
Working draft

Valeriy Vyatkin

Modelling and Verification

of

Discrete Control Systems
with

Net Condition/Event Systems and

Visual Verification Framework

All rights reserved, ©, V. Vyatkin, 2007-2012, Auckland

Version 1/15/2012

Modelling and Verification of Discrete Control Systems

2

Disclaimer

This text is a working draft and may contain some fragments earlier published in papers

co-authored with other researchers, in particular with Hans-Michael Hanisch from

Martin-Luther University of Halle (Germany), Jose LM Lastra and Andrei Lobov from

Tampere University of Technology, (Finland), Gustavo Bouzon from University of Santa

– Catharina (Brazil) whose contribution and collaboration is greatly acknowledged and

appreciated.

The author is very much grateful to Cheng Pang for valuable contributions to this

document, especially for the graphical material in Chapter 11.

The author will be grateful for any comments. Please report to v.vyatkin@auckland.ac.nz

mailto:v.vyatkin@auckland.ac.nz

V. Vyatkin © 2007-2011

 3

Table of Contents

Disclaimer ... 2

Table of Contents .. 3

Structure of the text ... 8

1 Introduction: modelling and verification of cyber-physical systems 9

1.1 Supporting Tool Framework ... 10

1.2 History of NCES developments .. 11

2 Signal/Event Nets ... 14

2.1 Introduction ... 14

2.2 Syntax ... 14

2.3 Semantics .. 15

2.4 Conflicts and non-determinism ... 17

2.5 Condition arcs ... 18

2.6 Arcs with capacities (weights) .. 18

2.7 State and reachability .. 19

2.8 State transition modes ... 20

2.9 Synchronous transitions .. 21

2.10 Transitions without incoming arcs .. 24

2.11 Priorities .. 24

2.12 Firing rules .. 24

3 Modular S/E Nets = Net Condition/Event Systems ... 26

3.1 Encapsulation of models into modules ... 26

3.2 Model type definition .. 27

3.3 Typed NCES ... 28

3.4 Capacities of condition arcs .. 29

3.5 Benefits of NCES .. 30

4 Semantics of Modular Models ... 33

4.1 A condition/event input of a module is not assigned 33

4.2 Multiple arc assignments to a module’s input/output 34

4.2.1 Condition arc weights between modules ... 35

Modelling and Verification of Discrete Control Systems

4

4.2.2 Several condition arcs originating in the same place 35

4.2.3 Visual Verifier support of non-assigned module inputs.......................... 36

5 Timed models ... 38

5.1 Discrete timing .. 38

5.2 Firing rules in TNCES .. 39

5.3 Implementation ... 42

5.4 Restrictions ... 42

6 Modelling of closed-loop controller-plant systems .. 43

7 Basics of Plant Process Modelling ... 46

7.1 Processes ... 46

7.2 Simple process model ... 46

7.3 Process with exception .. 47

7.4 Two time scales: ticks in controller and time-elapsing in plant 47

8 Modelling Control Programs .. 49

8.1 Data storage and assignment ... 50

8.2 Linear sequence of commands .. 50

8.3 Conditional choice .. 51

8.4 Boolean operations .. 52

8.5 Subroutine call .. 53

9 Co-existence of synchronous and asynchronous behaviour 55

9.1 Non-timed models ... 56

9.2 Timed models .. 57

9.3 Testing timed NCES modules ... 58

10 Complete Example: Cylinder control ... 59

10.1 Object description ... 59

10.2 Modelling the plant: Linear drive ... 60

10.3 Deadlocks .. 66

10.4 Branching .. 68

10.5 Deeper analysis ... 69

10.6 Exercises ... 69

10.7 Review questions .. 69

V. Vyatkin © 2007-2011

 5

11 Model Verification with Visual Verifier .. 70

11.1 Visual Verifier functions ... 70

11.2 Data formats .. 72

11.3 Limitations .. 73

11.4 A hint for clearer models .. 74

12 User Interface of Visual Verifier .. 77

12.1 Tabs ... 77

12.1.1 Functional toolbars .. 78

12.2 Typical sequence of steps using Visual Verifier ... 79

Step 1: Open the header file of the model ... 79

Step 2: Build a flat Condition-Event net model .. 80

Step3: Generate reachability space of the flat S/E model 81

Step 4. Check specifications using internal model checker 82

12.3 Model-checkers ... 82

12.4 Command line SESA .. 83

12.5 SESA from ViVe .. 84

12.6 Hints for analysing complex models ... 86

12.7 Exploring reachability space ... 87

12.8 Finding paths satisfying certain criteria .. 89

12.9 Metrics .. 89

13 Verification of Properties ... 91

13.1 Overview ... 91

13.2 Syntax of specifications .. 93

13.3 How to check specifications ... 93

14 Distributed controllers .. 96

14.1 Discrete-state model .. 96

14.2 Timed model ... 97

14.3 Using synchronous transitions .. 99

14.4 Synchro sets in ViVe .. 99

14.5 Example of different firing rules application .. 100

14.5.1 Non-timed .. 100

14.5.2 Timed ... 101

Modelling and Verification of Discrete Control Systems

6

14.6 Model modification: synchronous transitions ... 102

14.6.1 Non-timed .. 103

14.6.2 Timed ... 104

14.7 Modelling communicating processes .. 105

15 Example of a distributed system: two cylinders ... 106

15.1 Reusing original controllers .. 106

15.2 Finding collision ... 107

15.3 Block – permit protocol .. 109

15.4 Central controller .. 109

15.5 Exercises ... 109

16 Modelling Programmable Logic Controllers (PLCs) 110

16.1 System routines ... 110

16.2 Ladder logic .. 111

17 Modelling of Complex Plants .. 113

17.1 Process/Sensor model ... 113

17.2 Tank .. 114

17.3 Conveyor ... 115

17.4 Boring station .. 121

17.4.1 S/E Net model of a Boring Station .. 123

17.4.2 Controller ... 125

17.5 Model of Drill ... 127

17.6 Variations .. 128

17.6.1 Enhanced Drill ... 128

17.6.2 Advanced Drill .. 130

17.7 Modelling dynamic and logic of processes ... 132

17.8 Verification model in NCES ... 135

17.9 Carriage ... 135

17.10 Loader .. 137

17.11 Lifter .. 137

17.12 Examples of specifications of Lifter’s behaviour 140

18 Multi-level model design pattern ... 144

V. Vyatkin © 2007-2011

 7

18.1 Hierarchies in models ... 144

18.2 Motivation ... 144

18.3 Notation of the two-level modules .. 145

19 Specifications using Timing Diagrams .. 149

19.1 Timing Diagrams for specification ... 150

19.1.1 Definitions ... 150

19.1.2 Specified Signals ... 151

19.1.3 Event Ordering in Different Signals .. 152

19.1.4 Specification of Finite Behaviour .. 153

19.1.5 Specification of infinite behaviour .. 154

19.2 NCES Model of Timing Diagrams ... 155

19.2.1 Event Generator ... 155

19.2.2 Signal Generation Module ... 156

19.3 Program Implementation .. 158

Annex 1: XML format of Condition/Event Nets .. 160

Example of a basic module made in TNCES editor ... 160

XML of a "composite" NCES block ... 161

Annex 2: More formal definition of Condition/Event Nets 162

19.4 NCES definition .. 162

19.5 C/E Net definition ... 162

19.5.1 Set theoretical definition .. 162

19.5.2 State of C/EN model .. 163

19.5.3 Firing rules ... 164

19.5.4 Step and state transitions ... 165

Annex 3. CTL syntax of SESA ... 167

CHARACTERS .. 167

TOKENS ... 167

PRODUCTIONS ... 167

Annex 4: Command line SESA parameters .. 172

References ... 175

Modelling and Verification of Discrete Control Systems

8

Structure of the text

First part (Chapters 1-5) introduces the framework and modelling language of Net

Condition/Event Systems (NCES) as follows. Chapter 1 introduces the formal

verification framework. Chapter 2 starts with providing informal introduction into the

formalism of Signal/Event nets. Chapter 3 introduces modular Signal/Event nets called

Net Condition/Event Systems. Chapter 4 discusses some challenges to the S/E net

semantics brought by the modularity of NCES, and Chapter 5 adds time to the

Signal/Event nets.

Second part (Chapters 6-12) presents basics of modelling automation systems and

technique of their formal verification in the Visual Verification Framework as follows.

Chapter 6 introduces the framework of closed-loop modelling and verification, Chapter 7

presents some basic techniques for modelling objects and physical processes (plant) using

NCES, Chapter 8 introduces basic NCES elements to be used in controller models, such

as models of variables and operations over them. Chapter 9 discuses some challenges

arising from the need to combine purely deterministic and synchronous objects

(controller) with asynchronous and non-deterministic processes (plant). Chapter 10

presents an example of a simple automation system modelled and verified in the

presented framework. Chapter 11 considers the use of the Visual Verifier tool in more

detail, and Chapter 12 presents more details on the properties to be verified.

The third part (Chapters 13-15) presents some additional techniques and facts and is

structured as follows: Chapter 13 discusses specifics of distributed controller modelling.

Modelling of Programmable Logic Controllers is exemplified in Chapter 14. Chapter 15

is devoted to systematic modelling of plants. Chapter 16 introduces the ideas of

hierarchical model composition in NCES.

Annex 1 provides examples of XML representation of NCES models.

Annex 2 contains more rigorous definitions of NCES.

V. Vyatkin © 2007-2011

 9

1 Introduction: modelling and verification of

cyber-physical systems

In computer science formal verification is an act of proving the correctness of programs

by using mathematical methods and models. It can be used as an automatic alternative to

the simulation-based testing and debugging, improving dependability and reliability of

automation systems. Unlike testing via simulation, the formal verification can explore the

complete set of system’s state space and prove mathematically that no undesirable or

dangerous behaviour occurs. This can reduce the effort spent on validation the same time

increasing its quality which especially important in safety critical applications. Formal

verification be also very helpful in proving the compliance with various certification

requirements.

Cyber-physical systems is a novel view on embedded systems that takes into account

the dynamics and the structure of the environment where the embedded device works. In

many control and monitoring applications this view has proven to be beneficial as

compared to a more narrow focus only on the computing hardware and software.

In particular, in control systems, usually the control software is the target of

verification. This software is further referred to as controller, and it is the essential part of

the embedded control device connected to the plant under control. Plant and controller

form the interconnected closed-loop control system. For example, in industrial

automation, the controller code usually is a variable part of the system, while the

hardware remains unchanged. The controller can be programmed in one of general-

purpose or specialized programming languages, e.g. following the IEC61131-3 standard

[38].

1. The closed-loop system is modeled using an appropriate finite-state or hybrid

formalism, e.g. finite state machines, Petri nets, etc. In closed-loop modeling the

model of the plant needs to be present explicitly. It has to be designed manually by

control engineers, while the model of the controller can be built automatically given

the code. In open-loop modeling only the controller part is verified under some

assumptions about its inputs.

2. The desired or forbidden behavior of the plant-controller system needs to be

described in form of specifications, i.e. the properties to hold or to avoid. The

specifications have to be formalized using a formal language compatible with the

description of the model.

Modelling and Verification of Discrete Control Systems

10

3. Given the model and a number of formal specifications, it can be formally checked

whether the specifications hold with respect to the model. This process is called

model-checking.

4. The results of the model-checking have to be interpreted in terms understandable by

the engineers. For this purpose, a bi-directional mapping from the original system to

its model and back has to be provided.

This text presents a framework for modelling and verification which is based on the

formalism of Net Condition/Event Systems (NCES).

1.1 Supporting Tool Framework

To facilitate the use of NCES by engineers, the formalism is supported by tools and

methodologies. The framework is presented in Figure 1.

Figure 1. Tool framework for modelling and verification

The functions of the tools are as follows:

 Visual NCES editor (ViEd) providing full graphical authoring and editing of the

models. Its manual is provided in a separate document;

V. Vyatkin © 2007-2011

 11

 Visual Verifier (ViVe) – an integrated tool that contains a model builder (assembler),

a translator to the flat format for subsequent model-checking, interfaces to several

model-checkers, and the means for analysis of scenarios (e.g. their visualization in

form of state/time diagrams), or even system simulation along the selected scenarios.

 The model checker SESA allows for efficient model-checking of fairly complex

systems (millions of discrete states);

 The application methodologies are represented as libraries of standard model

elements and by the web-based documentation;

The NCES modelling language is open – an XML based data format allows the

development of add-ons to the existing tools, for example model-generators for particular

programming languages in which the controllers are programmed.

The graphical editor provides full graphical authoring and editing of the models. The

editor uses an open XML-based data format for basic and composite NCES models. The

data format of composite model blocks intentionally was made identical with that of

IEC61499 function blocks, supported by tool (FBDK).

The integrated environment Visual Verifier inputs the model type files given in XML and

is capable of:

 Assembling a composite, hierarchically organized model from modules contained in

different libraries. The component model types are instantiated into NCES modules.

 Translating the model into a “flat” NCES with the through numbering of places and

transitions. The inter-module connections are converted into event and condition arcs

between places and transitions. Thus the module boundaries are removed and the

model-checking tools can be applied. In particular, the translator generates files in the

input format of SESA model checker.

To enjoy the benefits of graphical formalisms the model authoring and maintenance have

to be supported in a visual intuitive way. The evolution of graphical tools is described in

the following section.

1.2 History of NCES developments

The first version of the tool for editing Timed NCES (TNCES) for was implemented

at the University of Halle, (Germany) as a template to Visio universal graphic editor. The

editor supported only the non-typed approach which did not allow for convenient re-use

of previously developed model components. The whole model needed to be developed

Modelling and Verification of Discrete Control Systems

12

from scratch and the re-use was possible only by “cut and paste” of some model

elements.

Figure 2. Visio TNCES Template.

The need to re-use models pushed the development of an open XML-based data format

for basic and composite NCES models. The data format of composite blocks was

intentionally made identical with that of IEC61499 function blocks, supported by tools

[17, 18]. Then the export to the XML format was added to the editor in order to create a

model type out of a single NCES module. This way the former Visio-based editor could

be used for populating the library of basic model types, while FBDK could be used for

creating complex model types.

However, FBDK is lacking convenience in dealing with module connections. Besides

the use of three software tools just for editing models is too complicated. For this reason

another editor (ViEd) was conceived that integrates editing of basic and composite

models in fully intuitive visual way.

The model of a controller can be generated by the MOVIDA NCES Generator (Fig.

