ms if driven by the own motor 

of the belt or twice as long under the external force. The backward moving from interval 

i+1 to interval i occurs if the combination of input conditions “RETR” and “Present” are 

true. It also takes 1000ms under assumption that the speed of the moving belt in both 

directions is the same. 

Arriving of the pallet to the 3
rd

 interval is indicated by the sensor. This is modelled by 

two event outputs “Sens_ON” and “Sens_OFF” associated with firing of transitions t8 

and t9 or t11, respectively. The sensor goes off when either the front edge of the pallet 

moves backward to the interval 2, or when the back edge of the pallet leaves the belt in 

forward direction (and the pallet completely disappears from the belt). 
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Figure 119. Model of the position of the pallet on the conveyor discretized on 3 intervals.  

 

This model can represent the state of the pallet on the belt with better precision. However, 

it has other limitations. In particular, let us consider how the alternative kinds of 

movement are modelled. A place indicating a position (e.g. p3 indicating interval 2) has 

several outgoing arcs (p3-t4, p3-t5 and p3-t14) marked with non zero time delays 

([1000,∞], [1000,∞], [2000,∞]). Transitions that are targets of these arcs have condition 

input signals that represent alternative control signals (RETR, FWD, Forced). Any of the 

transitions will fire when it is enabled by marking, conditions and time. It is important 

that all these conditions are mutually orthogonal (alternative) and they never change 

values within the minimum delay of the place (1000 time units in our case), otherwise the 

model will not work as intended. 
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Figure 120. The complete model of the conveyor with sensors 

17.4 Boring station  

We illustrate the component-based system design and re-design with the help of a simple 

production cell “BORING STATION” as presented in Figure 121. 

 

Figure 121. Structure of the production cell: a processing unit (drill), a transportation unit (carriage), and a 

logistics unit (loader). 
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Figure 122. Structure of the boring station represented by UML class diagram. 

 

It consists of a boring machine (drill) and a carriage, which delivers work pieces to 

the home position of the drill. The loading/unloading of the carriage is performed by the 

loader in the loading position that is opposite to the home position. This example allows 

illustrate various phenomena arising in component-based industrial systems, e.g. 

concurrent operations in different components, or impacts of reconfigurations, such as 

substitution of one component by almost functionally equivalent one, having slight 

differences in interfaces, dynamic properties, etc. 

Structural model of objects can be defined by means of UML class diagrams as 

exemplified in Figure 122. The drilling station is represented as an object, composed 

from 3 components: drill, carriage and loader. In the drill two processes are outlined: 

vertical linear movement and rotation of the spindle. The car is represented by its 

horizontal linear movement and by the load status: presence/absence of work piece on it, 

status of the work piece (blank, drilled). The loader’s internal structure is not outlined in 

this model.  

Sample constituent parts of the system are described in the following Table. 

 

 

Drill: Spin motor M1 rotates the bore of the drill. 

The step motor M2 moves the spindle in vertical 

direction. The motor is controlled by two Boolean 

level signals: LIFT and SINK. These signals 

connected in parallel to the spin motor: thus the 

drill rotates always when the step motor moves the 

spindle. Position of the spindle is detected by two 
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logic sensors: UP and DOWN. 

 

 

Carriage: This type of carriage has two actuator 

signals moving it in two opposite directions. The 

sensor LOADED detects presence of the work 

piece on the carriage, and sensors HOME and 

LOAD detect the home and load positions. 

 

 

Loader: The loader is independent and autonomous 

unit not controllable within our application. If loader 

is in the appropriate state (indicated by the output 

signal READY) it accepts only one pulse signal 

“EXCHANGE WORKPIECE” that starts the 

exchange procedure which consist in approaching of 

the loader “grip” to the workpiece, lifting, putting 

the workpiece to the storage, taking new blank 

workpiece and installing it onto the carriage. 

17.4.1 S/E Net model of a Boring Station 

Structure of control system of the boring station with centralized control is presented as 

in Figure 123. Modules representing plant and controller are interconnected via Boolean 

signals.  
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Figure 123. Closed-loop centralized control structure of the boring station. 

 

Beyond the interface abstraction of the controller can be a control program, written in 

one of languages of IEC61131, or any other way defining outputs as functions of the 

inputs and internal states (e.g. state chart model, Boolean functions, etc.). 

According to the structural description in Figure 122, where 3 constituent units are 

distinguished, internal structure of the model is presented in Figure 124 as a network of 

models of the units encapsulated into the module with the same interface as that of the 

plant in Figure 123. 

 

 

Figure 124. Model representing internal structure of the boring station. 

 

This structure may serve as the basis for description of model with distributed control, 

as it is shown in Figure 125. The model retains the same structure of signal connections, 

changing only content of the constituent modules: instead of models of uncontrolled 

behaviour they represent plant/controller closed-loop models. Input/output interfaces are 

left to allow manual interaction into process (all control signals are connected to 

corresponding parts of plant via switches, controlled by the parameter signal 

“AUTO/MANUAL”). 
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Figure 125. Modular model of the drilling station where components correspond to units with local 

control. 

17.4.2 Controller 

The controller of the Boring station is shown in Figure 126. 
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Figure 126. Modular controller of the object Drill/Carriage. 

 

Sequential controllers of Drill and Carriage are presented in Figure 127.  

  

 
a) b) 

Figure 127. Controllers of a) Carriage and b) Drill.  
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17.5 Model of Drill 

The next level of description concerns with structural and dynamic models of single 

constituent units, in this example CARRIAGE, DRILL and LOADER.  

The drill comprises two functionalities: linear movement and rotation. 

Correspondingly its model can be decomposed onto two parts as shown in Figure 128: 

linear movement and rotation.  

 

DRILL

Linear Moving Rotation

 

Figure 128.  Structure of DRILL. 

 

The two distinct functions are reflected in the structure of the block, representing the 

DRILL – it contains two blocks for the two mentioned processes, interconnected by 

signals according to the influence which they have to each other. As it was earlier 

defined, control signals LIFT and SINK serve also to switch the rotation. This is 

correspondingly reflected in the model: both signals are also connected to the switching 

input ON of the MOTOR. In turn, the flag “ROTATES” informs the model of linear 

movement about rotation status of the spindle. The need for this will be explained below. 

Both processes (linear, rotation) are observed through corresponding sensors. This is 

represented in Figure 129: the model of linear movement is decomposed onto the 

dynamic model producing numeric coordinate, and two sensors, generating the values of 

sensors given the coordinate. Note that the FAILURE output of the DRILL is 

disconnected from the FAILURE output of the block representing LINEAR model, 

according to the description of the DRILL this information is unobservable by controller. 

 



Modelling and Verification of Discrete Control Systems 

128 

 

 

Figure 129. Structural model of DRILL encapsulating models of dynamics in form of state charts. 

17.6 Variations  

Two possible variations of drill’s type are shown below in order to illustrate their 

influence on the structure of modelling. 

17.6.1 Enhanced Drill 
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Figure 130.  Enhanced drill has middle position sensor and separate control of the spin.  

 

As opposed to the previously considered DRILL, in the enhanced drill the spin motor has 

a separate control signal SPIN independent from the step movement control signals. This 

potentially allows early spinning off the bore during the approach. Additional sensor of 

middle position is provided in order to optimize timing of the processing: this position 

corresponds to the upper edge of the work piece, spindle can approach the work piece 

while the carriage is approaching the home position. The sensor is ON whenever the 

spindle is below this position. Sensor HOME indicates presence of the carriage in the 

home position. 

 

Figure 131. NCES model of the enhanced drill. 
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To produce the HOME signal the model needs the numeric coordinate of the carriage 

which can be provided by the model of carriage. This input is not used if the block 

represents interface to real drill. 

 

17.6.2 Advanced Drill 

 

In addition to the drill of type 2, a couple of extra logic sensors are provided: 

ROTATION that goes ON when the bore spins off fast enough to start drilling, and the 

light-screen sensor that issues the FAULT signal indicating presence of foreign bodies in 

the vicinity of the drill.  

These add-ons allow for smarter control of the drill in order to save power, improve 

timing and secure better safety. 

 

 

Figure 132 Advanced drill 

 

Besides, the analog sensor Y provides the integer value in the interval from 0 to 100, 

indicating location of the spindle on the vertical axis (value 0 corresponds to the UP 

position, value 100 – to the DOWN position). 
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Figure 133. NCES model of the advanced drill. 

Both models share the common model of linearly moving part of the drill with 3 

position sensors. The model is presented in the following figure. 

 

 

Figure 134. The model of linear movement with sensors.  
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This model refers to the same model of drill’s dynamic as the one used in the similar 

model of the drill of type 1 (Figure 129). To be useful for both simulation and analysis 

purposes, the models shall exhibit dynamics of the corresponding object, as well as 

definition of states exhibiting erroneous behaviour. Thus, incorrect control signals shall 

drive the model to the erroneous states as that would happen with the real object. This 

approach will be illustrated below on examples. 

17.7 Modelling dynamic and logic of processes 

Even primitive dynamic processes such as linear movement of drill’s head cannot be 

efficiently described by pure mathematical equations in presence of logic control signals. 

The model has to be hybrid, i.e. include both mathematical definition of the coordinate 

change, along with the logic model of state switching. For this purpose we develop 

Modular Dynamic State Charts (MDSC). These are customized UML State Charts having 

an explicit input/output interface of S/E systems and a customized set of state shapes, 

corresponding to particular dynamic properties of parameters.  

 

The first part can be represented as the following S/E module:  

 

 

Figure 135. Parameterized module – model of DRILL. 

 

The module’s interface reflects the fact, that usually the control actions are 

transmitted to the plant by level Boolean signals (LIFT, SINK in this model). The model 

also needs some information about the external environment: the condition PRESENT 

stands for the workpiece status, and ROTATES informs model about the spinning status 

of the spindle. Depending on the values of these two conditions, the linear moving may 
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have different speed in the lower part of the moving interval, e.g.: the drill cannot move 

down if the spindle does not rotate, but the workpiece is present. On the other hand, if no 

workpiece is present, rotation of the spindle does not influence vertical movement.  

The model delivers two output values: numeric output POS represents vertical 

coordinate of the drill’s head, and logic value FAILURE is integral condition 

representing all sorts of incorrect or failure situations. 

 

 

Figure 136.  Drill's vertical 

movement axis. 

As shown in Figure 136 the coordinate variation limits are 0 

and 100. The higher edge of the workpiece is assumed to 

have vertical coordinate 50. The state chart model of the 

linear progress of the drill is shown in Figure 137.  

The dynamic state chart is built from states (rectangular 

shapes) and state transitions (arcs) marked with Boolean 

conditions. In the chart in the there are two types of states: 

fixed position states UP_POS (POS=0), MID_POS 

(POS=50), DOWN_POS (POS=100) and dynamic states with 

linear change of parameter POS as POS=POSold+kdt, where 

the coefficient k is speed of moving, dt – time increment, 

POSold is previously calculated value of the parameter. 
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Figure 137. Modular Dynamic State Chart model of the linearly moving part of the drill. 

 

The model describes the uncontrolled behaviour as follows. The spindle moves free in 

the upper part of the axis, no matter whether the workpiece present or not. When the 

middle position is reached and the control signal SINK remains ON, the spindle 

continues its moving downwards. Should the workpiece be in the home position, and the 

bore spins, then normal drilling goes on. If the drill does not rotate, then it just hits the 

blank workpiece and a failure occurs. If no workpiece is present, then the drill moves 

down idle, with the speed higher than that of drilling. The same applies to the moving 

upwards.  

Note, that the presented model does not assume presence of the MIDDLE position 

sensor. It only generates the POS numerical value. Thus the model applies to all types of 

drills being in consideration. 
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17.8 Verification model in NCES 

The NCES formalism has been especially tuned for the needs of heterogeneous 

modelling of systems combining synchronous and asynchronous behaviours. The 

modelling in form of place/transition nets allows efficient handling of distributed state 

models with concurrent synchronous/asynchronous behaviour.  

The modular S/E interface that provides event and data inputs and outputs to the 

model, makes the models semantically equivalent to Condition/Event Automata 

introduced by Kowalewski and Chen. It also can be easier converted to the Net 

Condition/Event Systems. Thus the application schema is proposed, as illustrated in the 

following figure: 

 

 

Figure 138. Development scenarios. 

An initial description of the model is given in the intuitively clear form of Modular 

Dynamic State Charts. Then the equivalent simulation program can be automatically 

generated in the form of IEC61499 Execution Control Chart and algorithms to be 

encapsulated into a function block and further into a component definition as it was 

shown above. 

17.9 Carriage 

Model of uncontrolled behaviour of the carriage consists of two relatively 

independent models of:  1) linear movement and 2) load status. Placement/removal of 

workpieces onto the carriage is indicated by the corresponding events PLACED, 

REMOVED and is possible, according to the model, only in the load position of the 

carriage. 
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Figure 139. Carriage 

 

Similarly to the model of drill, the model of linear movement consists of the hybrid 

dynamic model and two blocks representing logic position sensors. 

 

Figure 140. NCES model of the carriage 
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17.10 Loader 

 

Figure 141 shows the model of overall behaviour of the loader, which provides 

mapping between input parameters (control signals) and output parameters. No internal 

structure of the loader is outlined, no information about its controller is available. 

Note the differences in interfaces between the left figure representing input/output 

interface of the loader, and model on the right, which requires also information about 

presence of the workpiece. When the interconnected model is formed, this information 

can be provided by the model of object formerly possessing the workpiece.  

Output event signals REMOVED, PLACED indicate the events when a workpiece 

correspondingly is grasped by the loader or released from it. 

 

Figure 141. Uncontrolled behaviour of the loader. 

17.11 Lifter  

The automated lifter (product of Flexlink Automation Oy., FINLAND) as shown in 

Figure 142 is used in production of electronic components. The lifter can be controlled by 

two different controllers:  
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- OMRON PLC programmed in ladder logic and  

- Nematron SoftPLC (Lastra, 2000; Nematron, 2001) programmed in Visual Flow 

Chart language.  

Though both controllers achieve similar control goals, the internal logic of control 

algorithms and even the logic of program execution are completely different (cyclically 

scanned vs. sequential). However, both controllers eventually deal with the same object.  

When the closed-loop plant-controller systems are validated, the model of the lifter 

can be reused over and over again in connection with models of controllers of different 

types.  

The lifter consists of three transporters, one of which is mounted on a vertically 

moving platform driven by a step motor as schematically represented in Figure 142. The 

figure also shows sensors (B/S) and actuators (M) of the lifter described as follows.  

 

   

Figure 142.  The lifter, its structure and operation sequence. 