10). The generator takes as an input source code of controllers in several PLC

programming languages (for example Omron
TM

) LD project represented as a textual file),

converts it into TNCES, and saves the data in XML based format. The openness and self-

explanatory XML representation simplifies the development of the tools that may work

with TNCES.

V. Vyatkin © 2007-2011

 13

Figure 3. MOVIDA NCES Generator.

Modelling and Verification of Discrete Control Systems

14

2 Signal/Event Nets

2.1 Introduction

In this chapter we give informal definition of Signal/Event nets (S/E nets). A more

formal definition is presented in Annex 1 and in the document “Analyzing Signal / Event

Nets” [21].

The formalism of Condition/Event systems, suggested by Sreenivasan and Krogh in

(1990), provides a convenient framework for modular modelling of discrete-event

systems. Internal content of modules can be different: so far finite state and hybrid

automata [3, 4], as well as Petri net-like formalisms [7] have been studied in this role.

The Condition/Event model can serve to represent systems’ interface abstractions,

internal structure and behaviour of single elements. This model can be easily mapped

then onto IEC61499 function blocks [23], thanks to many similarities, namely event and

data interfaces and State Chart definition of functionality of single modules.

2.2 Syntax

A Signal/Event net is a place/transition model similar to Petri nets [4-11]. Basic

artefacts of the place/transition models are: places, which can bear tokens; (net)

transitions, and arcs connecting places with transitions and transitions with places,

known as token flow arcs. S/E nets in addition have two types of arcs: event arcs from

transitions to transitions (e.g. (t2, t4)), and condition arcs from places to transitions e.g.

(p2, t5). The model in Figure 1 is an S/E net.

A state of a place/transition model is determined by marking of its places, i.e.

allocation of tokens across the places. Tokens can “flow” from state to state in some

discrete moments according to the set of rules, known as “model semantics”. Such a

“jump” of tokens leads to a new state of the model, and is called a state transition.

It is said that net transitions can fire and transfer hereby tokens from a place to place.

V. Vyatkin © 2007-2011

 15

Figure 4. A Signal/Event Net (book/example1).

2.3 Semantics

The semantics of Signal/Event nets is defined by the firing rules of net transitions. There

are several conditions to be fulfilled to enable a net transition to fire.

First, as in the ordinary Petri nets, an enabled transition has to have a token

concession. That means that all pre-places have to be marked with at least one token as

shown in Figure 5 (or, in case of weighted arcs, with as many tokens as the weight of the

corresponding arc from the pre-place to the transition.)

a) b)

Figure 5. Token concession of transition: a) transition t has token concession; b) there is no token

concession.

In addition to the flow arcs from places, a transition in S/E net may have incoming

condition arcs from places and event arcs from other transitions. A transition is enabled

by condition signals if all source places of the condition signals are marked by at least

one token (more rigorously – as many tokens as the capacity of the flow arc), i.e. if more

than one condition arc is connected to a place, the overall influence of the condition arcs

is decided by the “AND” of each single arc enableness, as shown in Figure 5.

Modelling and Verification of Discrete Control Systems

16

Figure 6. If more than one condition arc is connected to a place, the overall influence of the condition arcs

is decided by the “AND” of the each single arc ‘enableness’.

Another type of influence on the firing can be described by event signals which come

to the transition from some other transitions in the net. With respect to incoming event

arcs a transition can have either OR or AND mode (event signal sensitivity mode). The

default event signal sensitivity mode of transition is OR, as shown in Figure 7.

Figure 7. The default event signal sensitivity function of forced transition is OR.

Transitions having no incoming event arcs are called independent, otherwise forced.

A forced transition is enabled if it has token concession and it is enabled by condition and

event signals.

Figure 8. Firing mode of transition.

V. Vyatkin © 2007-2011

 17

Several S/E net transitions can fire simultaneously. A set of such simultaneously

firing net transitions is called step.

A step is formed by first picking up a nonempty subset of enabled spontaneous

transitions, and then by adding as many as possible of enabled transitions which are

forced to fire by event signals produced by the transitions already included in the step.

Such a step is called maximal with respect to its forced transitions.

2.4 Conflicts and non-determinism

A conflict in classic Petri nets occurs when the number of tokens in some places is “not

sufficient” to fire all transitions connected to them by flow arcs. This situation is

exemplified in Figure 9, a.

a) b)

Figure 9. Conflict (a) and reachability graph (b) (book/simple_conflict).

In case of a conflict, not all transitions can fire simultaneously. The reachability graph

in Figure 9,b shows that there are two steps ‘fireble’ in this state of the model: {t1} and

{t2}. Since both these steps can happen, it is said that the choice is non-deterministic. In

case if such a model is used for simulation either of this transition steps can happen. In

the reachability graph, however, both options are included.

Modelling and Verification of Discrete Control Systems

18

2.5 Condition arcs

Tokens do not flow through condition arcs, so one place with a single token in it can

enable many transitions and no conflict will arise, as illustrated in Figure 10 for the place

p3.

Figure 10. Single token in p3 is sufficient to enable transitions t1,t2 and t3, so no conflict is observed in

this situation.

2.6 Arcs with capacities (weights)

The token flow and condition arcs can have capacities determining the number of

tokens that will flow through the arc (for token flow arcs), or needed to enable the

corresponding destination transition (for condition arcs). If a source place has less tokens

than is required then the transition would not get the concession. A net with arc capacities

is illustrated in Figure 11.

Figure 11. S/E Net with arc capacities.

V. Vyatkin © 2007-2011

 19

For example, the flow arc from p1 to t1 has capacity 2, and the condition arc from p3 to

t1 has capacity 1. Both places p1 and p3 have 2 tokens, so the transition t1 is enabled.

The transition t2 is enabled because it has only one flow arc from p3 and there are enough

tokens in p3. The transition t3 is enabled because p5 has as many tokens as required (1)

and p3 has as many tokens as required (2). Note, that only one token moved from p1 to

p2 and one got lost since the capacity of the arc (t1, p2) is only 1.

Also note, that in the next state transition t3 would not be enabled although p3 still has

one token. This is due to insufficient number of tokens in p3 to ‘activate’ the condition

arc (p3,t3) which has capacity 2.

2.7 State and reachability

A state of an S/E net is defined by marking of all places. A tuple M=<Z,R,s0> denotes

the reachability structure of a S/E net, where Z is a finite set of reachable states, R is a

finite set of state transitions
1
, and s0 is an initial state.

A state trajectory is a sequence of states (si)= s0, s1, …, si, … , such that for each pair

sj, sj+1 Z there is R such that sj+1 is reachable from sj by the transition (in

mathematical terms denoted as sj [> sj+1) . Figure 12 presents the reachability graph for

the S/E net from Figure 4.

1 Note the fundamental difference between net transition and state transition.

Modelling and Verification of Discrete Control Systems

20

Figure 12. Reachability graph of the model from Figure 4.

Nodes of the graph correspond to the states while the arcs correspond to the state

transitions. The arcs are marked with their respective steps of net transitions.

2.8 State transition modes

There are three ways to generate the transition step w.r.t. spontaneous transitions:

1. Include all possible combinations of spontaneous transitions (this was illustrated in the

previous section in Figure 12);

2. Include only one spontaneous in a step (The corresponding reachability graph is shown

in Figure 13, a);

3. Include maximum number of spontaneous transitions (the reachability graph is shown

in Figure 13, b);

V. Vyatkin © 2007-2011

 21

a) b)

Figure 13. Reachability graphs of the model corresponding to a) single spontaneous transition; b) maximal

set of spontaneous transitions.

In all cases forced transitions are included in steps according to the principle of

maximal set of forced as discussed in the previous section.

2.9 Synchronous transitions

There are special means provided for description of both asynchronous and

synchronous behaviour in the same net, which are especially useful for modelling of

interconnected plant/controller systems. This is achieved either by introduction of

synchronous transitions, firing whenever they are enabled, or by timing.

If a transition is marked with the synchronous (or greedy) attribute, it fires always

when enabled. Synchronous transitions should not have incoming event arcs. When a

firing step is formed, these are treated as spontaneous, with exception of that all enabled

greedy transitions are always included in the step. Let us illustrate the work of greedy

transitions on the example in Figure 14.

Modelling and Verification of Discrete Control Systems

22

Figure 14. Reachability graph of the model with all spontaneous transitions.

As one sees, the model’s behaviour includes all possible combinations of t1 and t2

with t3 and t4.

This example is provided in the Visual Verifier set of samples as

TestSimple2Spont.xml. Check it with the options: Maximal set of greedy transitions and

Combinations of spontaneous transitions as illustrated in Figure 15. The selected firing

mode implies that all greedy transitions will be included in the step and all possible

combinations of enabled spontaneous transitions will be added. If the set of Greedy is not

empty, then the combination with empty spontaneous set will be also considered.

V. Vyatkin © 2007-2011

 23

Figure 15. Selection of the firing modes in the Visual Verifier.

In the next example (Figure 15, TestSimple1Spont1Greedy.xml) two transitions are

left spontaneous, while two others are made greedy. As a result, some trajectories have

disappeared from the reachability graph.

Figure 8. In case if two transitions are spontaneous and two others are greedy, the possible step

combinations are limited to those where a greedy transition is always included in the step.

If there is more than one greedy transitions enabled in the moment, they are included into

step similarly to spontaneous transitions, i.e. steps are formed from all possible

combinations of greedy, as shown in Figure 16, where all four transitions are greedy.

Modelling and Verification of Discrete Control Systems

24

Figure 16. All transitions are greedy.

Note: The “greediness” of transitions can be only used in non-timed models. A

similar concept can be achieved in timed models by using synchro sets introduced later in

Chapter 14.2.

2.10 Transitions without incoming arcs

A transition without any incoming arcs is always enabled.

2.11 Priorities

In place-transition modelling formalisms a priority is an integer attribute of a transition

determining preference of its firing with respect to other enable transitions. Only the

transitions with the highest priority (from the set of currently enabled transitions) are

included in the executable step. To avoid ambiguities, in S/E Nets priorities can be

assigned only to spontaneous transitions.

2.12 Firing rules

Visual Verifier supports several firing rules. The set of firing rules of SESA is a bit

different. The reasons for having different firing rules are in the history of these tools.

However, having several firing rules available may better fit to particular details of

different models.

The firing rules of the Visual Verifier are as follows:

- single spontaneous can fire ;

- all combinations of spontaneous transitions will be considered;

- only the maximal combination of spontaneous can fire.

V. Vyatkin © 2007-2011

 25

Certainly for each set of spontaneous transitions as many as possible forced

transitions are added to form a step. This is called “maximum step”.

In SESA two firing rules are supported:

- single spontaneous can fire ;

- all combinations of spontaneous transitions will be considered to form the

maximum steps on their base;

In addition, the “greedy” transitions are treated in the VisualVerifier a bit

differently from SESA.

In ViVe two options are provided:

- fire all enabled greedy transitions together or

- consider all combinations of the greedy;

This is applied ‘on top’ of the spontaneous firing rule.

In SESA greedy transitions are treated as normal spontaneous transitions.

Modelling and Verification of Discrete Control Systems

26

3 Modular S/E Nets = Net Condition/Event

Systems

The formalism of Net Condition/Event Systems (NCES) was introduced by Rausch

and Hanisch in (Rausch and Hanisch, 1995) and further developed through the last years,

in particular in (Hanisch and Lüder, 1999).

3.1 Encapsulation of models into modules

The general idea of Net Condition/Event systems supports the way of thinking of and

modelling a system as a set of modules with a particular dynamic behaviour and their

interconnection via signals. An illustrative example of the graphical notation of a module

is provided in Figure 17.

Figure 17. Graphical notation of a module.

Once designed, the modules can be re-used over and over again. Each module has

inputs and outputs of two types:

1. Condition inputs/outputs carrying information on marking of places in other

modules, and

2. Event inputs/outputs carrying information on firing transitions in other modules.

Condition and event inputs are connected with some transitions inside the module by

condition and event arcs. Places of the module can be connected to the condition outputs

by condition arcs, and transitions can be connected to the event outputs by event arcs.

V. Vyatkin © 2007-2011

 27

This concept provides a basis for a compositional approach to build larger models

from smaller components. The "composition" is performed by "gluing" inputs of one

module with outputs of another module as shown in Figure 18.

Figure 18. Modular composition.

The result of the composition of two NCES N1 and N2 is an NCES Nc obtained as a

union of the components and which can be represented as a new module. Inputs and

outputs of the "composition" are unions of the components' inputs and outputs, except for

those which are interconnected to each other, and hereby "glued", i.e. substituted by the

corresponding condition and event arcs, as shown in Figure 19. By the way, the resulting

module is equivalent to the S/E from Figure 4.

Figure 19. Result of the modular composition.

3.2 Model type definition

In the version of NCES implemented in Visual Verifier a model must be encapsulated

in a module. A module is defined by its interface and content. The interface contains a

model name and names of event and condition inputs and outputs. The content can be

either a place-transition model, i.e. consist of places, transitions and arcs as described in

the previous section (such model types are called basic), or be a network of modules

interconnected via event and condition arcs (such models are called complex).

Modelling and Verification of Discrete Control Systems

28

Once defined and placed in the library, a module defines a model type. The module

name serves as the type identifier. Type instances can be used over and over again in the

complex models (strictly speaking, the modules forming the complex models have to be

instances of other modules).

As a consequence of the above definition a model can have a hierarchical structure as

the one presented in Figure 20. The hierarchical structure can be transformed into a plain

S/E Net by instantiation of a model types.

Figure 20. A hierarchical NCES model.

Dynamic models of complex objects usually consist of models of their constituent

components interconnected by event and condition signals. They may also include an

additional model that integrates and coordinates them. Such a “master supervisor model”

can also take care about input-output behaviour of the composite model.

3.3 Typed NCES

Further in this text we are using only the typed NCES modelling. This approach is based

on the following postulates:

1. All NCES models are encapsulated into modules. A module has interface that is

defined by event and condition inputs and outputs. A modular model, stored in a

separate file, defines a model type that can be later instantiated.

V. Vyatkin © 2007-2011

 29

2. NCES models can be basic or composite.

3. A basic NCES model type consists of places, transitions and arcs. It cannot

have any nested modules.

4. A composite NCES model type consists of module instances and arcs

connecting I/Os of the modules to each other and to the interface elements of the

model. The instances are obtained by instantiation of the model types, basic or

composite, existing in a storage media (library).

The process of model development can follow both top-down and bottom-up

approach. In the former case you may create new module interfaces and as needed

specify them and store as model types in the library. After that you can reuse the models

over and over again.