 

The lifter is composed of three conveyor elements. The pallet is received from the 

previous module at the lifter lower terminal, which is driven by motor M3 and is 

equipped with B1 sensor that may detect the presence of the pallet. The pallet may be 

conveyed from the lower terminal to the sledge conveyor that can move vertically 

between lower and upper terminal (or otherwise it is restricted with the two safety 

switches S7 and S8). The sledge has B3 sensor that detects a pallet and its belt is driven 

by motor M1. The upper terminal sensor is B2 and the motor denoted by M2. Besides the 

conveyors and their sensors and actuators, there is also an operator interface with 

switches (S1 - S5), B5 sensor, which is a safety sensor to detect an obstacle between 

sledge and terminals. The step motor and the rotary encoder that is used for vertically 
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position the sledge are omitted in Figure 142. The figure does also not show the interface 

signals (SMEMA) that are used between the lifter and the previous/next module. 

Each sensor and actuator has a unique name in mechanical/electrical blueprints and 

software code. The mechanical and electrical drawings with the general description of 

functionality form the logical point to start plant modelling. 

The structure of the model type “Lifter” can be represented by means of UML class 

diagrams as shown in Figure 143.  

The definition literally says that the object “Lifter” consists of 4 elements. The 

loading and unloading one-directional conveyors are identical but turned in opposite 

directions. The corresponding models are of type Conveyor. The vertically moving 

platform (an object of type StepMotor) has a moving belt that moves pallets in both 

directions (modelled as an object of type Conveyor2D).  

Lifter

LoadingConv:

Conveyor

LiftingConv:

Conveyor2D

Vertical:

StepMotor

UnloadConv:

Conveyor

 

Figure 143. Definition of the model type (class) “Lifter” by means of UML class diagrams. 

 

Note that the model in Figure 143 does not define an interface of the lifter, nor 

dependencies between its constituent parts. These dependencies can be reflected in 

modular models by event and condition connections between the corresponding modules 

as exemplified in Figure 144. 
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Figure 144.  A model of Lifter represented as a network of NCES modules. 

17.12 Examples of specifications of Lifter’s behaviour
2
 

Specifications are the formally expressed properties of system’s behaviour. Table 2 

provides some examples of the formalization of specification of system requirements for 

the Lifter object, whose description is provided in Chapter 15 (sections 15.3 and 15.11).  

The first column in the table gives a logical proposition formula and expresses the 

mapping of the local labels in the NCES modules to the global S/E Net label (given in 

parenthesises). The second column provides a description of formula arguments given in 

the first column. The last column contains the case description in a natural language. The 

long names of arguments in the formulae are due to the hierarchy of the modules and the 

places coming at the lowest level. For instance, “Controller._M1DIVIDECW.p4” is 

interpreted as place p4 at M1DIVIDECW module (represents the motor of the sledge run 

clockwise) in the controller module. 

                                                           

2 
This Section uses the material developed by Andrei Lobov from Tampere University 

of Technology. It was published in our common paper (Hanisch et al, 2006), 
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Table 2. Examples of specifications 

 # 
Formula 

Description of 

arguments 
Case description 

S
A

F
E

T
Y

 

1. Controller._M1DIVIDEC

W.p4 (p213) AND 

Controller. 

_M1DIVIDECCW.p4 

(p249) 

P4 in _M1DIVIDECW  

– sledge motor running 

to download the pallet 

p4 in 

_M1DIVIDECCW  – 

sledge motor running to 

unload the pallet 

The processes of sledge loading and 

unloading should never happen at the 

same time that in terms of the models 

means that both places should never 

hold tokens simultaneously 

M
A

Y
 

L
E

A
D

 
T

O
 

M
A

L
F

U
N

C
T

IO
N

S
 

2. Plant.Vertical.Vertical.Posi

tion.p2 (p472) AND 

(Controller._M1DIVIDEC

W.p4 OR Controller. 

_M1DIVIDECCW.p4) 

Plant.Vertical.Vertical.

Position.p2 – lift is in 

the middle of its 

journey. 

It never should happen that a lifter is 

in the middle of its vertical move 

while sledge is loading or unloading. 

3. Plant.Vertical.Vertical.Posi

tion.p3 (p473) AND 

Controller. 

_M1DIVIDECW.p4 

Plant.Vertical.Vertical.

Position.p3– lift is in 

the upper position 

It never should happen that the lift is 

in the upper position while the sledge 

is loading 

4. Plant.Vertical.Vertical.Posi

tion.p1 (p471) AND 

Controller. 

_M1DIVIDECCW.p4 

Plant.Vertical.Vertical.

Position.p1– lift is in 

the lower terminal 

position 

It never should happen that the lift is 

in the lower terminal position and the 

sledge is unloading 

C
H

E
C

K
P

O
IN

T
S

 

5. Plant.Low_Conv.Sensor.p

2 (p503) 

Plant.Sledge_Conv.Sensor.

p2 (p515) 

Plant.Up_Conv.Sensor.p2 

(p486) 

Plant.Low_Conv.Senso

r.p2 – Low lifter 

terminal sensor detects 

a pallet 

Plant.Sledge_Conv.Sen

sor.p2 – Sledge sensor 

detects a pallet 

Plant.Up_Conv.Sensor.

p2 – Upper lifter 

terminal sensor detects 

a pallet 

All three states have to be found in 

the model. The pallet has visited all 

the conveyors. 

 

The requirements specifications given in  

Table 2 were simplified from the real ones for illustrative purposes. Let’s consider 

verification of each formula in more details: 

1. ‘p213 AND p249’ when evaluated in Visual Verifier fulfils in no states. That means 

the controller never turns the motor of the sledge to run into both directions, which 

could have lead to the physical damage of the motor. 
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2. Checking of the second formula “p472 AND (p213 OR p249)” gives a set of states 

for which it is true. Thus there are states where the lifter is in the middle of its 

vertical move and the sledge motor is running in either one direction or another. 

The next step in analysis is to identify the reason.  The first step is to define in what 

direction the motor is running (loading – p213, unloading – p249) or both. This is 

can be identified by two separate formulae: “p472 AND p213” and “p472 AND 

p249”. Checking both formulae has given the result that only “p472 AND p213” is 

TRUE and has a number of states in the reachability graph. Furthermore, the 

direction of motion may be defined by “p205 AND p472 AND p213”, where p205 

represents upward motion. The formula is false if there is p221 (downward motion) 

instead of p205. The direction of the vertical and conveyor belt motion is therefore 

identified. Now, we know that the motor of the sledge runs at the lower terminal 

level to retrieve the pallet from the terminal. The next step is to find out where the 

pallet is located. There are several possibilities: 

a. Plant.Sledge_Conv.Sensor.p2 (p515) – on the sledge; 

b. Plant.Sledge_Conv.Position.p10 (p529) – the pallet is not on the 

sledge; 

c. Plant.Low_Conv.Sensor.p2 (p503) – the pallet is at the lower terminal; 

We checked the formula “p472 AND p213 AND p205 AND p515” and it is 

fulfilled in no states. This means that the sensor does not detect the pallet. Checking 

the “p205 AND p472 AND p213 AND p529” formula finds the same states in the 

reachability graph as the initial formula “p205 AND p472 AND p213”, which 

means there is no pallet on the sledge at all. Formula “p205 AND p472 AND p213 

AND p529 AND p503” again fulfils in the same states.  

 

This situation may be interpreted as follows: The pallet is stuck at the lower 

terminal and has not been transmitted to the sledge. After some timeout for 

receiving the pallet and without getting it, the lifter starts upward motion while the 

sledge conveyor continues running.  

 

Further investigation shows that the low terminal motor is running as well 

(Plant.Low_Conv.Status.p1 (p499)), but the pallet remains at the lower terminal 

(the formula “p205 AND p472 AND p213 AND p499 AND p510 AND p503” 

gives the same states in the reachability graph). Furthermore, this situation is not 

found for the sledge in the upper terminal position (Plant.Vertical.Vertical.p3 
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(p473): checking of the following formula “p205 AND p473 AND p213” gives no 

states found).  

This error reveals an uncontrollable object’s property when nothing can be done by 

controller to resolve it. If this situation were to occur with the real lifter the 

operating personnel would be required to resolve it and reset the lifter.  

However, the reason why the controller commands to move up while the loading 

operation of the sledge is not complete is interesting, but not the primary goal. The 

primary goal is the conclusion that there were no states found in which the pallet 

has been successfully loaded onto the sledge (p515), the lifter is half way (p472) 

driving up (p205) and the sledge motor is running (p213) (“p515 AND p472 AND 

p205 AND p213” checking gives no states found).  

This situation is one of such type which would not be detected by the common 

testing.   

 

4. The next formula represents the situation when the sledge motor is running to 

download the pallet while the lifter is at the upper terminal level where the pallet 

should be unloaded “p473 AND p213”. Checking this simple request gives no 

states found in reachability graph. It is therefore possible to conclude that the sledge 

conveyor belt will not run to the wrong direction at the upper terminal level.  

5. Next formula describes a situation opposite to the previous one: ‘p471 AND p249’. 

The sledge conveyor is running to unload the pallet at the lower terminal level. 

Checking of the formula also returns a false result meaning that no such states exist 

in the reachability graph. 

Places p503, p515 and p486 model TRUE value of the pallet sensors of the low conveyor, 

sledge conveyor and upper conveyor respectively. Checking if any of these places ever 

holds a token gives an affirmative answer. In this example, we may highlight one of the 

advantages in applying CTL. The CTL formula ‘E[E[EF m(p503)=1 U EF m(p515)=1] 

U EF m(p486)=1]’ represents the case when a path exists in the reachability graph where 

first the low terminal sensor detects a pallet, then the sledge terminal sensor detects a 

pallet and finally the upper terminal sensor detects a pallet. This is an example of a 

checkpoint rule, proving which we may conclude that the lifter is able to transfer a pallet 

through it. 
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18 Multi-level model design pattern  

18.1 Hierarchies in models 

Hierarchical representation of behavior has been addressed in Harel Statecharts and in 

hierarchical Petri nets.  

 

Figure 145 Petri net with hierarchical states and equivalent semantics 

 

In NCES similar behavior can be modeled as follows: 

 

Figure 146 Implementation of the 'hierarchy' in NCES. 

18.2 Motivation 

A piece of equipment with complex internal dynamic behavior can be seen from the 

outside as a simple one with respect to the material flow on the factory shop level. 

However properties and conditions of its primitive material-flow relevant functionality 

(take one pallet – give it away) may strongly depend on the internal behavior.  
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The modeling of such units asks to take in account this particular feature and 

represent the multiple facets of the behavior as necessary. 

The general idea of the suggested modeling approach is schematically illustrated in 

Figure 147. Both internal and external models of an equipment unit are represented by 

NCES modules. 

 

 

Figure 147. The idea of the two-level pattern of modelling. 

 

Mutual influence between internal and external levels of modeling is defined by 

means of event and condition arcs that may connect places and transitions of both 

modules in both directions, i.e. from level 1 to level 2 and from level 2 to level 1. The 

inputs and outputs of the internal model may be connected in closed-loop with the model 

of controller, while inputs and outputs of the external model serve for connection with 

external models of other objects.  

Thus, this chapter suggests a specific application-oriented pattern of using NCES.  

18.3 Notation of the two-level modules 

In the following we are introducing notation which is intended to simplify 

representation of the hierarchically built multi-domain models. The notation however 

does not imply any new semantics as compared with NCES, as the mapping from it to the 

NCES will be introduced. 

The two-level modules are structures that destined to encapsulate models of both 

internal dynamic behavior of an object along with its externally observed behavior of 

interest.  

Figure 148 shows the corresponding graphical notation of a module for the two-level 

formalism. The module consists of the head containing the external model, the body, 
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containing the internal module, and event and data interconnections between them. Both 

external and internal sections may have event and data inputs and outputs, and can be 

further specified as networks of modules. 

 

 

Figure 148. A two-level module. 

 

A two-level module with an empty EXTERNAL part makes a usual NCES module 

(single level). The EXTERNAL part of a double-level module can be specified via a 

network of single-level modules. The INTERNAL part can be specified by a network of 

two-level NCES modules. This is illustrated in Figure 149.  

 

 

Figure 149. Composition of two-level models into a composite model. 
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This example shows that the suggested encapsulation pattern can be used for defining 

of hierarchical models of an arbitrary complexity.  

The multi-domain model is a network of interconnected modules whose inputs and 

outputs are divided on two groups: one for interconnection with other facets (“internal” 

IOs) and the other for interfacing their domain counterparts in other models (interface 

IOs).   

 

Figure 150. A two-level model of a conveyor belt. 

 

We illustrate the application of the two-level modeling pattern when the Lifter is a 

part of a more complex automated machinery system that consists of several storage 

buffers and transportation units, as shown in the example in Figure 151.  

Goals of the modeling are:  

- simulation and observation of the material flow relevant properties, e.g. average 

loading of buffers, absence of deadlocks, etc. 

- checking correctness of the distributed control  
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Figure 151. An automated storage and transportation system built from modular machines. 

The process going on in the object can be seen from several perspectives: 

 

Level 1: 4 pallets in the shop 

Level 2: 2 pallets in buffer 1, 1 pallet in the lifter, 1 pallet in buffer 2 

Level 3: In lifter: the pallet is being transferred from the entry conveyor to the lifting 

conveyor 

Level 4:  position of the pallet is 4/5 on the lifting conveyor 
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19   Specifications using Timing Diagrams 

Control engineers are not familiar with the languages commonly used for formal 

specification, such as temporal logic. Therefore the engineers would benefit from user-

friendlier means of specifying the desired or forbidden behaviour of a model.  

Inspired by the timing diagram specification languages developed in the domain of 

digital systems design (e.g. by K. Fisler [45], N. Amla et al., [46], R. Schlör [47]), a 

graphical language for describing the dependency of interface signal changes was 

proposed in [49].  

In this Chapter we proceed with the issues that are specific for application of timing 

diagrams for specification and verification purposes of some classes of industrial 

automation systems. Visualising the behaviour of discrete-state models using diagrams is 

quite helpful. In Figure 152 one sees the waveform diagram representing values of some 

model parameters along a certain path in the reachability graph (the model was 

introduced earlier in Figure 19).  

 

 

Figure 152. Reachability graph describing the complete behaviour of the model from Figure 19 and 

timing diagram in one of the trajectories. 

 

This Chapter suggests two procedures for translation of visual specifications that 

differ slightly depending on whether the verified module has inputs. 
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19.1 Timing Diagrams for specification 

The idea of using timing diagrams for specification is to draw a specification graphically 

and then ask the model checker the question: If the inputs behave like it is shown in the 

input diagram, would the outputs behave like in the output diagram?  

However, a single timing diagram describes only a single scenario. Sometimes it is 

desirable to define a class of input scenarios with certain properties and then check if 

certain output patterns are observed among all or any trajectories in the reachability 

graph. The idea is illustrated in Figure 153. The diagram consists of two parts: the upper 

(if) part presents the “input” part of guaranteed signals and the lower part is the 

“conjecture” to prove. In this example there is a conditional restriction added between the 

rising edge of M1.co1 (event e2) and the falling edge of M2.co1 (event e3). The restriction 

says that e3 occurs after e2. Note that the signal M1.co1 belongs to both parts. In the 

“input” part it is specified by a single waveform change that is simultaneous with the 

event M1.eo1. The waveform of the same signal in the “output” diagram is more 

complicated. 