In the latter case you start with development of most basic model elements and save

them as basic model types in the library. More complex models can be created as

composite types using instances of the basic ones. This way you can create hierarchical

models of arbitrary complexity always remaining flexible and reusing the repetitive sub-

models.

3.4 Capacities of condition arcs

Condition arcs between NCES modules, or between a module and inputs/outputs of

another module where its instance is included, can have capacities, that are integer

numbers >= 1.

The capacities between modules can differ from the capacities of arcs within

modules. When the modules are “glued” into a single S/E net, the capacities of resulting

condition arcs are calculated as the minimum capacity of the segments forming them.

Modelling and Verification of Discrete Control Systems

30

Figure 21. The capacity 2 of the condition arc (p2, t5) is obtained as the minimum of capacities of the arcs

forming its segments within modules and between modules.

3.5 Benefits of NCES

There are two main reasons to prefer place-transition formalisms to many others

formalisms, e.g. finite automata. The first is their non-interleaving semantics (i.e.

possibility of firing several transitions simultaneously), which better fits to modelling of

distributed processes and of their interaction.

Figure 22. Model of two processes as parallel composition of state machines or NCES.

V. Vyatkin © 2007-2011

 31

The second reason is the more compact reachability space, explained as follows.

Modelling of complex distributed systems with automata usually ends up in many

concurrent automata models communicating via common variables, as illustrated in Figure

23, left, where two state machines A and B are combined under “asynchronous parallel

operator”. Thus, the overall system model is a cross-product of the component automata,

and to do model analysis it is necessary to build the cross-product consisting in this case

of 9 states, as one sees in the right part of the Figure.

Figure 23. Modelling of two communicating processes by means of concurrent state machines and their cross-product

automaton.

Alternatively, in Signal/Event Nets a state of a model is determined by the marking of

model places, so any global state of a distributed system is just one state of the model.

This is shown in Figure 24 where the same model is implemented in Signal/Event Nets

with places (p1-p6) corresponding to states of the automata A or B (in the obvious

manner) (Find it in the concurrent.xml file).

Modelling and Verification of Discrete Control Systems

32

Figure 24. The same model implemented using place–transition nets (S/E Net) and its reachability graph.

In the given initial state the reachability space of the model consists of only 4 states.

The same behaviour obviously will be shown by the automata model in Figure 23 (the

outlined path A1B2→ A1B2→ A2B2→ A2B3→ A3B1→ A3B2), but to get it the whole

cross-product automata needs to be built.

V. Vyatkin © 2007-2011

 33

4 Semantics of Modular Models

The modularity of NCES does not bring any extra semantic issues if compared to S/E

nets since the module boundaries are removed during the flattening process. However,

some “tricky” issues in S/E nets and NCES semantics need to be discussed.

4.1 A condition/event input of a module is not assigned

When an input is not assigned as shown in Figure 25 there are several possible

interpretations.

Figure 25. Not assigned input of a module.

The one shown in Figure 26 removes the event arc (ei1, t2) making the transition t2

spontaneous.

Figure 26. First interpretation: the event arc is removed, transition t2 in

the Module 2 becomes spontaneous.

However, this interpretation might not always reflect the intentions of the developer

of the module 2, as the presence of the incoming event arc might indicate the forced

nature of the transition t2. Thus, the absence of any input arcs to the input ei1 may mean

that t2 should not fire at all. This can be implemented as shown in Figure 27 by adding a

module (Module 3) with a transition (t1) that never fires, connected to t2 of Module 2.

Modelling and Verification of Discrete Control Systems

34

Figure 27. Second interpretation: an always dead transition

4.2 Multiple arc assignments to a module’s input/output

Multiple arc connections to inputs and outputs of modules as those shown in Figure

28 were not allowed in the previous versions of NCES due to ambiguities in

interpretation.

Figure 28. Multiple assignments of arcs to I/Os.

However, since the signal arcs eventually influence the firing of transitions, we can

shift the semantic load to the definition of the firing function of transitions, and interpret

the concentration of arcs at inputs and outputs by connecting places/transitions in the

resulting S/EN with an arc if a connected path exists from the corresponding source

place/transition to the target transition in the original NCES. This is illustrated in Figure

29.

V. Vyatkin © 2007-2011

 35

Figure 29. Signal arcs in S/E N as a result of multiple arc resolution in NCES.

4.2.1 Condition arc weights between modules

ViVe provides two options for resolving the weight of the condition arc appeared as a

result of structural composition (Options/NCES tab).

Thus, if the first option is selected, the arc with the minimum weight determines the

weight of the resulting arc after the assembly.

Figure 30. Multiplicity of the resulting condition arc.

4.2.2 Several condition arcs originating in the same place

In process of assembly there could be a situation of several condition arcs ending in the

same transition and originating in the same place.

Modelling and Verification of Discrete Control Systems

36

Figure 31. Two condition arcs originating in p2 end in t5.

There are two options to resolve this situation. The first option is to take the

maximum capacity across all paths leading from p2 to t5. The result in this case would be

as shown in Figure 32.

Figure 32. Maximum path capacity is taken (1 in this case).

Another option is to assign the cumulative capacity to the resulting arc.

Figure 33. Sum of capacities is taken.

4.2.3 Visual Verifier support of non-assigned module inputs

Ambiguous issue Support in

ViVe

Interpretation

Non assigned event input Supported The destination transitions are connected

to the “always dead transition”

Non assigned condition

input

Supported The destination transitions are connected

to the “always empty place”

Multiple arcs to an event

input or output

Supported The destination transition is connected to

the transitions where the arcs are

V. Vyatkin © 2007-2011

 37

originating from.

Multiple arcs to a condition

input/ output

Not supported

Figure 34. Prohibited condition connections.

Modelling and Verification of Discrete Control Systems

38

5 Timed models

5.1 Discrete timing

The concept of discrete timing is applied to the S/E nets as follows: to every pre-arc [p, t]

of the transition t we attach an interval [l, h] of natural numbers with 0 < l < h <. The

interval is also referred to as permeability interval. If a pre-arc has no explicitly

designated permeability interval, it is assumed to be [0,]. The interpretation is as

follows. Every place p bears a clock u(p) which is running iff (if and only if) the place is

marked (m(p)>0), and is switched off otherwise. All running clocks run at the same speed

measuring the time the token status of its place has not been changed. If a firing transition

t removes a token from the place p or adds a token to p, the clock of p is turned back to 0.

A (marking-enabled) transition t is time-enabled only if for any pre-place p of t the clock

at place p shows a time u(p) such that l(p,t) < u(p) < h(p,t).

An example is given in Figure 35.

Figure 35. Timed S/E net and firing of its transitions.

Thus, in timed NCES a state is characterized by the marking of places plus the values

of local clocks at the places.

A state is called dead if no transition is time-enabled and no transition would become

able to fire after any increments of the clocks.

There are two slightly different interpretations of time in different NCES

implementations. Let us consider illustration in Figure 36, a.

V. Vyatkin © 2007-2011

 39

In one interpretation (implemented in SESA model checker), time delay is an attribute

of the state where the transition originates. If in state Si there is such a minimum

increment Δ that some of the transitions become enabled after elapsing it, then it is said

that the state transition τ:Si→Sj has a “delay” Δ. Conversely, it can be interpreted as the

state Si has a “duration” Δ that specifies the time increment of the clocks of this state

required to make the transition enabled. So, first the time elapses, and then a state

transition occurs. This is illustrated in Figure 36,b.

a) b) c)

Figure 36 An example of timed S/E net and reachability graphs for two time interpretations.

Another interpretation (implemented in Visual Verifier) uses the concept of time

increment. This attribute belongs to the state where the state transition leads to. The

reachability graph generated along with this interpretation is in Figure 36,c. This

interpretation allows interpret the elapsed time as an (implicit) attribute of the state

transition.

Although in this example, the number of states in both reachability graphs is the

same, in general it can be different.

5.2 Firing rules in TNCES

At a given state all (time-) enabled steps have to be computed and placed into the list

of enabled steps. Firing of each step brings one more state successor to the current state.

Repetitive application of this procedure to every subsequent state forms the reachability

space of the model. Time-enableness is a required but not sufficient condition to include

transition to the firing step. The interpretation of the timing intervals is defined by the

timing firing rule.

Modelling and Verification of Discrete Control Systems

40

1. Strong vs. weak firing: with the strong rule all marking enabled (spontaneous)

transitions, which have pre-places with clock position equal to either low or high

time limit, are obligatorily inserted into the step (can be specified to make e.g.

either strong earliest firing rule, or strong latest firing rule). If the weak rule is

chosen then at least one of the enabled spontaneous transitions has to be included

in step.

2. Earliest vs. interval firing: In case of the interval firing a transition is time-

enabled at every clock position within the interval [l,h]. In the earliest firing rule a

transition is time-enabled if it has a pre-place with the clock value equal to the

low bound l of the time interval.

3. Ultimo firing: is a certain combination of the interval and strong rules: a

transition is time-enabled at every discrete time moment within the interval and

must fire at the latest at clock position equal to h.

In case if a transition has several incoming arcs with permeability intervals

[l1,h1],[l2,h2],…[ln,hn] then, to enable the transition all arcs have to be permeable, which is

achieved in the interval [l,h], where l=max(li), h=min(hi).

Among all possible combinations of time constants and time-firing rules, some were

found of interest in some industrial applications. These combinations are presented in

Table 1.

 Time

constants

Firing rule Interpretation

1. l>0,h l Interval, weak Event is expected with minimum

delay l, maximum delay h, or may

not occur at all.

2. l>0,h l Ultimo Process must get terminated within

the interval [l, h]

3.
l>0,h= Earliest, strong Process has duration l, and all

simultaneously started processes

with the same duration finish

simultaneously

4.
l>0,h= Earliest, weak Process has duration l, but

termination of all processes with the

same duration may be not

synchronized .

Table 1. Combinations of time-firing rule and time intervals commonly used for modelling.

V. Vyatkin © 2007-2011

 41

The lower or higher time limits may or may not (depending on the corresponding

rule) force transition to fire. The "interval" firing rule accepts presence of empty

transition steps, when time elapses even in the absence of any enabled transitions. This

option may be useful if aimed at finding of all possible combinations of overlapping

processes and, correspondingly, simultaneous events. On the other hand it obviously

explodes the reachability space. Perhaps, the variety of choices discussed in this Chapter

is a bit confusing, but it extends the modelling horizons and allows more concise

description of models. The following example explains the differences between firing

options.

Figure 37. Timed version of a plant-controller interaction model

The following state-time diagrams illustrate different combinations of timed firing

options. The earliest strong firing rule forces to fire all transitions when the low time

bound is reached by clocks, at the earliest weak rule steps are formed from combinations

of time-enabled transitions, at ultimo the firing may occur at every discrete time value

within the permeability interval.

a) b) c)

Figure 38. State-time diagrams representing different combinations of timed firing options.

Modelling and Verification of Discrete Control Systems

42

5.3 Implementation

Not all timing modes are currently implemented in the available model-checkers.

5.4 Restrictions

A transition with incoming timed arcs (i.e. [l, h] where l>0) cannot be forced, i.e. cannot

have incoming event arcs.

V. Vyatkin © 2007-2011

 43

6 Modelling of closed-loop controller-plant

systems

An industrial automation system can be considered to be built from two conceptually

different parts: controller and plant. The controller is a hardware device driven by

software code that performs data processing, communication and decision making, the

plant refers to the physical part of the equipment.

Figure 39 shows examples of such control systems. Figure 2,a shows control of the

liquid level in a tank The tank has an input valve that controls the liquid supply. Once the

tank is filled the valve should be closed. A level sensor (L) indicates the level where the

filling should terminate.

a) b)

Figure 39. Examples of automated systems: a) control of the liquid level in the tank;

b) manufacturing cell - an automated drilling station.

Figure 2,b presents a model of an automated machining process: drilling station.

Modelling of automation systems can be done in either open-loop or closed-loop way.

The open loop modelling usually is a more economical solution which bases on the

partial model of controller inputs which help to generate the outputs and then verify their

correctness.

Modelling and Verification of Discrete Control Systems

44

Figure 40 Closed-loop NCES model of the automated drilling station.

In the closed-loop approach exemplified in Figure 40, the model of the automated

drilling station system is composed of two independent components: a model of the

object (also known as plant) and a model of the controller, connected in a closed-loop by

control signals and process data. Both parts are modelled using a common formalism.

This approach allows for specification of desired/prohibited behaviour of the automation

system in terms of the events/statements related to the object rather than in terms of

input/output variables. The closed-loop approach is also beneficial in terms of complexity

as a feasible model of plant restricts the controller’s input combinations. The model of

plant not only generates the inputs of the controller but also receives the outputs and

correspondingly modifies its internal state.

Certainly the latter approach is more complex as the modelling of uncontrolled

reactive behaviour of objects is required. However its benefits overweight the extra work

needed. Both parts of the system (plant and controller) are modelled by NCES modules

with condition signal inputs and outputs. The connection between controller and plant is

implemented via logic level signals which are modelled using condition arcs. Event

signals are used in both models of plant and controller but not between them. In the

model of plant events may be used, for example, to model the causal behaviour of sensors

influenced from the observed processes. In controllers the event signals model the actions

explicitly defined as event-driven (say, event-connected function blocks in IEC61499), as

well as a lot of other internal operations: procedure calls, setting/resetting variables, etc.

The closed-loop approach allows for a number of application scenarios that can be

derived from the diagram in Figure 41. The scenarios include source-code based

modelling of the controller or controller prototyping by a model, as well as formal

V. Vyatkin © 2007-2011

 45

synthesis of the controller. In all cases, the model of controller is combined with a

manually created model of plant.

Figure 41. The framework for using formal methods in cyber-physical systems.

The prototyping scenario can be less resource-consuming during the validation if

compared to the source code based model generation as the model of controller may

cover only essential issues without implementation details.

Depending on the accuracy of modelling, the model of plant may include components

for each drive, motor, valve, electric relay, sensor, actuator, and other elementary pieces

of equipment. These component models may be integrated to composite models of

equipment units, such as machine tool, or other material processing and storage units.

Modelling of discrete controllers using NCES simplifies the assembling of the model

from the components. Besides, such key features of NCES as event/data connections

closely correspond to the latest trends in controller design methodology presented in the

new international standard IEC61499.

Modelling and Verification of Discrete Control Systems

46

7 Basics of Plant Process Modelling

7.1 Processes

The behavior of a plant can be seen as a concurrent (usually asynchronous) composition

of several processes, each of which has a start event s and ending event e, and some

duration D.

Figure 42. Asynchronous concurrent processes.

Process 3 initiates process 2 by sending a message.

7.2 Simple process model

Such simple processes can be modeled by the S/E Nets as shown in Figure 43.

Figure 43. Model of a simple process.

V. Vyatkin © 2007-2011

 47

Usually we model states of the plant components as S/E net places with safe (0/1)

marking. In particular, for the processes with known minimal duration D>0 the time

limits may look like l=D, h=∞; In this case the model contains no obligation for the

action to occur.

If duration of action is not defined by an exact value, but bounded within the interval

[D1, D2] (0<D1<=D2) then l=D1 and h=D2. In each state with clock value as

D1<=clk(p1)<=D2 the action may finish, i.e. t1 may occur.

Combination [0, D2] is interpreted as “no minimal duration, but maximal time limit

exists”.

7.3 Process with exception

To model a time consuming action (i.e. with l>0) with exception possibility the initial

place p1 is connected with two transitions: one of which stands for the normal operation

mode with duration as described in the previous case, while the other models the

exception, which interrupts the normal operation and may occur anytime within the

normal operation time.

In case if h≠∞, the reached upper time limit forces only one of the transitions: either

ending the action normally, or abnormally with an exception thrown.

Figure 44. Model of a state with an exception.

7.4 Two time scales: ticks in controller and time-elapsing in plant

Timing can be used in both plant and controller models to achieve adequate behavior of

the model. In return it allows for quantitative time estimations, or for solving

optimization problems like finding control strategy with minimal duration of the

technological cycle, etc. Once all the NCES modules have been interconnected into

Modelling and Verification of Discrete Control Systems

48

Signal/Event Net, the resulting net has common time unit. That is why for modeling of

objects with different time scale the minimum basic time unit over all components has to

be selected.

Every time increment brings the model to a new state, which, obviously means state

explosion if we try to decrease the basic time unit. This is especially sensitive in the

closed-loop models. The common sense suggest to accept the time scale of the most

relevant processes in the plant, and assume that processes in controller (or some electric

units of the plant, such as sensors, or relais) as having zero duration.

However some estimations in controller still can be done by measuring the number of

executed commands (or number of transitions in S/E N).

Figure 45. Program delay: model of the controller module which requires 100 commands for

execution.

Modeling of a program unit which takes 100 commands for execution can be modeled

as shown in Figure: initial place p1 is loaded with 100 tokens, and with every transition t1

one token flows from p1 to p2 through the flow arcs with multiplicity 1 until all the

tokens come to p2. Then all the tokens come back to p1 in one transition t2 through the

arcs with multiplicity 100.

V. Vyatkin © 2007-2011

 49

8 Modelling Control Programs

Special industrial programming languages are applied for implementation of the

control algorithms in Programmable Logic Controllers (PLC). The most of the known

programming languages in the field were standardized in IEC 61131-3 in 1993

(IEC61131, 1993). The standard includes four programming languages: Instruction List

(IL), Function Block Diagrams (FBD), Ladder Diagrams (LD) and Structured Text (ST),

and a common element Sequential Function Chart (SFC) that serves for program

organization into logical steps and expressing the transitions between the steps.

Despite the successful standardization of PLC programming, there is a number

vendor specific programming approaches that have not been included in IEC61131-3,

although they are quite popular in certain application areas.

A model of the controller can be built based on the source code of the control

program. Relevant properties of system routines also have to be taken into consideration.

The source code based validation gives an additional assurance in the correct behaviour

of the system after commissioning.

The basics of the modelling of discrete controllers using place-transition formalisms

were developed in (Hanisch and Thieme, 1997). In general the modelling of controllers

can be split into the following sub problems:

 Modelling of system routines such as scan cycle;

 Modelling of PLC execution is related to the performance of PLC hardware

represented by times, instructions execution times, etc;

 Modelling of basic Boolean data and operations;

 Modelling of non-Boolean functions;

The use of NCES simplifies the assembling of the model from the components.

Besides, such NCES features as event/condition connections closely correspond to the

latest trends in controller design methodology presented in new international standard

IEC61499.

The following examples serve to illustrate basic principles of mapping from

commands of a programming language to NCES models.

Modelling and Verification of Discrete Control Systems

50

8.1 Data storage and assignment

Boolean variable cell can be modeled by the net having two places p0 and p1 and two

transitions ts and tr as shown in the Figure 1. Setting of the variable is modeled by

transition ts and resetting by tr.

Figure 46. Model of a Boolean variable implementing SET and RESET commands.

Figure 47 Model of a Boolean variable implementing also ASSIGNMENT of a value.

8.2 Linear sequence of commands

Consider how a linear sequence of two commands (e.g. A; B) can be modeled in NCES.

Transitions t0, t1 correspond to the commands A and B . Once t0 fires it forces to start the

model of the command A. Upon completion of A, the transition t1 starts the model of

command B.

V. Vyatkin © 2007-2011

 51

Figure 48 Model of a two commands’ sequence.

Figure 49. Model of an assignment operator.

8.3 Conditional choice

Conditional choice of type IF X THEN Sequence A ELSE Sequence B can be modelled

in NCES as shown in Figure 5. Transition tA has incoming condition arc which relays

value of X, and tB has incoming condition arc marked with not X. Since the conditions

are orthogonal, only one of the transitions is able to fire.

Modelling and Verification of Discrete Control Systems

52

Figure 50. Model of a conditional choice operator.

8.4 Boolean operations

Since every Boolean variable is modelled by two places (as was shown in Figure 46), we

do not need a specific model for getting negation of a Boolean variable. As for the AND

and OR operations, they can be modelled as shown in Figure 6, a) and b)

correspondingly. Both models have two incoming event signals: compute and reset.

Computation of the result takes one state transition.

 a). b).

Figure 51 Models of Boolean operations.

V. Vyatkin © 2007-2011

 53

8.5 Subroutine call

An example of a flowchart calling a subroutine is presented in Figure 52. The example

includes modelling of the data that is passed to subchart, modelling of the Boolean

operation, the subchart call and all the flowchart blocks.

Figure 52. Flowchart with a call to sub-chart

The main flowchart has a sub-chart call block, which invokes the sub-chart. The

flowchart passes five variables: IN1, IN2, OUT1, OUT2 and OUT3 to the sub-chart. Four

arguments of these variables are passed by reference, one argument passed by value and

one is a local variable of the sub-chart. The modelling of the given flowchart and sub-

chart starts with the modelling of the local and argument-by-value variables.

The resultant model is shown in Figure 53. For the sake of simplicity it shows only

the modules modelling variables VAR1 and IN2, the module implementing the operation

AND over two operands; and two modules representing the logic of the main and sub-

chart respectively.

The NCES model of local variable VAR1 is modified as compared with the model in

Figure 46 as follows: an event input with an arc to the t1 transition is added. The input

provides variable reset at the moment when sub-chart is called. A NCES module is

necessary for the variable IN2 due to its passing by value (although IN2 does not get

modified inside the sub-chart in this example). It is modelled as the Boolean input similar

to the model in Figure 58.

Modelling and Verification of Discrete Control Systems

54

Thus, the local variables and the variables passed by value to the sub-chart are

represented as independent NCES modules. Variables passed by reference are treated as

global PLC variables and they can be modified directly by the sub-chart.

The NCES module corresponding to the main flowchart has two outputs that are

related to the commands - “TURN ON Output2” and “TURN OFF Output4”. All the

other provide the representation of sub-chart call mechanism - “SET SUBCH_VARS”

and “CALL SUBCHART”, and “YIELD” serves for yielding the control after

termination.

Figure 53. Full model of the sub-chart and main chart.

The sub-chart module has an event input labelled as “START SUBCHART”, which

initiates the execution. The input is connected by event arc to the “CALL SUBCHART”

event output of the main flow-chart module.

V. Vyatkin © 2007-2011

 55

9 Co-existence of synchronous and asynchronous

behaviour

Usually transitions in models of plant represent start or finish of some time

consuming actions, while transitions in the controller's part of the model represent almost

instantaneously executed commands. Hence, when two transitions are enabled, one in the

plant, and the other in the controller, first the latter has to be executed. Consider a simple

example of process/controller communication as shown in Figure 54

(PlantObserverTest.xml).

Figure 54 Model of plant and observer.

The process is represented by the basic unit of plant which has two flip-flop states (as

up--down, left--right, on--off) modelled by places p1 and p2. The transitions t1 and t2 are

spontaneous. First assume that the model is not timed (by ignoring the time intervals

attached to the arcs).

The block “Observer” makes an “instant photo" of the process, i.e. reads the value of

state in the loop (input DETECT) and when it is "ON" (i.e. m(p2)=1), performs some

computations and stores the value in the memory. When the state becomes "OFF" (input

“RELEASE”), the observer clears the memory and returns to the initial state.

Modelling and Verification of Discrete Control Systems

56

Figure 55 Reachability graph of the model of plant/controller interaction.

If transitions in the observer were also spontaneous then, in the state shown in the

Figure 54, there would be the following enabled steps of transitions: s1={t2}, s2={t3},

s3={t2,t3}. However, the first step is not feasible: it reflects the situation when the event

occurred (m(p2)=1), but the controller does not start the corresponding action though it

was able to do so (was not busy), and the information about the action is lost.

a) b)

Figure 56 Desirable and incorrect sequence of plant/controller states. The sequence presented in the right

Figure can never occur on the reality but is generated by the model.

9.1 Non-timed models

The first, “greedy” transition approach is aimed at non-timed models. All spontaneous

transitions in the controller (like those in the “execution logic” part) are marked as

V. Vyatkin © 2007-2011

 57

greedy. According to the greedy firing rule, if a greedy transition is enabled, then each

executable step must include at least one greedy. This guarantees that all enabled

transitions (commands) in controller will be executed until the next action occurs in the

plant.

a) b)

Figure 57 Reachability graph of the interconnected system. Trajectories eliminated by the “greedy” tick

generator are dotted.

To fix the behaviour of our model we introduce greedy transition tg connected to t3,

t4, t5 via (dotted) event arc. Since tg is always enabled, it fires at every state transition

sending forcing “ticks” to the commands in the controller no matter what is going on in

the plant. All the transitions t3, t4, t5 could be marked as greedy instead and that would

yield in this example the equivalent behaviour. But we prefer forcing such transitions

from the greedy “tick” generator for the reasons which become clear in the next section.

9.2 Timed models

In case of timed models, the use of greedy transitions in the former example is

obsolete - the desired behaviour is obtained automatically since at the clock value

u(p2)=0 (i.e. right after place p2 gets marked) the process in the plant is delayed, and the

only enabled transition is t3.

The only possible sequence of firing is: t3 -> t4 -> (after 1 time unit) t2 -> t5, if all

arcs in the controller model have zero-delay (i.e. time interval [0,]).

Modelling and Verification of Discrete Control Systems

58

Figure 58 Timed model and its reachability gaph.

9.3 Testing timed NCES modules

For testing of timed models one may develop a structure similar to that in Figure 58,

but with non-timed left “tester” module emitting random values in a loop. However, this

will lead to the situation when the time is not getting incremented in the right, timed part

of the model.

A cure can be to make the tester part also timed.

V. Vyatkin © 2007-2011

 59

10 Complete Example: Cylinder control

10.1 Object description

As the first example let us consider a very primitive control system of a single linear

drive implemented using a pneumatic cylinder.

Figure 59. Cylinder with two end-position sensors (Start and End) and two control signals FWD and

BACK.

The operation of the object is straightforward. Suppose we want to retract the

cylinder to its leftmost position and from there enter the eternal loop of moving forth and

back. To achieve this suppose we write the following program in Sequential Function

Charts (SFC) (as shown in the left part):

a) b)

Figure 60. Control program in SFC language (a) and its model in NCES (b).

Modelling and Verification of Discrete Control Systems

60

Now let us try to study this program applying the formal verification technique. For that

we create NCES model of the controller, which is quite straightforward, the result is

shown in Figure 60, b. Then we connect the model of controller with the model of plant

as shown in Figure 61.

Figure 61. Block diagram of the Plant-Controller NCES model.

This model is provided with ViVe tool set and is called Cylinder.

10.2 Modelling the plant: Linear drive

The most typical motion process in automated machines can be modelled and

encapsulated for further re-use in the model of linear drive shown in Figure 62.

Figure 62. Linear drive.

The model which quite precisely represents uncontrolled behaviour of the drive is

shown in Figure 63. Main modelled parameter is linear coordinate of the drive x.

There are 6 states distinguished in the behaviour of drive, two of which are dynamic

that means the speed is more than 0. The dynamic states are shown as circles, while the

other static states are represented by rectangles with rounded corners. Model’s inputs

include two control signals FWD and RETR for forward and backward motion

respectively. Input event STOP serves to relay all sorts of possible failure situations

during the motion.

V. Vyatkin © 2007-2011

 61

Figure 63 Continuous/discrete (hybrid) state-chart model of the linear drive.

The source of the failure is external to the model of drive, but consequence of the

failure has to be taken into account within the model. According to the model, input event

STOP leads to the static state “failure”, and input event RESUME enables transition from

that state to state “stop”. The model above provides the numeric value of x as a function

of time conditioned by the values of inputs.

In order to represent similar model by means of a discrete state formalism we

decompose functionality of the drive to most basic characteristics, for example as

follows:

- motion status (stands ready to move, moves forward, moves back, stands in

failure);

- motion position (depending on the used formalism can be either represented as a

numeric coordinate value, or as a discrete position).

This template is illustrated in Figure 64.

Modelling and Verification of Discrete Control Systems

62

Figure 64. Status-Position-Sensors template illustrated on the cylinder’s example.

Discrete model of the motion status is very similar in structure to the state-chart

model. In contrast to that, it is purely discrete and does not include time.

Figure 65. Motion status of the linear drive.

The motion status model is illustrated in Figure 65. The model converts the values

of Boolean control signals to the status of motion – thus when all control signals go

off, the status must change from movement (either place 1 or 3) to stop (place 2).

Besides, external event FAILURE causes transition to the state “Emergency stop”.

Places in the model represent the following discrete states:

V. Vyatkin © 2007-2011

 63

P1 Motion forward

P2 Stands still

P3 Motion back

P4 Emergency stop

The input signals of the model have the following meaning:

FWD Control signal “Move forward”

RETR Control signal “Retract”

STOP Event causing failure

RESUME Event that recovers failure

A specific feature of NCES modelling is that control signals need to be represented

by two condition inputs for positive and negative value of the signal. It explains by the

fact that sources of condition inputs are places, so to obtain the negation of a certain place

marking we would need to connect to a place complement to the source.