 

 

Figure 153. Timing diagram specification 

 

Comparing the “then” part of the specification with the timing diagram of real behaviour 

in Figure 152 one can see that the specification holds in the given path. The problem is to 

implement such a check automatically using model checkers. 

19.1.1 Definitions 

The use of Timing Diagrams (TD) as a method of formal specification requires 

formal definition of its graphical notation and its semantics. 
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Diagrams are represented by sequences of signals’ value changes. Given the subsets 
outin EEE   and outin CCC  , a specification for a signal set CEA   is described as a 

tuple ),,( gfAS  , where 
ce fff  defines sequences of specification values. The mapping 

*
: ee Ef   (  alwaysmaybenoevente ,, ) specifies sequences for event inputs and 

outputs, while *
: cc Cf   with  onestableanyzeroc ,,,  defines values for condition signals.  

The partial function     ),,(NN:  AfAfg  assigns an ordering operator 

(precedence, simultaneity or non-simultaneity) between signal changes from different 

signals in such a way that g(ai,m,aj,n) indicates an ordering restriction between the m-th 

signal change of ai and the n-th signal change of aj. We assume the signals value changes 

at the beginning of the diagram to be simultaneous across all signals. If the ordering 

operator for a pair of changes of different signals is not defined, the horizontal position of 

the changes won’t imply any implicit ordering. 

Consider the example in Figure 154.  

 

 

Figure 154. Specification including two event inputs, one condition output and a simultaneity operator. 

 

The semantics of the diagram is as follows: when the set of levels specified at the 

beginning of the diagram is achieved, it is required that the sequence of changes of the 

signals does not violate the partial ordering specified in the diagram, until a final state is 

reached. 

19.1.2 Specified Signals 

In order to describe specifications of NCES models, TDs must provide different 

representations for event and condition signals. Thus, we define the following 

possibilities of specification:  

 in the case of a condition signal, the specification might assume four possible 

levels: zero, corresponding to a logical zero; any, representing the situation 

where the signal may take any logical value; stable, which also means 

undefined, however assuming that the signal remains at a single level; or one, 

corresponding to the logical one; 
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 event signals are specified in two possible levels: no event, in the case where 

the occurrence of the event is forbidden, and maybe, meaning that the event 

might occur. It is also possible to specify an obligatory occurrence of the 

event signal (always), but in this case only as a single impulse, because of the 

instantaneous nature of an event signal. 

We define a diagram event as: any level change specified at a condition signal; a level 

change from no event to maybe or vice-versa, at an event-signal; or a specification of an 

obligatory occurrence of an event (always peak at an event signal). 

19.1.3 Event Ordering in Different Signals 

If a partial ordering semantics is assumed, no prior ordering of events on different 

signals is implicit. In other words, although each signal presents an ordering of its events, 

two events of different signals may occur at any sequence, except when special operators 

explicitly define their sequence. On the other hand, it is also possible to assume that the 

ordering of all events is defined through their position at the visual description. In this 

case, we are talking about a strict or sequential ordering. 

Although more intuitive, adopting a sequential ordering would limit the 

representational capabilities of a diagram. Therefore, we adopt a partial ordering 

semantics for the TD language. In this case, the same TD represents a set of possible 

behaviours of the system, each one represented by a different event chain on the modelled 

system. Each chain is called scenario, and the set of scenarios defined by the diagram is 

named diagram language. 

In Figure 155 (a) we observe the specification of two signals s1 and s2. If we have 

adopted as our convention a sequential ordering semantics, only one scenario would 

compose the diagram language: s2
+
s1

-
s2

-
. As the temporal dependence among events from 

different signals is not predefined (assumed partial ordering semantics) the same figure 

represents a TD with the following scenarios: (s2
+
,s1

-
)s2

-
; s2

+
(s1

-
,s2

-
); s1

-
s2

+
s2

-
 and s2

+
s2

-
s1

-
. 

Figure 155(b) indicates the timing diagram that, based on the adopted semantics, accepts 

as its only scenario s2
+
s1

-
s2

-
, by introducing operators that indicate the obligatory ordering 

among events from different signals. The meaning of these operators will be stated in the 

next section. 
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Figure 155. Temporally independent signals (a) and event ordering (b). 

 

In order to constrain the ordering of two events from different signals, we define the 

following precedence operators:  

≠ :  events are not allowed to occur simultaneously; 

= :  events must be simultaneous; 

> :  event from the first signal must occur prior to the event from the second signal. 

19.1.4 Specification of Finite Behaviour 

The TD represents a finite behaviour that must be satisfied by the model. The 

satisfaction of a TD is evaluated from the moment when all specified signals are in their 

initial levels and some of them execute an initial transition, as indicated at the beginning 

of the diagram. The verification process ends when all signals achieve their final state, 

indicated in the end of the diagram. The initial part of the diagram, denominated 

precondition, corresponds to a condition, whose satisfaction by the model indicates that 

we must start comparing the model’s behaviour with the remaining part of the TD. The 

comparison ends up when the final part of the diagram, called postcondition, is reached. 

Both pre- and postcondition are highlighted at the diagram (Figure 156).  

When a TD specifies a finite behaviour, different interpretations are possible: 

Existence of a scenario (from the diagram language): here we require that at least one 

of the specified scenarios will occur at the model. In other words, there is a path at the 

state tree of the model, where the precondition is satisfied and the behaviour of the model 

does not contradict the specification. 

Existence of all scenarios: the existence of each scenario must be tested inside the 

state space of the model. 
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Generality of a single scenario: here a single scenario from the set of scenarios 

specified at the diagram, must be present in every path, indicating a situation that has to 

occur in the future, regardless of which path is taken by the model. 

Generality of the diagram’s language: the behaviour specified by the diagram will 

eventually occur, no matter which scenario, in each path from the reachability graph of 

the model. Note that, in this case, the existence of a path with no occurrence of the 

precondition would already be a counter-example. 

Satisfaction of a single scenario: every satisfaction of the precondition must be 

followed by the satisfaction of the same scenario, among those that are possible 

according to the specification. This corresponds to an assume-guarantee clause, where the 

precondition plays the role of an assumption that, when fulfilled, guarantees the 

occurrence of a given sequence of events. 

Satisfaction of the diagram: the specified behavior must not be contradicted, which 

means that every occurrence of the precondition at the model leads to a behaviour that is 

accepted by the diagram language. As a particular case, a model that presents no 

occurrence of a given precondition satisfies every specification starting with this 

precondition. The following topics will be based on this interpretation of the TD. 

19.1.5 Specification of infinite behaviour 

The timing diagram could also correspond to a specification to be satisfied from the 

time when the precondition occurs, without the need to specify a postcondition. In this 

case, the final state specified at the diagram would correspond to a restriction that must 

not be violated. 

 

 

Figure 156. Pre- and postcondition. 

 

The absence of a specification for the precondition could indicate that the initial state 

of the model should comply with the levels specified at the beginning of the diagram. 

Although these two approaches also present a practical appeal, the absence of 

postcondition or precondition will not be issued in the work, as a matter of simplicity. 
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In order to allow the translation of the timing diagram into a formal model, some 

requirements have to be done in respect to the events presented in each signal. Diagrams 

satisfying the requirements are said to be feasible. 