Transitions between states are driven by the values of inputs relayed to NCES

transitions by means of event and condition arcs. Thus, transition from state “Stands still”

(p2) to “Moves forward” (p1) is conditioned by the input combination “FWD and not

RETR”. The corresponding NCES transition t1 has two incoming condition arcs from

inputs “FWD” and “not RETR”. Abnormal halt of the drive is conditioned by an external

event delivered via event input “STOP”. This event brings model from whichever motion

state to the state “Stands in failure”, which is recoverable by event signal “RESUME”.

The model delivers information about its motion status by means of two condition

outputs “Moves forward” and “Moves back”. Since we cannot get the continuous value

of x out of a discrete state model, there are several possible options exist how to

approximate it.

Modelling and Verification of Discrete Control Systems

64

Figure 66. Simple timed model of the position change.

The most primitive way to identify position is to distinguish three positions: start, end and

in the moving in between the two. The model in Figure 66 gives correct results assuming

that the status of the movement never changes once it has started. Place p2 stands for the

state “in between” and it takes 75 ms to get in either state “start position” (p1) or “end

position” (p2). Should both condition inputs go off while the token is in p2 there would be

no way to figure out the coordinate of the drive.

A more precise way to represent the coordinate with a discrete formalism could be to

divide the interval on segments and represent each of them in a way similar to that in

Figure 67.

Figure 67. Model of position in the interval divided on 5 segments.

V. Vyatkin © 2007-2011

 65

The resulting model of the cylinder can look like the one in Figure 68. Status and

Position modules here are grouped under composite model “Cylinder”, although this is

just a matter of convenience.

Figure 68. Complete NCES model of the cylinder.

Figure 69. Complete closed-loop plant-controller model.

Modelling and Verification of Discrete Control Systems

66

10.3 Deadlocks

The first step in analysis of this model (Cylinder) using the

Visual Verifier (ViVe) is generation of its reachability graph. In

this case it consists of just 3 states. While doing this ViVe

reports that the reachability graph contains deadlocks. Thus,

without spending any time for step-by-step testing of the

program on the real object (or its model) we were able to tell

that the program drives the object to a deadlock state! This

already is quite significant result provided that for a more

complex object the reachability space may include a lot more

states and manual finding of a deadlock can take very long time.

The reachability graph for this simple control system consists of 3 states as shown in

Figure 70. Arcs of the graph are marked with the numbers of transitions of the NCES

model. The graph contains 1 deadlock state. ViVe can help with understanding of why

the model gets into the deadlock.

Thus, as Figure 71 shows, in the deadlock state 3 the controller cannot leave the state

MOVELEFT since the sensor START never becomes TRUE. The reason of that can be

found in the model of the plant. Models of both sensors initially are in state ZERO and

nothing makes them transiting to the state ONE. As a result, the controller stuck, waiting

for sensor START to become TRUE

Figure 70 Reachability

graph of the plant-

controller model.

V. Vyatkin © 2007-2011

 67

Figure 71. ViVe shows the controller status in state 3.

The remedy for this would be initialization preceding model’s operation. The

initialization needs to set parts of the model to the appropriate initial states, e.g. model of

sensor START to the state 1. Given this hint we can modify the model of the plant so that

the overall behavior gets closer to the desired.

First, after introducing the INIT input signal as shown in Figure 73 (Cylinder_INIT

model) the plant adjusts values of sensors before the controller starts its operation.

Modelling and Verification of Discrete Control Systems

68

Figure 73. Closed-loop model with initialisation.

As a result, the overall behavior changes to have 15 reachable states as

shown in Figure 72. This model however also has a deadlock state. The

reason for the deadlock becomes clear after looking into models behavior

in the last 3 states before the deadlock. While the cylinder is in its

extended state (END), the controller jumps to the

‘STATE_MOVINGLEFT’ and waits for the sensor START to become

true. However, the controller did not issue the control signal BACK !

This problem can be easily fixed by modifying step 9 of the

controller by adding the ‘BACK:=1’ command. The NCES model also

needs to be modified accordingly. As a result the behavior becomes

deadlock – free as expected in the system that operates in eternal loop

(Figure 74). The corresponding model is provided in

Cylinder_CTLcorrected.

10.4 Branching

The reachability graph, however, contains a few states with several

outgoing branches and one may wonder what this model’s behavior

corresponds to in the real object’s operation.

Thus, state 3 has two alternatives: either t5 fires or t23,t21 fire

together. The former corresponds to the model’s of plant evolution from

the state stSTOPPED to stM_BACK in the module MovingStatus.

The latter is controller’s transition from the state

STATE_MOVELEFT to the STATE_LEFT with setting to zero the

output signal BACK.

Since plant and controller operate concurrently either of these actions can occur

first in the real settings. However, if the latter occurs first it will make the former

obsolete, as there is no more signal BACK present at the input of the plant and therefore

there is no need to transition from the status stSTOPPED to the status stM_BACK. One

can see that in the branch S3→S5→S7→… transition t5 never occurs, while in the branch

S3→S4→S6→… the transition step t23,t21 occurs right after t5.

Figure 72.

Reachability graph

of the model with

initialization.

V. Vyatkin © 2007-2011

 69

Technically speaking, the reason for branching is the

interleaving semantics of spontaneous transitions used for

generation of theses reachability graphs – only one spontaneous

transition can fire at time (ViVe supports also other options: all

combinations of enabled spontaneous and maximum set of

enabled spontaneous transitions to fire simultaneously).

Other branching cases in the states S6 and S12 are of the

similar nature.

10.5 Deeper analysis

Although ViVe allows following various traces of a model’s

behavior in the visual way, for more complex models more

analytic methods of analysis are required, namely using

specifications formulated in CTL. Usually the following classes

of properties are of interest:

a. Liveness – i.e. deadlock-free behaviour

b. Checkpoints of the process or properties of the

product – assurance that the product always

satisfies specifications;

c. Safety – not entering certain ‘prohibited

behaviour’ scenarios.

10.6 Exercises

1. Develop an example plant – controller system where the controller gets into a

deadlock while the whole model is alive.

2. Develop a model illustrating the idea of a ‘dynamic trap’ where e.g. controller

enters eternal loop but the model of plant stuck.

10.7 Review questions

1. Why branching is observed in the behavior of the automated cylinder?

Figure 74. Deadlock-

free reachability graph.

Modelling and Verification of Discrete Control Systems

70

11 Model Verification with Visual Verifier

11.1 Visual Verifier functions

The integrated environment for Model Assembly, Translation, and Checking (Visual

Verifier) inputs the model type files (in the XML-based format) and is capable of

assembling, translating and checking the models.

Figure 75. Visual Verifier screenshot.

Assembling means creation of a flat model from a composite, hierarchically organized

modular model using the modules from different libraries of model types. The component

model types are instantiated into NCES modules.

Translating the model into a “flat” NCES with the through numbering of places and

transitions (Figure 76). The inter-module connections are converted into event and

condition arcs between places and transitions. Thus the module boundaries are removed

and the model-checking tools can be applied. In particular, the translator generates files in

the input format of SESA model checker.

V. Vyatkin © 2007-2011

 71

Figure 76. Visual Verifier creates a flat model from a hierarchical model.

Visual Verifier can prove specifications in the form of the first order predicates or can

pass the temporal logic formulae to the SESA model checker. The internal model checker

of Visual Verifier generates the reachability graph for the model, either completely or

dynamically while it checks the formula. It can also import a reachability graph generated

by SESA and visualize it.

Once a state with particular properties is found in the reachability space, Visual Verifier

can visualize a path from initial (or any other state) to the found one. The visualisation is

done in a form of state-time diagram for a selected set of system variables (both from

plant and controller). A user can select between different views and see the model in each

state. The visualisation options proved to be very useful in practical verification.

For documentation it is possible to export the picture of model or the reachability graph

in the BMP format.

Figure 77. Visualisation of a reachability graph

Modelling and Verification of Discrete Control Systems

72

11.2 Data formats

The data format of Condition/Event Nets is based on XML. The Document Type

Definition (DTD) of the S/EN model types is given in Annex 1.

The installation package of Visual Verifier contains a number of examples in that

format that will be commented here.

Model-checker SESA has its specific data formats which are explained in detail in its

documentation. It is important to remember that input for SESA does not include any

module information and has a through enumeration of network places and transitions

each starting from 1. For this reason SESA input format will be referred to as “flat”

model format.

FBT format is used to provide compatibility with IEC61499 and its supporting tools.

FBT is XML-based, but contains only a description of model interface. The XML format

for S/E Nets also contains interface part but their syntax is different.

The FBT files can be generated automatically for each S/EN module along with XML

file containing full model description. Then they can be used for creating composite

models as networks of interfaces interconnected via event and data connections in

Function Block Editor.

File extension: Basic S/EN module Composite module

XML – full S/E

model

Created by S/EN editor Created by S/EN editor

FBT – interface of

the model

Created by S/EN editor Created by FBEditor

Visual Verifier currently supports several input formats on NCES models:

For basic modules:

S/EN editors:

1. ViEd format: the editor of typed NCES developed at the University of Auckland,

New Zealand. The centre of axes is in the middle of the picture. The coordinates are in

pixels.

V. Vyatkin © 2007-2011

 73

2. TNCES Editor

The editor was developed in Martin Luther University of Halle-Wittenberg, Germany.

The coordinates of elements are given in pixels, centre of coordinates is in the top left

corner.

Older editing tools and generators:

3. VISIO format

Coordinates are given in millimetres, the vertical coordinate axis is directed upwards;

Element's coordinate indicates the centre of the element.

4. Generated by MOVIDA generator

In addition to position coordinates some elements may have explicitly assigned size,

either via Width, Height or via Diameter parameter.

Visual Verifier has default sizes for graphic elements. If the size is assigned once to any

element in the model, Visual Verifier scales correspondingly sizes. If the size is not

present, then Visual Verifier takes this default scaled size.

For composite modules:

1. FBDK format: coordinates are measured in basic units that are equal to 1/10th of

interval between parameters of a module.

2. ViEd and TNCES Editor format.

3. MOVIDA Generator format.

11.3 Limitations

There are many input syntax limitations of ViVe which are not always properly

detected by the input parser.

1. Symbolic names of places, transitions, I/Os cannot contain spaces. Example:

Correct: TrueToFalse , True_To_False

Incorrect: True To False

2. Objects within a module cannot have same symbolic names, even in different

case. For example, event input “END” and place name “end” will be treated as the

same.

Modelling and Verification of Discrete Control Systems

74

11.4 A hint for clearer models

Sometimes NCES models can be overloaded with arcs which reduces their clarity. To

cope with this problem ViVe suggests 2 solutions. First you can select which graphical

elements to show, and which not, on the pane NCES of Options, as illustrated in Figure

78.

a) All graphical elements are shown b) Only token flow arcs and numeric

identifiers of elements (e.g. p1) are

displayed)

Figure 78. Hiding event and condition arcs and timing intervals.

The second trick applies to the ViEd NCES editor. To make the picture in the editor

clearer a special textual notation can be used in comments of the corresponding arc

destination elements. For example, in Figure 79 the same cylinder2s.xml model is opened

in ViEd. As one can see, not all inputs have graphical links. For example, the condition

input RETR in ViEd has no outgoing graphical link connections.

V. Vyatkin © 2007-2011

 75

Figure 79. Same model opened in ViEd.

One of these links goes to the net transition t3. If this transition is selected, as

illustrated in Figure 81 one would see its parameters in the right pane, including the

comment:

>PLANT_EV

>RETR

>negMOVE

This comment defines arcs having their destination in t3 by enlisting their sources.

Actual type of the arc (condition or event) is not important as far as it is not ambiguous.

When the model will be opened in ViVe, the arcs will be created automatically.

Modelling and Verification of Discrete Control Systems

76

Figure 80. Transition t3 is selected.

Such “symbolic” arcs can be established between:

Event input –> transition

Condition input -> transition

Place -> transition (condition arcs, not flow arcs)

Transition -> transition

Place -> condition output

Transition -> event output

In all cases, the link is defined at the destination elements using the syntax described

below:

> source [,source][,source]

V. Vyatkin © 2007-2011

 77

12 User Interface of Visual Verifier

A Visual Verifier screenshot with annotated screen areas is presented in Figure 81.

Figure 81. Visual Verifier screen.

12.1 Tabs

Model tab – Viewer of NCES model currently opened (if Basic) or currently selected in

the model tree view (after assembly).

RG – Reachability Graph – shows the generated reachability graph if

1) The graph has been generated (for that the model needs to be built);

2) The Geo checkbox is checked;

Editor – Edit the flat S/E Net.

Check – provides the tools for specifying CTL formulae and verifying the current NCES

model.

Modelling and Verification of Discrete Control Systems

78

12.1.1 Functional toolbars

Files toolbar

1 Open model file (*.xml)

2 Build flat model

3 Create reachability graph in the memory area 1

4 Interrupt the model checking/ reachability graph generation

Specification toolbar:

1 Open specification file;

2 Save specification

3 Look for a state complying with spec in the reachability space. If the space is not

generated yet, it will be generated on the fly until the desired state is available

Reachability graph toolbar

1 Geo check box – creates geometry of the reachability graph. Needed to

visualise the reachability graph (if unchecked the reachability graph still

can be used for model checking but cannot be visualised)

Trace toolbar

V. Vyatkin © 2007-2011

 79

1 First state number of the trace

2 List of intermediate state numbers. To add a number to the list: type the number in

the field, press “Enter”. To delete number from the list: select the number in the

pull-down menu and press “Space”. The path will be created trough all the

selected states (if such path exists).

3 Last (target) state number of the trace Generate Trace

4 Generate Trace

5 Load a trace from file

6 Save trace to file

Figure 82. To delete element from the states list: select it in the pull-down menu, and press

“Space”

Multiple reachability graphs toolbar

1 Compare states of RG1 and RG2 (until first discrepancy is found)

2 Compare topology of RG1 with RG2 (until first discrepancy is found)

3 Compare topology of RG2 with RG1 (until first discrepancy is found)

4 Navigation in reachability graph: Find the target state in RG1 and show it on

screen

5 Find the target state in RG2 and show it on screen

12.2 Typical sequence of steps using Visual Verifier

Step 1: Open the header file of the model

The header file is the module of highest hierarchy. If the header is a composite model,

then it refers to other model types whose instances make a network of modules. Open, for

example, src/book/NewCompositeModel.xml and you will see the following:

Modelling and Verification of Discrete Control Systems

80

Step 2: Build a flat Condition-Event net model

Figure 83. Generation of the flat S/E net from hierarchically dependent NCES modules.

V. Vyatkin © 2007-2011

 81

After the button “Build” is pressed, the model is assembled from model types. Then

the nested structure of the model appears in the Tree View window, and the flat model in

the Edit pane window.

You can switch back to the Model view and

you will see that after the “Build” operation one

module has added to the network of modules. This

is the module dummy of type “Service”. This

module is needed to set values of those inputs of

other modules which are not assigned.

The dummy module has two places – one always

empty and the other always full. It also has one

transition which is never enabled.

This transition is connected during the build to all

unassigned event inputs of all modules in ALL

LEVELS of hierarchy!

The always empty place is connected to all condition

inputs of all modules via condition arcs.

Step3: Generate reachability space of the flat S/E model

Then, if you check the “Geo” radio button the corresponding reachability graph will

be created. It can be viewed under the RG tab in the main pane.

Modelling and Verification of Discrete Control Systems

82

Figure 84. Reachability graph visualized in ViVe.

Step 4. Check specifications using internal model checker

The internal model checker allows check specifications given in predicate logic over

the state (marking) variables.

If the reachability graph has been already generated then the specification will be

checked on that graph. Alternatively, the graph will be generated “on the fly” until a

counterexample is found.

12.3 Model-checkers

ViVe has two built-in model-checkers and, additionally, can call external model-

checker SESA. The first built-in model-checker checks only specifications in form of first

order predicates, the other understands temporal logic formulae in CTL. As illustrated in

Figure 85, access to both built in model-checkers is provided from the pane “Check”. The

CTL checker (also referred to as STARk) is based on SESA and supports the same syntax

of the specifications as SESA.

V. Vyatkin © 2007-2011

 83

Figure 85. The Check pane contains controls of both built in model-checkers.

12.4 Command line SESA

The command line version software tool SESA for the analysis of Signal-Net

Systems. SESA has been developed in 1999-2002 at Humboldt University of Berlin

(Germany) by Professor Peter Starke and his group.

Figure 86. Screenshot of SESA.

Modelling and Verification of Discrete Control Systems

84

SESA was developed in collaborative R&D project "Function Blocks" conducted

with the group of Professor Hans-Michael Hanisch at Martin Luther University of Halle

(Germany). The project was funded by DFG - German Research Foundation. After the

retirement of Professor Starke SESA support by Humboldt University has been

discontinued.

In 2008, the group at The University of Auckland’s has created a new build of SESA

(SESAcmd) which is 64-bit capable. This means it can use RAM beyond the 2GB limit

of the 32-bit SESA.

The description of the command line version is in (SESA Manual, 2005).

With permission of Prof. Starke the code of SESA has been adapted and integrated

into ViVe as the second model-checker STARK (also referred here as CTL-checker).

12.5 SESA from ViVe

Another version of SESA can be called from within Visual Verifier (Menu

‘Analyze/Call SESA’). The built-in version of SESA allows checking specifications in

both Computational Tree Logic (CTL) language and in Predicate Logic.

Figure 87. Calling SESA from Visual Verifier produces such a window

SESA goes through a particular verification scenario and stops after net pre-check is

completed. The button “STOP” is a bit confusing: in reality it means “CONTINUE”! So,

while SESA is busy pre-checking the “STOP” button is blocked, but when it stops, the

button becomes available. Pressing the button will conclude the reachability graph

V. Vyatkin © 2007-2011

 85

generations and will start the formulae verification. After formula has been proved, press

EXIT.

The current version of SESA does not support timed NCES checking. So, if the

checkbox “Timed” in ViVe is ON SESA would stop reporting an error. In this case press

the “STOP” button to continue model-checking as shown in Figure 88.

a) b)

Figure 88 a) SESA stops after encountering the “Timed” option. Just press “STOP”; b) The model-

checking continues.

The following table summarizes the dialects of NCES supported by these model

checkers.

 Features Editor SESA Visual Verifier

 Timed firing rules

 Interval ultimo - X X

 Earliest weak - X X

 Spontaneous transition

firing

 -maximal steps

- single

- all spontaneous,

- all combinations,

- single

 Greedy transitions + X X

 Synchro sets - X -

 Specifications -

 Predicate logic - X X

 CTL - X

 Analysis

 Static analysis X -

 Reachability graph X X

 NCES

 Colours - X -

 Priorities - X Yes:

- for spontaneous

Modelling and Verification of Discrete Control Systems

86

transitions

12.6 Hints for analysing complex models

The three available model-checkers have different performance. For that reason the

following sequence of steps can be recommended.

1. Assemble the model.

2. Call external SESA (without entering any specification) in order to estimate the

number of states in the reachability graph. You can also enter some CTL

specifications, but SESA will be able to give only ‘YES’ or ‘NO’ answer without

providing a counterexample.

3. The built-in CTL checker is currently about 10 times slower than SESA as such,

but it can export reachability graphs and provide counterexamples for CTL

properties (which takes extra time).

4. The predicate checker (which is 3 times slower than the CTL checker, but does

not take extra time for loading the reachability graph) can be used for initial check

of model’s feasibility. With it you can quickly create a smaller part of the

reachability space and check if your model behaves reasonably. An indication of

non-reasonable behaviour can be too large reachability space (generated by

SESA). The predicate checker has two options:

a. Breadth – first search (default)

b. Depth – first search (selected by the “Recursive model-checking” check

box);

c. The “Check-on the fly” option allows checking a predicate without prior

creation of reachability graph. Graph generation stops when a state

satisfying the predicate is found. The created graph can be re-used for

checking other predicates and it can be incrementally extended if

necessary if the “->” button is pressed.

5. The CTL checker provides a choice of two firing rules: ‘single spontaneous’ and

‘maximal steps’. The first rule leads to interleaved firing of spontaneous

transitions and can eliminate some effects of a modelled concurrency. The second

rule handles concurrency better.

6. The predicate checker offers an additional rule: “all combinations of spontaneous”

which can be useful for modelling asynchronous concurrent processes.

7. ViVe can store two reachability graphs, generated by different model-checkers

and/or with different firing rules. The switch of the “Current RG” implies that a

relevant operation (such as generation of a trace to a state) will be applied to the

currently selected reachability graph.

8. After reachability graph created by the CTL checker has been loaded, it can be

also used for checking predicates with the “Predicate checker” using the “Search

in the created graph” button.

V. Vyatkin © 2007-2011

 87

12.7 Exploring reachability space

ViVe provides an option of looking into the reachability space by visualising the

reachability graph. After the reachability space is generated in either of the two internal

model-checkers, it can be visualised by checking the “Geo” box, which will assign

geometrical layout to the generated states. Then the reachability graph will appear in the

“RG” pane. This option, however, is beneficial only until the space becomes large. Here

the available navigation options are:

- Zoom/ Unzoom the graph;

- Select a particular state by clicking on it; The selected state becomes current, so

marking of any model part will be shown in this particular state if selected in the

navigation tree.

Figure 89. Selected State

window.

Clicking on a state opens the new window providing a

detail look on the state as shown in Figure 89. The

state and its immediate successors are shown in the

upper part. All states here are “clickable”, i.e. one can

“travel” through the graph without having visualised

the whole graph.

The lower part of the window shows the transition

steps from the selected state.

Another navigation option is via the “Timing diagram view” of a particular path in

the reachability space as shown in Figure 90. The path can be specified by its start

state, end state and a number of intermediate states.

Modelling and Verification of Discrete Control Systems

88

Figure 90. Navigating with timing diagram view of path.

V. Vyatkin © 2007-2011

 89

12.8 Finding paths satisfying certain criteria

ViVe can find a group of paths from the initial state to the target state. This facility is

located in the “Check” tab. It works for a generated reachability graph.

Currently, it can find either certain number of paths satisfying one of the criteria:

maximum number of states or time duration not exceeding a limit. Clicking on a path in

the list will display it in the timing diagram window.

Figure 91. The paths search.

12.9 Metrics

The largest SNS model built with ViVe so far was built of 744 modules and contained

more than 6700 places and 10000 transitions. Its reachability space, however, was quite

small – less than 5000 states.

SESA reportedly can deal with reachability spaces of millions of states. More hints

for handling large model spaces in the CTL model-checker

If the model-checker stops without notice, most likely it is due to the “Out of memory”

problem. In this case, however, the reachability graph is saved to disc (file with the name

of your model and extension *.arc). You can explore this reachability space without

visualising the graph as follows:

Modelling and Verification of Discrete Control Systems

90

1) Quit and Restart ViVe;

2) Open and build the model again;

3) To minimize memory requirements in Options/View unselect all variables and

select just those needed;

4) Read the reachability graph (but don't try to create its geometry!);

5) Generate timing diagram to the last state;

6) Go along the timing diagram and by clicking on states see in more details how

many successors the state has. This may give you some idea of the RG structure.

In case if the model-checker crashes without a message (which is a symptom of the

“Out of memory” situation), you can do the model-checking in 2 steps.

First, build the model, then exit ViVe, then open model but not build it and directly

start generation of RG. The CTL checker takes the flat model saved during the previous

run and starts RG generation. Then follow the steps described above. The model-building

is taking extra memory which can be saved in this case.

V. Vyatkin © 2007-2011

 91

13 Verification of Properties

13.1 Overview

The validation of automation systems modelled by NCES can be performed by

simulation and formal verification via model checking. The simulation usually can follow

a limited number of scenarios in the system’s behaviour while the potential flaws can be

in those paths left out unvisited. The multiple scenarios may result from the influence of

some unpredictable factors, such as variable durations of some operations,

communication delays, malfunctions, etc. In contrast, the model-checking explores all the

existing scenarios.

The verification consists in proving specifications with respect to the dynamic

behaviour of the model. The specifications can be given either in form of second order

predicates, or in form of temporal logic expressions, for example in Computational Tree

Logic (CTL). The basic terms of these expressions in most cases are the “values” of

inputs and outputs (either of plant or controller) or, literally, the marking of the

corresponding NCES modules modelling the data variables. As the hierarchical NCES

model is converted into a flat S/E Net model this provides the through place/transition

numbering, and these numbers are used as references to the values.

In case of the lifter the following groups of specifications were of the primary

interest:

 Avoidance of potentially dangerous situations that may lead to a breakdown of the

lifter or to damage of the product being transferred by the lifter. Example: when used

in manufacturing of precise electronic components, such as hard drives, the lifter

introduced and described in Section 15.12 must never allow the situations when the

pallet leans or jumps. Such problem can be caused by inexact synchronization of

conveyors’ levels, which, in turn, may be a result of wrong synchronization of control

programs;

 Robustness of the system in case of malfunctions of some sensors;

 Control programs can have branching logic of execution. Formal verification helps to

prove that the response time is never exceeded in any feasible I/O combination in any

branch;

 Avoidance of deadlocks or “dynamic traps” that may result from wrong

synchronisation of operations;

Modelling and Verification of Discrete Control Systems

92

 Presence of certain “checkpoints” in any possible scenario of behaviour that

guarantees all necessary operations have been applied to the product in any

circumstances;

The overall model of the automated Lifter had 3 hierarchy levels and after assembly

from modules encountered 571 places and 828 transitions. However, the model-checking

of the normal behaviour (without modelling malfunctions in sensors) resulted in a

reachability space not exceeding 60000 states which was generated on a usual laptop less

than in a minute. This result reflects the efficiency of distributed state modelling with

NCES.

Besides the possibility to verify or falsify certain properties of the system, another

important advantage is that the method may be applied in absence of physical controller

and physical plant. Consider the following scenario: the manufacturing line where

conveyor modules, lifters, workstations, robotic cells, etc., is being installed. Mechanical

and electrical engineers do installations and tests of the equipments. The time for project

runs out, the deadline is approaching, but the control engineer had no chance to test the

line, since the physical equipment is not ready yet. In this situation the application of this

method (model-based validation with the model of controller derived from the source

code) may provide an environment for independent development of control, while the

physical plant is being set up.

V. Vyatkin © 2007-2011

 93

13.2 Syntax of specifications

The combination of Visual Verifier and SESA allows verify specifications given as first

order predicates, and temporal logic formulas given in Computation Tree Logic language

(CTL). Note that at the moment syntax of specifications allowed by Visual Verifier and

SESA is a bit different.

A first order predicate is a Boolean expressions that uses marking of places or firing

of transitions as variables along with usual Boolean operations such as & - and, ! – or, ~ -

not, and brackets. In Visual Verifier specification can use only Boolean expressions over

marking (i.e. place is marked or not marked).

Example:

Visual Verifier p1 & ~p4

p1 and not p4

Search for states where

marking of place p1>0 and

marking of place p4 is 0.

SESA m(p1)=5 Search for states where

marking of place p1 is 5

SESA (m(p1)=5)AND (m(p2)=2)

For Boolean marking:

AG(p1ANDp2)

No spaces are allowed

between terms in SESA

NOTE: In Visual Verifier operands and operations MUST be separated by spaces. No

spaces are allowed between terms in SESA.

13.3 How to check specifications

1. Enter a specification, e.g. a CTL formula in the specification area. For example:

EG ((m(p1)=1) AND (m(p4)=1))

Modelling and Verification of Discrete Control Systems

94

Figure 92. Field for entering specifications in Visual Verifier.

2. Go to the “Check” tab.

V. Vyatkin © 2007-2011

 95

3. Press the “Check CTL formula” button.

Examples of specifications are presented in 15.12 for the Lifter introduced in Section

15.11.

Modelling and Verification of Discrete Control Systems

96

14 Distributed controllers

14.1 Discrete-state model

Distributed control systems may include several autonomous controllers either

working asynchronously (with data exchange via network), or co-existing within one

device thus being synchronized. The distributed architecture may create new trajectories

in the system’s state space which are not the case in local centralized architectures.

Consider the case of two previously presented subsystems working concurrently.

Figure 93 Two concurrent processes in the plant being observed by two independent controllers.

In the non-timed model the greedy transitions ensure that the model generates all

possible sequencing of commands. In the state presented in the Figure there 12 enabled

steps: {{tg1,t3},{tg2,t8},{tg1,t3,tg2,t8}} X {{},{t2},{t7},{t2,t7}}.