19.2 NCES Model of Timing Diagrams 

When verifying autonomous NCES models without inputs, each signal specification 

is translated into a NCES supervisor module comprising two basic submodules: an event 

generator creates sequences of transitions, one for each change of level specified for the 

signal. Each transition stimulates, through an event arc, the corresponding event input of 

a signal generator, which causes the output of the signal generator to recreate the signal 

according to the input stimulated. Ordering operators are translated into special places 

and transitions that create interdependency of event generators. 

The verified module is then connected through event arcs to the event generators of 

the corresponding signals, in such a way that every change of signal in the first is 

reported to the latter. Along with the translation of the specification into NCES modules, 

a set of automatically generated temporal-logic statements is created. The composite 

module is then model-checked against these statements to verify if each transition at the 

supervisor always fires whenever the corresponding transition at the verified module is 

fired. 

The graphical specification also provides automatic test possibilities for input/output 

behaviour or non-autonomous NCES modules. In this case, the NCES supervisor 

modules that describe input signals are used for generating the specified sequences of 

input signal changes, while the output signals are again verified as described before. The 

components of the NCES model of the timing diagram are detailed in the following 

sections.  

19.2.1 Event Generator  

The main part of the NCES model for the specification is called event generator and 

consists of a set of parallel processes (sequences of transitions and places), started 

simultaneously by the firing of a transition denoted tstart. Each process is responsible for 

reproducing the behavior specified for one signal. Events on the signals are translated 

into transitions at the processes. 

For each signal i, there is a place pnotstart,i which is a preplace of tstart and postplace of 

the last transition of the corresponding process. The transition tstart indicates the 

beginning of the timing diagram. The situation where the diagram language is not being 

executed corresponds to the marking pnotstart,i=1 for every signal i. 
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In the case that at least a signal j has the marking pnotstart,j=0, the marking pnotstart,i=1 

for a signal i indicates that this signal has already achieved the last level specified at the 

diagram. 

The precedence relationships among events of different signals are mapped to special 

interconnections among the corresponding processes, as shall be detailed in the following 

section. 

19.2.2 Signal Generation Module 

For each specified signal, we create a signal generator module which reproduces, at 

its output, the possible values for the signal, according to the level specification 

stimulated at its input. Each event on the timing diagram (modelled by the firing of a 

transition at the event generator) stimulates, by an event arc, the corresponding change at 

the signal generator, which guarantees that the NCES module, resulting from the 

combination of the event generator with the signal generators, will reproduce at its output 

the diagram language. The idea is illustrated in Figure 157. A signal generator module is 

assigned to each condition signal included in the specification. The module hasfour event 

inputs, corresponding to the four possible specification levels, and two condition outputs, 

indicating the two possible values assumed by the condition signal (zero or one). 

 

Figure 157. Translation of a single specification for a condition output, and linking to the verified model. 

Figure 158 shows the structure of a signal generator for a condition signal. 
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Figure 158. Generator of condition signals.  

 

The transitions tozero, toone, tostable and toany receive event arcs, respectively, 

from the zero, one, stable and any event inputs.  

Firing one of these transition means that the corresponding signal has changed its 

specification level to, respectively, zero, any, stable or one – in other words, a diagram 

event has occurred. The condition outputs not_signal and signal are linked to the internal 

places zero_p and one_p. The remaining transitions and places implement the desired 

non-deterministic behaviour - after the firing of tostable and toany, the marking of 

places zero_p and one_p should be non-deterministic, and may change randomly in the 

latter case, until another input event is stimulated.  

Figure 159 presents the internal structure of a signal generator for an event signal. 

 

Figure 159. Generator of event signals. 

 

Event signals are represented by modules with three event inputs, corresponding to 

the three possible specification values, and an event output, whose firing corresponds to 

the generation of the event. Internally, this generation corresponds to the firing of the 

result transition.  
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The transitions to_noev# (1 and 2), to_maybe# (1 and 2) and to_always# (1 and 2) 

are fired by stimulating the no_event, maybe and always inputs respectively. Every 

diagram event leads to the firing of at least one of these transitions – actually, an always 

peak at the specification, followed by the specification of a new level, implies that both 

the result and the transition that leads to the new level specification (to_noev# or 

to_maybe#) will be enforced to fire. 

 

Model to be verified  
(XML) 

 

Specification 
 (XML) 

 

Composite model 

(verifed model + 

specification model)  

Composite model 

 (XML) 

Model under SESA format 
.pnt file  (SNS model) 

.in  (script / eCTL formulas) 

 

 

Figure 160. User interface of the TDE tool and file formats adopted for data storage. 

19.3 Program Implementation 

The Timing Diagram Editor (TDE) is an application developed with the aims of 

providing the following functionalities: 

 create, edit, save and load specifications of function blocks whose internal 

logic is specified by means of a NCES. These specifications are generated and 

visualized graphically as timing diagrams, while each signal at the timing 

diagram may be of one of the following types: event signals and condition 

signals; the signal levels allowed for each type of signals that were presented 

above. 

 translate the combination of a function block and the behaviour specified for it 

into a composite finite state model (NCES) and temporal propositions written 

in the eCTL [51] format, in such a way that the composite model, and 

consequently the original function block, can be verified formally with the aid 

of the SESA tool [52]. If all the generated eCTL propositions evaluate to true 
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with regard to the composite model, we conclude that the behaviour of the 

original model satisfies the specification. 

 The TDE tool uses XML as a storage format for both timing diagrams and 

NCES models and converts them to the input formats of the SESA model 

checker as illustrated in Figure 160. 
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Annex 1: XML format of Condition/Event Nets 

Example of a basic module made in TNCES editor 

XML 

<!DOCTYPE NetConditionEventSystem> 

<?TNCES-Editor Version="1.06.06 (eps)"?> 

<FBType X="65" Y="251" Num="0" LocNum="0" Name="spont_eo" Comment="" Width="30.0" Height="35.0" > 

    <InterfaceList> 

        <EventOutputs> 

            <Event X="193" Y="140" Num="1" LocNum="1" Name="eo1" Comment="_"/> 

        </EventOutputs> 

    </InterfaceList> 

    <SNS LeftPageBorder="70.0" RightPageBorder="770.0"> 

        <place X="52" Y="157" Diameter="6" Num="1" LocNum="1" Name="p1" Mark="1" Clock="0" Capacity="1" Comment="_"/> 

        <place X="51" Y="123" Diameter="6" Num="2" LocNum="2" Name="p2" Mark="0" Clock="0" Capacity="1" Comment="_"/> 

        <trans X="39" Y="140" Width="6" Height="6" Num="1" LocNum="1" Name="t1" Type="AND" TransInscription="_" SwitchMode="s" 
Comment="_"/> 

        <trans X="64" Y="140" Width="6" Height="6" Num="2" LocNum="2" Name="t2" Type="AND" TransInscription="_" SwitchMode="s" 
Comment="_"/> 

        <arc StartPoint="p1" EndPoint="t1" ArcWeight="1" TimeValue="" Comment="_"> 

            <Point Num="1" X="52" Y="157"/> 

            <Point Num="2" X="39" Y="140"/> 

        </arc> 

        <arc StartPoint="t1" EndPoint="p2" ArcWeight="1" TimeValue="" Comment="_"> 

            <Point Num="1" X="39" Y="140"/> 

            <Point Num="2" X="51" Y="123"/> 

        </arc> 

        <arc StartPoint="p2" EndPoint="t2" ArcWeight="1" TimeValue="" Comment="_"> 

            <Point Num="1" X="51" Y="123"/> 

            <Point Num="2" X="64" Y="140"/> 

        </arc> 

        <arc StartPoint="t2" EndPoint="p1" ArcWeight="1" TimeValue="" Comment="_"> 

            <Point Num="1" X="64" Y="140"/> 

            <Point Num="2" X="52" Y="157"/> 

        </arc> 

        <evarc StartPoint="t2" EndPoint="eo1" Comment="_" EventPos="1"> 

            <Point Num="1" X="64" Y="140"/> 

            <Point Num="2" X="193" Y="140"/> 

        </evarc> 

    </SNS> 

</FBType> 
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XML of a "composite" NCES block  