For example, { tg1,t3,t2},{tg2,t8,t2,t7}, {tg1,t3,tg2,t8}, etc. Thus, the step {tg1, t3}

models the situation when the Observer1 has started processing, while the other observer

still has not.

The proposed solution allows easy change from distributed to centralized architecture.

To model placing both observers in the same controller device (synchronisation), it is

enough to substitute the two tick generating transitions tg1 and tg2 by tg12 as shown in

the Figure 1. Then only 4 steps would be possible in the given state: {tg12, t3, t8} X

{{t2},{t4},{}}.

V. Vyatkin © 2007-2011

 97

14.2 Timed model

In timed models behaviour similar to the “greedy” transitions can be modelled by

means of synchro-sets. The synchro set model is implemented only in SESA model

checker (and in STARK). All transitions in the controller part of the model, which are

enforced by the arcs from “greedy” transitions in the non-timed model, are marked as

members of a particular synchro-set, associated with the controller. Membership in a

synchro-set has the only consequence on the firing of transitions: all enabled transitions

belonging to the same set are included in the firing step only all together. It has no impact

in the simplest case when a module has the safe marking and one firing spontaneous

transition at once. But in case of several simultaneous actions taking place in controller

there is need to separate them out from other groups of actions taking place in other

controllers.

Figure 94 Synchro sets.

In the example in Figure 94 we defined two synchro sets: S1={t3,t4,t5} and

S2={t8,t9,t10} to model the allocation of the observers to separate devices. The

reachability graph for this model is presented in Figure with initial state S1 equivalent to

that shown in Figure 95 and with clock values equal to 0 at all places.

Modelling and Verification of Discrete Control Systems

98

Figure 95 Reachability graph for the timed model with two synchro-sets

(The “observers” reside in independent devices). The bold arcs have duration 1.

A path in the reachability graph corresponds to a particular scenario of system’s

operation. Consider, for example, the path outlined in Figure 3. The state/time diagram of

the model propagating along this path is shown in Figure 4. The behaviour along the path

is as follows: the observer 1 starts computation in respond to occurrence of the marking

in p2. It makes two computation steps before the observer 2 starts its execution in

respond to another event (marking in p7). Since the results of computations may be used

by other controllers, their sequence is important.

V. Vyatkin © 2007-2011

 99

Figure 96 State/timing diagram of the outlined path in the reachability graph. (Small intervals represent

states with zero-duration, larger intervals represent states with duration 1).

14.3 Using synchronous transitions

To use synchrosets in SESA one needs to create a file with ext ‘*.syn’ and same name

as the model file. An example of such a file is as follows:

Synchro for net 1:

 1: 188, 189;

 2: 173, 175;

@

This file defines two synchro sets, one with transitions t188 and t189, and the other

with t173 and t175.

14.4 Synchro sets in ViVe

The model generator of ViVe automatically creates the *.syn file when assembles the

flat model if the parameter “timed” is ON and if the model includes greedy transitions.

All greedy transitions are included into the same synchroset.

To enable synchrosets when model checking with internal SESA, one needs to use the

“Maximal steps” firing mode. In the “Single spontaneous” mode synchrosets are ignored.

You can modify manually the *.syn file in order to define another “layout” of synchro

sets and then use either command line SESA or STARK.

Modelling and Verification of Discrete Control Systems

100

14.5 Example of different firing rules application

We illustrate differences between available firing rules in both model-checkers using

the following example.

Figure 97. Test model of two concurrent processes.

14.5.1 Non-timed

In the non-timed mode the timing on arcs is ignored.

V. Vyatkin © 2007-2011

 101

STARK

Single spontaneous Maximal steps

14.5.2 Timed

ViVe model checker

Single spontaneous All combinations Maximal

Modelling and Verification of Discrete Control Systems

102

STARK model-checker

Single spontaneous Maximal steps

14.6 Model modification: synchronous transitions

Let us consider how the behaviour of the model would change if we constrain the

behaviour of a single process by making one of the transitions synchronous as show in

the Figure below.

Figure 98. One transition is made synchronous instead of spontaneous in each model.

V. Vyatkin © 2007-2011

 103

14.6.1 Non-timed

STARk:

Single spontaneous Maximal steps

ViVe

Single spontaneous All combinations Maximal steps

All Greedy together

All Greedy together

 Combinations of

greedy

Combinations of greedy

Modelling and Verification of Discrete Control Systems

104

14.6.2 Timed

ViVe checker

Single spontaneous All combinations Maximal steps

STARk

In STARk, in timed mode only the “Maximal steps” firing rule is applicable if the model

includes synchronous transitions. These are interpreted as one single synchro set.

Single spontaneous Maximal steps

- Not applicable

V. Vyatkin © 2007-2011

 105

14.7 Modelling communicating processes

Communication can be modelled using the standard buffer approach as illustrated

below.

Figure 99. Model of two processes communicating via buffer of a unit capacity.

Figure 100. Message passing between process.

Modelling and Verification of Discrete Control Systems

106

15 Example of a distributed system: two cylinders

Now let us consider a more complicated example of a system with distributed control. In

the system of two cylinders in Figure 101 each cylinder pushes a workpiece to the

destination hole. The process starts when the workpiece appears in front of the

corresponding cylinder as indicated by sensors P1 and P2 respectively.

As it is clear from the Figure, cylinders can collide in the middle point, therefore the goal

of controller design is to avoid such a situation.

Figure 101. Two cylinders with a potential clash in the middle.

There are many possible ways to achieve the desired behavior, which can be done by

designing a “central” controller of both cylinders, or a protocol ensuring that distributed

controllers collaborate correctly. Distributed control is of interest for many practical

reasons: imagine that control logic is “embedded” in each cylinder, so they can start

working as soon as powered on.

15.1 Reusing original controllers

What if we take the individual cylinder controller introduced in Chapter 10 and let the

cylinders to operate? A slight modification will be required to start the operation only on

appearance of a workpiece. For that we introduced new input “wps” (workpiece sensor)

as shown in Figure 102.

V. Vyatkin © 2007-2011

 107

Figure 102. Modified cylinder controller with the added “wps” input.

15.2 Finding collision

The entire model of two cylinders is presented in Figure 97. The module “materials”

models the position of workpieces. The workpieces can be pushed by the corresponding

cylinders. The cylinders have an additional output “exc_mid” indicating that the cylinder

is extended so that its tip exceeds the middle position. Cylinders collide if both exceed

the middle position.

Modelling and Verification of Discrete Control Systems

108

Figure 103. The model of two cylinders with a possible collision.

The role of the “collide” model (Figure 104) is to emit the “stop” signal after which

both cylinders will move to the “Emergency STOP” state encoded by the place p4 in

Figure 65. When ci1 and ci2 are TRUE, the model jumps to the p2 state and emits the

event “stop”.

Figure 104. Model of collision.

The model will automatically enter the deadlock in case of a collision.

V. Vyatkin © 2007-2011

 109

15.3 Block – permit protocol

Now, let us change the control logic so that one cylinder would allow the other to move

only if it is not moving itself. For that we add an input “can_move” and output “permit”

to the controller module types. The model is shown in

Figure 105.

Figure 105. Model with controllers’ coordination.

If this model is checked with the “single spontaneous rule” it shows no deadlocks,

implying that no collision of cylinders can occur.

15.4 Central controller

15.5 Exercises

1. Check the model of two cylinders with distributed coordinated control using the

“all combinations” firing rule. Explain the results.

2. Develop a central controller module for two cylinders.

3. Develop a supervisor module for correct avoidance of collisions with minimum

time losses on waiting.

Modelling and Verification of Discrete Control Systems

110

16 Modelling Programmable Logic Controllers

(PLCs)

16.1 System routines

Precise modelling of automation systems requires taking in account low level details

of the control program execution in a PLC. The PLC programs are executed in a cyclic

way. One cycle consists of the following phases: first the inputs are read, then the

program logic is executed and then the outputs are written. Figure 26 depicts a NCES

skeleton for a PLC model. Place p1 holds a token representing the initial state of the PLC

execution, if the PLC program is enabled (condition input to the t1 transition) the cycle is

started by the update of outputs and acquisition of input values. The firing of t1 transition

generates these events. When a token is placed to p2, it resides there until a signal

notifying about the change in the system enables transition t2. The monitoring of the

changes in the systems is needed in order to not start a new PLC cycle unless something

has changed in the system.

Figure 106. PLC model skeleton

The state of the NCES model is distributed and is defined by the marking of all

places. Additionally to the marking, the state is characterized by the time stamp, e.g. the

time the certain state (marking) is valid. Thus the two states representing the same

marking but holding different times are different states.

A special module that monitors the change in the system has to be added to the model

(Figure 107). The module has two event inputs for retrieving information about any

V. Vyatkin © 2007-2011

 111

change of the PLC program variables during the scan cycle. It does not make sense to run

the model over the new scan-cycles if the markings in the model remain unchanged, i.e.

when nothing would change during the next scan. The marking may change in the model

of the plant or if the time dependent transition fires in a timer NCES module in the model

of controller.

Figure 107. Change monitoring NCES module.

16.2 Ladder logic

Let us consider an example of ladder diagram in Figure 108. Textual representation of

the first rung of the diagram is given on the right. The textual representation of LD

resembles the Instruction List programming language.

Figure 108 Tank control program

An LD instruction (that stands for Load) loads the value at IX_Tank_Full variable

into accumulator. At the second row, the negated value of accumulator is stored to output

variable QX_Valve_In that controls the valve. So, once the tank is filled, IX_Tank_Full

becomes TRUE, the FALSE value is stored into the QX_Valve_In, that will close the

valve.

In the given example it is just an evaluation of a single bit variable IX_Tank_Full. If

the variable was not met in previous racks its model will be added to the PLC model. The

PLC model skeleton is extended by the rack representation. In the current example, which

has only one rack, p3 place along with t3 and t4 transitions represent the rack 0. Figure 10

represents the PLC logic model. The whole PLC model consists of interconnected I/O

Modelling and Verification of Discrete Control Systems

112

modules (Figure 46), a change monitoring module (Figure 107), and a PLC logic model

(Figure 109).

Figure 109. PLC logic model for tank control program.

V. Vyatkin © 2007-2011

 113

17 Modelling of Complex Plants

In this Chapter we present more details on how the modelling of plant may benefit from

the hierarchical model organisation and the reuse opportunities provided by the extended

NCES. Thus, common modelling components may be reused in the same model and

across different models.

Models of the plant and model of the controller are interconnected into the closed-

loop providing the representation of entire system that consist of the controlled

equipment and control device. The combined model is subject for making a judgement

about modelled system properties by means of model-checking.

Depending on the required accuracy of modelling, the model of plant may include

components for each drive, motor, valve, electric relay, sensor, actuator, and other

elementary pieces of equipment. These component models may be integrated to the

complex models of equipment units, such as machine tools, other material processing and

storage units, and the transportation means. The approach presented in this section

extends the ideas of plant modelling of (Hanisch et al, 1998), (Hanisch and Lüder, 2000).

17.1 Process/Sensor model

Event arcs are able to express the variety of instantaneous actions, one of which is

operation of sensor which detects the changes of the plant’s state. Once transition t1 in

the model of the process fires, it also switches the sensor ON by means of the event arc.

Model of sensor comes first to the transitional state (marking in p2) and after the delay D

– to the state with p3=1. Reading of the sensor usually comes to controller as a logic

value modeled in our formalism as a condition signal. The sensor itself can have internal

dynamics, e.g. delay D, as it is shown in the Figure 110, or an additional “malfunction”

state (not shown in the Figure, but similar to the “exception state” considered earlier.

Note that in the figure we model the “malfunction free” sensor which always produces

the required value upon elapsing the specified time D. Model of sensor can be either

simpler (just a bi-stable) or much more complicated, depending on the required results of

modelling.

Modelling and Verification of Discrete Control Systems

114

Figure 110 Model of sensing: sensor detects when the process comes to the observed state and with delay

produces the required logic value (places p1,p4 of the module “Sensor”).

17.2 Tank

Common modelling components may be reused in the same model and across different

models. A common example of that is modelling of Boolean input and output variables

that can be seen in Figure 111 that represents a plant model of the tank from Figure 39.

The model of the plant has two Boolean variables corresponding to the valve and the

level sensor. The valve is modelled by an input variable while the level sensor by an

output variable. This is opposite to the model of the controller, where PLC program has a

valve related variable as an output and the level sensor as an input.

Figure 111 Model of the filling process –with valve input and level sensor output.

Figure 111 shows the model of the plant that embodies all the low level modules and

is ready to be interconnected with the model of the controller. The filling process model

of the tank has one condition input valve_open and one event input turn_on_Sensor.

Figure 112 shows (a very simplistic) model of the process in detail. This is a trivial

abstraction of the real filling process that has only two states (p1 and p2) that may be

seen as not filled (p1) and filled (p2). Once the incoming condition signal of the transition

t1 is TRUE for at least of 10000 time units (here 1 unit = 1ms) the t1 fires generating

output event that actually turns sensor on.

V. Vyatkin © 2007-2011

 115

Figure 112. Model of the filling process

Models of the plant and model of the controller are interconnected into the closed-

loop providing the representation of entire system that consist of the controlled

equipment and control device. For the tank example, Figure 113 depicts the model of

interconnected controller and plant. The combined model is subject for making a

judgement about modelled system properties by means of model-checking.

Figure 113. Closed-loop representation of the system at the highest level of hierarchy.

17.3 Conveyor

Let us consider the model of a conveyor shown in Figure 114, left side.

Modelling and Verification of Discrete Control Systems

116

Figure 114. Conveyor and the NCES model interface

We will use two different types of conveyors– one capable of moving only in one

direction, and another moving in both directions. The model of the more complex

conveyor can be created based on the simple model using the mechanism of inheritance.

The interface of the model type “Conveyor” can be seen in Figure 114, right side.

The model itself can be conceptually divided into three elements: Status, Position, and

Sensor as shown in the class diagram in Figure 115, left. The Status element of type

MovingStatus models the behaviour of the motor that drives the conveyor and converts

the logic control signals into one of the states “Moving” or “Standing still” (that

corresponds to the one-directional conveyor). Input “PRESENT” indicates if a pallet is

present, and input “FORCED” is used to indicate the influence of a neighbour belt on the

movement of the pallet. The output condition FW_ST is used by the model of belt

position.

The structure of the model of the bi-directional conveyor is identical to that of the

uni-directional one. The difference is in the module Status that has type

MovingStatus2D that inherits the interface properties of the one-directional

MovingStatus and extends them with one more input and output for the retracted

movement. This is shown in Figure 115(right). All transporters are equipped with a single

position sensor indicating the presence of the pallet (fully loaded on the conveyor).