 

Interface Content 

  

 
 
<FBType Name="drive" Comment="Composite Function Block" > 
  <InterfaceList> 
    <InputVars> 
      <VarDeclaration Name="not_BACK" Type="BOOL" /> 
      <VarDeclaration Name="BACK" Type="BOOL" /> 
      <VarDeclaration Name="not_FWD" Type="BOOL" /> 
      <VarDeclaration Name="FWD" Type="BOOL" /> 
    </InputVars> 
  </InterfaceList> 
  <FBNetwork > 
    <FB Name="STATUS" Type="movingstatus" x="447.0588" y="241.1765" /> 
    <FB Name="POS" Type="movingposition" x="1294.1177" y="241.1765" /> 
    <DataConnections> 
      <Connection Source="BACK" Destination="STATUS.BACK" dx1="317.6471" /> 
      <Connection Source="FWD" Destination="STATUS.FWD" dx1="335.2941" /> 
      <Connection Source="not_BACK" Destination="STATUS.not_BACK" dx1="252.9412" /> 
      <Connection Source="not_FWD" Destination="STATUS.not_FWD" dx1="270.5882" /> 
      <Connection Source="STATUS.STAND" Destination="POS.STOP" dx1="129.4118" /> 
      <Connection Source="STATUS.MV_BACK" Destination="POS.MOVES_BACK" dx1="205.8824" /> 
      <Connection Source="STATUS.MV_FWD" Destination="POS.MOVES_FWD" dx1="158.8235" /> 
    </DataConnections> 
  </FBNetwork> 
</FBType> 
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Annex 2: More formal definition of 

Condition/Event Nets 

19.4 NCES definition 

NCES is a place-transition net formally represented by a tuple: 

),,,,,,,,,,,,,( 0mDCBBECECENCNFTPNCES tsec

outoutinin  

Where:  

P is a non-empty finite set of places,  

T is a non-empty finite set of transitions, disjoint with P,  

F is a subset of    PTTP    - the set of flow arcs.  

CN is the set of condition arcs  TPCN  .  

EN is the set of event arcs  TTEN  .  

C
in

 is the set of condition inputs.  

E
in

 are the event inputs set,  

C
out

 and E
out

 are conditions and events outputs.  

Bc is the set of NCES module condition inputs arcs  TCB in

c  ,  

Be is the set of event input arcs  TEB in

e  .  

Cs is the set of condition output arcs  outEPCs  ,  

Dt is the set of event output arcs  outETDt  , and  

m0: }1,0{P  is the initial marking. 

19.5 C/E Net definition 

19.5.1 Set theoretical definition 

Timed C/E Net = (P,T,F,V,B,W,S,M,m0,eft,lft) 

where  

P is a non-empty finite set of places; 

T is a non-empty finite set of transitions disjoint with P; 
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F is the set of flow arcs, where F ⊆ (P × T) ∪ (T × P); 

V maps a weight to every flow arc and V : F → ℕ; 

B is the set of condition arcs, which carry condition signals and B ⊆ P × T; 

W maps a weight to every condition arc and W : B → ℕ; 

S is the set of irreflexive event arcs, which convey event signals and S ⊆ T × T; 

M maps a event-processing mode (AND or OR) to every transition, M : T → { ∧ ,  

∨ }; 

m0: P → ℕ0 is the initial marking of SNS, where for each place p ∈ P, there are np ∈ 

ℕ0 tokens; 

eft maps the earliest firing time to every pre-arc [p, t] ∈ F, eft: F ∩ (P × T) → ℕ0; and, 

lft maps the latest firing time to every pre-arc [p, t] ∈ F, lft: F ∩ (P × T) → ℕ0 ∪ {ω}, 

where ω ∈ ℕ and 0 ≤ eft(p, t) ≤ lft(p, t) ≤ ω. The interval [eft(p, t), lft(p, t)] is called 

the permeability interval. 

19.5.2 State of C/EN model 

C/EN places bear integer clocks whose values are denoted as u: P → ℕ0, where for 

each place p ∈ P, the clock reading in the place is denoted as up ∈ ℕ0 ; 

 

Figure 161. C/E Net 
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All clocks have zero value at the initial state of the model. The clock of a place resets 

to zero anytime marking of the place changes.   

A state in timed C/EN is defined as a pair z=[m, u], where m is a marking of P and u 

is the P-vector of the clock positions and u(p) > 0→m(p) > 0. 

A state of C/E net model is determined by a) m – vector of marking of its places, i.e. 

allocation of tokens across the places; and b) u – vector of clock values: 

Evolution of a C/E net consists in changing its states. A state change (also called state 

transition) can consist in changing net’s marking, or changing values of clocks (elapsing 

of time).  

In every state there could be some enabled net transitions. If there are no enabled 

transitions then the clocks count (increment they value by 1) in all marked places and the 

C/E net transitions to a new state. Otherwise, i.e. if there are some enabled transitions, 

then it is said that one or several enabled transitions fire that leads to the change of 

marking as explained by the firing rules. The set of simultaneously firing transitions is 

called step. In a given state there could be several different steps ready to fire, meaning 

that a state of C/E net can have several successor states.  

19.5.3 Firing rules 

Let St denote the set of incoming event arcs of transition t: St ≔ {t’|[t', t] ∈ S}. If St is 

empty, which indicates that no incoming event arc is associated with transition t, then t is 

spontaneous, otherwise it is forced. Firing of a forced transition is caused by firing of 

some other transition connected to it by an event arc. Both are included in the same step, 

i.e. fire simultaneously. Enabled spontaneous transitions can fire regardless of other 

transitions.  

For example, the transition t4 in Figure 161 is forced and other transitions are 

spontaneous. Accordingly, the transition set T in can be subdivided on two disjoint sets: 

, where  

 Spont is the set of all spontaneous transitions of the C/EN, and 

 Forc denotes the set of all forced transitions of the C/EN. 

For any transition t, there can be three kinds of markings: the marking on incoming 

flow arc t
-
, the marking on outgoing flow arc t

+
, and the marking on incoming condition 

arc , defined as follows: 
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For any subset s ⊆ T, the marking s
-
 and s

+
 denote the sum of markings t

-
 and t

+
 

respectively, and  represents the union of markings  for t ⊆ s. 

The firing of a spontaneous transition is determined by the three factors listed below:  

1. Token concession: A transition is said to have a token concession or is token-

enabled when all the flow arcs from its pre-places are enabled. More specifically, 

a flow arc is enabled when the token number in its source place is not less than its 

weight, i.e. m(p) ≥ V(p, t). For example, given the marking m, transition t is 

token-enabled if t
-
 ≤ m. Transitions which have no pre-places are always 

marking-enabled. 

2. Permeability interval: The permeability interval defines the time constraints 

applied to the input flow arcs of transitions. A transition t:  (p, t)F is time-

enabled only when clocks of all its pre-places have a time u(p) within 

permeability interval of the corresponding place-transition arc: eft(p, t) ≤ u(p) ≤ 

lft(p, t). 

3. Incoming condition signals: A spontaneous transition may have incoming 

condition arcs. It is considered condition-enabled when all the condition signals 

on its incoming condition arcs are true, i.e. . 

A spontaneous transition is eligible to fire only when it is token-enabled, time-enabled, 

and condition-enabled. 

19.5.4 Step and state transitions 

C/EN models are executed in steps, meaning that for each state transition there is a 

unique set of concurrently firing transitions . A state is dead if no further step is 
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enabled or will be enabled by elapsing time. For non-dead states, the delay D(m,u) 

denotes the minimum amount of elapsed time before a step is enabled.  

A step is referred as executable at the state [m, u] if all of its constituent transitions 

fire after D(m,u). The execution of an executable step s at state [m, u] is accomplished by 

first elapsing D(m,u) amount of time and then firing s.  

The new state [m', u'] led by the execution of step s is determined by: 

 , and  

 

 

 

Subsequent step executions from the initial state construct the reachability graph of 

the C/EN model, which illustrates the relationship of all realizable states within the state 

space. The reachability graph of a timed C/EN can be represented as a 3-tuple: 

 ,   

where Z is a finite set of reachable states, R is a finite set of state transitions, and z0 is the 

initial state [m0, u0].  

For any subsequent states [mi, ui] and [mi+1, ui+1] ∈ Z, there is a state transition τ ∈ R, 

such that [mi+1, ui+1] is reachable from [mi, ui] via state transition τ. This state transition is 

also denoted as .  

The step s causing a state transition τ is defined by the mapping , i.e.  
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Annex 3. CTL syntax of SESA 

CHARACTERS 

 

digit = "0123456789" . 

letter = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_" . 

 

TOKENS 

 

number = digit {digit} . 

 

name = '"' {letter | digit} '"' | "'" {letter | digit} "'". 

 

add = '+' . 

 

less = '>>' . 

 

equal = '=' . 

 

unequal = '#' | "" | "!=" . 

 

less_equal = ">>=" . 

 

not = "NOT" | '-' | '!' . 

 

and = "AND" | '&' | '^' . 

 

or = "OR" | 'V' | '|' | 'v' . 

 

impl = "IMPL" | "->" . 

 

equiv = "EQUIV" | "" . 

 

infinity = "oo" | "o" . 

 

true = "TRUE" | 'T' . 

 

false = "FALSE" | 'F' . 

PRODUCTIONS 

 

ctl 

  = formula  EOF 

formula 
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  = 

    impl_expr 

. 

 

impl_expr 

  = 

  ( equiv_expr 

  [ impl equiv_expr 

  ] 

  ) 

. 

 

equiv_expr 

  = 

  ( or_expr 

  { equiv or_expr 

  } 

  ) 

. 

 

or_expr 

  = 

  ( and_expr 

  { or and_expr 

  } 

  ) 

. 

 

and_expr 

  = 

  ( factor 

  { and factor 

  } 

  ) 

. 

 

factor 

  = 

  ( true 

  | false 

  | predicate 

  | not factor 

  | '(' formula  ')' 

  | ( 'E' 

    | 'A' 

    ) [ transition_formula  ] 

    ( '[' formula 

      ( 'U' [ interval  ] 

      | 'B' 

      ) formula  ']' 

    | 'X' [ interval  ] factor 
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    | 'F' [ interval  ] factor 

    | 'G' factor 

    ) 

  ) 

. 

 

transition_formula 

  = 

    transition_impl_expr 

. 

 

transition_impl_expr 

  = 

  ( transition_equiv_expr 

  [ impl transition_equiv_expr 

  ] 

  ) 

. 

 

transition_equiv_expr 

  = 

  ( transition_or_expr 

  { equiv transition_or_expr 

  } 

  ) 

. 

 

transition_or_expr 

  = 

  ( transition_and_expr 

  { or transition_and_expr 

  } 

  ) 

. 

 

transition_and_expr 

  = 

  ( transition_factor 

  { and transition_factor 

  } 

  ) 

. 

 

transition_factor 

  = 

  ( true 

  | false 

  | [ 't' ] node 

  | not transition_factor 

  | '(' transition_formula  ')' 

  ) 

. 
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interval 

  = '[' number 

    ',' 

    ( number 

    | infinity 

    ) ']' 

. 

 

predicate 

  = 

  ( atomic_pred 

  | def_pred 

  ) 

. 

 

def_pred 

  = 

  ( 'P' 

    ( number 

    | name 

    ) 

  ) 

. 

 

atomic_pred 

  = 

  ( atomic_term 

  { condition  atomic_term 

  } 

  ) 

. 

 

atomic_term 

  = 

  ( atomic_factor 

  { add atomic_factor 

  } 

  ) 

. 

 

atomic_factor 

  = 

  ( variable 

  | constant 

  ) 

. 

 

condition 

  = less 

  | greater 

  | equal 
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  | unequal 

  | less_equal 

  | greater_equal 

. 

 

constant 

  = 

  ( number 

  | infinity 

  ) 

. 

 

variable 

  = 

  ( marking 

  | clock 

  ) 

. 

 

marking > 

  = 'm' '(' [ 'p' ] node  ')' 

. 

 

clock > 

  = 'u' '(' [ 'p' ] node  ')' 

. 

 

node > 

  = ( number 

      | name 

    ) 

  [ '.' ( 

    number 

    | name 

  ) ] 

. 

 

 

END ctl. 

PRODUCTIONS 
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Annex 4: Command line SESA parameters 

 

Command line options start with "-". Some options can have different names for the same 

purpose most of them can abbreviated (characters in [] can be omitted). If the <filename> 

argument to "-command" and "-options" is "-", then the default names (COMMAND.sna 

and OPTIONS.sna) are used.  

If the last argument has no leading "-", then it is interpreted as a name of a .pnt or .cnt 

file (please include the extension of the file).  

Ordering of "-reset", "-command", and "-options" is relevant and resets the influence 

of previous command line options.  

-help show option summary 

-b[lack] 

-pnt 

-ptn 

-toktyp=b[lack] 

use only black tokens: 

-c[olour] 

-cnt 

-cpn 

-toktyp=c[olour] 

use coloured tokens: 

-notim[es] 

-time=no 

 

-arctim[ed] 

-time=yes 

-time=arcs 

-tim[ed]/[es] 

use arctimes or not: 

-nopr[iorities] 

-pr[iorities] 

Use priorities or not: 
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-nogr[eedy] 

-gr[eedy] 

Use greedy transitions or not: 

-nosy[nc] 

-sy[nc] 

Use synchronisation sets or not: 

-max[imal] 

-fmod=m[aximal] 

-fmod=n[ormal] 

 

-s[ingle] 

-fmod=s[ingle] 

 

-red[uced] 

-fmod=r[educed] 

Determine the firing mode: 

-stubborn 

-symmetric 

-diamond 

Apply different reduction techniques: 

 

-names 

-named 

-nonames 

Write place/transition names in the output or 

not: 

-pre[fix] <prefix> 

 

Prefix for file names for options, commands 

and session results 

(set before file name options): 

-def[ault] 

-reset 

Reset to default options (same as starting 

with -nooptions): 

-noopt[ions] 

-opt[ions] <filename> 

Ignore OPTIONS.sna or load options from 

file: 

 

-nocom[mand] 

-nocmd 

-com[mand] <filename>  

Ignore COMMAND.sna or load commands 

from file: 



Modelling and Verification of Discrete Control Systems 

174 

 

-cmd <filename> 

-se[ssion] <filename>  Save session results in file: 
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