V. Vyatkin © 2007-2011

 117

Conveyor

Position:

DiscretePosition

Status:

MovingStatus

Sensor:

LogicSensor

inputs

FWD: bool;

FAILURE: event;

RESUME: event;

outputs

FW_ST: bool

MovingStatus

MovingStatus 2D

inputs:

RETR:bool;

outputs:

RET_ST:bool;

Figure 115. Model type definition of the conveyor and inheritance of the MovingStatus model types.

The condition and event flow connections between the sub-models constituting the

model of the conveyor are represented in Figure 116.

Figure 116. Modular view of the model of conveyor.

The basic models can be described further in form of NCES modules. Figure 117,A

shows an implementation of the MovingStatus in NCES. The model receives the control

signal FWD and transforms it into the state of the belt: place p2 corresponds to the state

“belt stands still”, place p1 – belt moves and p3 to the state indicating a failure. The belt

moves when the control signal FWD is ON, and stops when the signal goes OFF (in the

model the negation of the signal FWD goes on).

An occurrence of a failure is indicated by an external event that may come from the

corresponding model. For example, that can be a nondeterministic model of failures. Note

that the model is sensitive to failures only when the belt moves, i.e. when the place p1 is

marked. It is assumed that the failure can be fixed by an external interaction indicated by

the event input RESUME.

Modelling and Verification of Discrete Control Systems

118

The model MovingStatus2D for the bi-directional moving belt is shown in Figure

117,B. It models an additional state of backwards moving, and correspondingly has more

transitions between the possible states.

The position of the pallet on the belt can be modelled with different precision. A

qualitative model in Figure 118 distinguishes only 3 states of a pallet on the belt: no

pallet, pallet on the belt with its front edge between the belt’s ends, and pallet’s front

edge is beyond the right end of the belt.

A more precise modelling of the position can be done using the timed version of

NCES. Let us assume that the belt is three units long and the pallet is two units long as

shown in Figure 119. The speed of the belt is one unit of the length per second. Then it

will take three seconds for a pallet to reach the right end of the belt and 2 more seconds to

leave the belt completely.

Figure 117. Models of the moving status for uni-directional and bi-directional belts.

Place p1 corresponds to the state “No pallet”. When a pallet appears (input condition

“Present”) and the state of the moving belt is “Moving forward” (indicated by the input

condition FWD) then the transition t1 occurs and the token goes to place p2.

A B

V. Vyatkin © 2007-2011

 119

Figure 118. A qualitative non-timed model of the pallet's position.

This place indicates the state “Front edge of the pallet is in the interval 1 of the

conveyor”. Another reason to transfer to this state is the presence of the input condition

“Forced”. This condition indicates that the pallet is pushed onto the belt by some external

force that maybe another moving belt positioned backwards to this one. This option is

modelled by transition t12. In general, the moving in this case is slower than if driven by

the own motor of the belt. The presented model, however, does not cover with enough

precision the case when both forces are present simultaneously. Note that the transition

from p1 to p2 (either via t1 or t12) is a qualitative one and does not take time (more

precisely has zero delay).

The places p2-p4 correspond to the location of the pallet (again the front edge) in the

intervals 1-3 respectively. A transition from interval i to interval i+1 occurs in either case

“FWD” and “Present” or “Forced” and “Present”.

The latter, however, works only till less than the half of the pallet is on the belt –

beyond this point the friction force would not let the pallet move driven only by the

external force. The moving to the next interval takes 1000 ms if driven by the own motor

of the belt or twice as long under the external force. The backward moving from interval

i+1 to interval i occurs if the combination of input conditions “RETR” and “Present” are

true. It also takes 1000ms under assumption that the speed of the moving belt in both

directions is the same.

Arriving of the pallet to the 3
rd

 interval is indicated by the sensor. This is modelled by

two event outputs “Sens_ON” and “Sens_OFF” associated with firing of transitions t8

and t9 or t11, respectively. The sensor goes off when either the front edge of the pallet

moves backward to the interval 2, or when the back edge of the pallet leaves the belt in

forward direction (and the pallet completely disappears from the belt).

Modelling and Verification of Discrete Control Systems

120

Figure 119. Model of the position of the pallet on the conveyor discretized on 3 intervals.

This model can represent the state of the pallet on the belt with better precision. However,

it has other limitations. In particular, let us consider how the alternative kinds of

movement are modelled. A place indicating a position (e.g. p3 indicating interval 2) has

several outgoing arcs (p3-t4, p3-t5 and p3-t14) marked with non zero time delays

([1000,∞], [1000,∞], [2000,∞]). Transitions that are targets of these arcs have condition

input signals that represent alternative control signals (RETR, FWD, Forced). Any of the

transitions will fire when it is enabled by marking, conditions and time. It is important

that all these conditions are mutually orthogonal (alternative) and they never change

values within the minimum delay of the place (1000 time units in our case), otherwise the

model will not work as intended.

V. Vyatkin © 2007-2011

 121

Figure 120. The complete model of the conveyor with sensors

17.4 Boring station

We illustrate the component-based system design and re-design with the help of a simple

production cell “BORING STATION” as presented in Figure 121.

Figure 121. Structure of the production cell: a processing unit (drill), a transportation unit (carriage), and a

logistics unit (loader).

Modelling and Verification of Discrete Control Systems

122

Figure 122. Structure of the boring station represented by UML class diagram.

It consists of a boring machine (drill) and a carriage, which delivers work pieces to

the home position of the drill. The loading/unloading of the carriage is performed by the

loader in the loading position that is opposite to the home position. This example allows

illustrate various phenomena arising in component-based industrial systems, e.g.

concurrent operations in different components, or impacts of reconfigurations, such as

substitution of one component by almost functionally equivalent one, having slight

differences in interfaces, dynamic properties, etc.

Structural model of objects can be defined by means of UML class diagrams as

exemplified in Figure 122. The drilling station is represented as an object, composed

from 3 components: drill, carriage and loader. In the drill two processes are outlined:

vertical linear movement and rotation of the spindle. The car is represented by its

horizontal linear movement and by the load status: presence/absence of work piece on it,

status of the work piece (blank, drilled). The loader’s internal structure is not outlined in

this model.

Sample constituent parts of the system are described in the following Table.

Drill: Spin motor M1 rotates the bore of the drill.

The step motor M2 moves the spindle in vertical

direction. The motor is controlled by two Boolean

level signals: LIFT and SINK. These signals

connected in parallel to the spin motor: thus the

drill rotates always when the step motor moves the

spindle. Position of the spindle is detected by two

V. Vyatkin © 2007-2011

 123

logic sensors: UP and DOWN.

Carriage: This type of carriage has two actuator

signals moving it in two opposite directions. The

sensor LOADED detects presence of the work

piece on the carriage, and sensors HOME and

LOAD detect the home and load positions.

Loader: The loader is independent and autonomous

unit not controllable within our application. If loader

is in the appropriate state (indicated by the output

signal READY) it accepts only one pulse signal

“EXCHANGE WORKPIECE” that starts the

exchange procedure which consist in approaching of

the loader “grip” to the workpiece, lifting, putting

the workpiece to the storage, taking new blank

workpiece and installing it onto the carriage.

17.4.1 S/E Net model of a Boring Station

Structure of control system of the boring station with centralized control is presented as

in Figure 123. Modules representing plant and controller are interconnected via Boolean

signals.

Modelling and Verification of Discrete Control Systems

124

Figure 123. Closed-loop centralized control structure of the boring station.

Beyond the interface abstraction of the controller can be a control program, written in

one of languages of IEC61131, or any other way defining outputs as functions of the

inputs and internal states (e.g. state chart model, Boolean functions, etc.).

According to the structural description in Figure 122, where 3 constituent units are

distinguished, internal structure of the model is presented in Figure 124 as a network of

models of the units encapsulated into the module with the same interface as that of the

plant in Figure 123.

Figure 124. Model representing internal structure of the boring station.

This structure may serve as the basis for description of model with distributed control,

as it is shown in Figure 125. The model retains the same structure of signal connections,

changing only content of the constituent modules: instead of models of uncontrolled

behaviour they represent plant/controller closed-loop models. Input/output interfaces are

left to allow manual interaction into process (all control signals are connected to

corresponding parts of plant via switches, controlled by the parameter signal

“AUTO/MANUAL”).

V. Vyatkin © 2007-2011

 125

Figure 125. Modular model of the drilling station where components correspond to units with local

control.

17.4.2 Controller

The controller of the Boring station is shown in Figure 126.

Modelling and Verification of Discrete Control Systems

126

Figure 126. Modular controller of the object Drill/Carriage.

Sequential controllers of Drill and Carriage are presented in Figure 127.

a) b)

Figure 127. Controllers of a) Carriage and b) Drill.

V. Vyatkin © 2007-2011

 127

17.5 Model of Drill

The next level of description concerns with structural and dynamic models of single

constituent units, in this example CARRIAGE, DRILL and LOADER.

The drill comprises two functionalities: linear movement and rotation.

Correspondingly its model can be decomposed onto two parts as shown in Figure 128:

linear movement and rotation.

DRILL

Linear Moving Rotation

Figure 128. Structure of DRILL.

The two distinct functions are reflected in the structure of the block, representing the

DRILL – it contains two blocks for the two mentioned processes, interconnected by

signals according to the influence which they have to each other. As it was earlier

defined, control signals LIFT and SINK serve also to switch the rotation. This is

correspondingly reflected in the model: both signals are also connected to the switching

input ON of the MOTOR. In turn, the flag “ROTATES” informs the model of linear

movement about rotation status of the spindle. The need for this will be explained below.

Both processes (linear, rotation) are observed through corresponding sensors. This is

represented in Figure 129: the model of linear movement is decomposed onto the

dynamic model producing numeric coordinate, and two sensors, generating the values of

sensors given the coordinate. Note that the FAILURE output of the DRILL is

disconnected from the FAILURE output of the block representing LINEAR model,

according to the description of the DRILL this information is unobservable by controller.

Modelling and Verification of Discrete Control Systems

128

Figure 129. Structural model of DRILL encapsulating models of dynamics in form of state charts.

17.6 Variations

Two possible variations of drill’s type are shown below in order to illustrate their

influence on the structure of modelling.

17.6.1 Enhanced Drill

V. Vyatkin © 2007-2011

 129

Figure 130. Enhanced drill has middle position sensor and separate control of the spin.

As opposed to the previously considered DRILL, in the enhanced drill the spin motor has

a separate control signal SPIN independent from the step movement control signals. This

potentially allows early spinning off the bore during the approach. Additional sensor of

middle position is provided in order to optimize timing of the processing: this position

corresponds to the upper edge of the work piece, spindle can approach the work piece

while the carriage is approaching the home position. The sensor is ON whenever the

spindle is below this position. Sensor HOME indicates presence of the carriage in the

home position.

Figure 131. NCES model of the enhanced drill.

Modelling and Verification of Discrete Control Systems

130

To produce the HOME signal the model needs the numeric coordinate of the carriage

which can be provided by the model of carriage. This input is not used if the block

represents interface to real drill.

17.6.2 Advanced Drill

In addition to the drill of type 2, a couple of extra logic sensors are provided:

ROTATION that goes ON when the bore spins off fast enough to start drilling, and the

light-screen sensor that issues the FAULT signal indicating presence of foreign bodies in

the vicinity of the drill.

These add-ons allow for smarter control of the drill in order to save power, improve

timing and secure better safety.

Figure 132 Advanced drill

Besides, the analog sensor Y provides the integer value in the interval from 0 to 100,

indicating location of the spindle on the vertical axis (value 0 corresponds to the UP

position, value 100 – to the DOWN position).

V. Vyatkin © 2007-2011

 131

Figure 133. NCES model of the advanced drill.

Both models share the common model of linearly moving part of the drill with 3

position sensors. The model is presented in the following figure.

Figure 134. The model of linear movement with sensors.

Modelling and Verification of Discrete Control Systems

132

This model refers to the same model of drill’s dynamic as the one used in the similar

model of the drill of type 1 (Figure 129). To be useful for both simulation and analysis

purposes, the models shall exhibit dynamics of the corresponding object, as well as

definition of states exhibiting erroneous behaviour. Thus, incorrect control signals shall

drive the model to the erroneous states as that would happen with the real object. This

approach will be illustrated below on examples.

17.7 Modelling dynamic and logic of processes

Even primitive dynamic processes such as linear movement of drill’s head cannot be

efficiently described by pure mathematical equations in presence of logic control signals.

The model has to be hybrid, i.e. include both mathematical definition of the coordinate

change, along with the logic model of state switching. For this purpose we develop

Modular Dynamic State Charts (MDSC). These are customized UML State Charts having

an explicit input/output interface of S/E systems and a customized set of state shapes,

corresponding to particular dynamic properties of parameters.

The first part can be represented as the following S/E module:

Figure 135. Parameterized module – model of DRILL.

The module’s interface reflects the fact, that usually the control actions are

transmitted to the plant by level Boolean signals (LIFT, SINK in this model). The model

also needs some information about the external environment: the condition PRESENT

stands for the workpiece status, and ROTATES informs model about the spinning status

of the spindle. Depending on the values of these two conditions, the linear moving may

V. Vyatkin © 2007-2011

 133

have different speed in the lower part of the moving interval, e.g.: the drill cannot move

down if the spindle does not rotate, but the workpiece is present. On the other hand, if no

workpiece is present, rotation of the spindle does not influence vertical movement.

The model delivers two output values: numeric output POS represents vertical

coordinate of the drill’s head, and logic value FAILURE is integral condition

representing all sorts of incorrect or failure situations.

Figure 136. Drill's vertical

movement axis.

As shown in Figure 136 the coordinate variation limits are 0

and 100. The higher edge of the workpiece is assumed to

have vertical coordinate 50. The state chart model of the

linear progress of the drill is shown in Figure 137.

The dynamic state chart is built from states (rectangular

shapes) and state transitions (arcs) marked with Boolean

conditions. In the chart in the there are two types of states:

fixed position states UP_POS (POS=0), MID_POS

(POS=50), DOWN_POS (POS=100) and dynamic states with

linear change of parameter POS as POS=POSold+kdt, where

the coefficient k is speed of moving, dt – time increment,

POSold is previously calculated value of the parameter.

Modelling and Verification of Discrete Control Systems

134

Figure 137. Modular Dynamic State Chart model of the linearly moving part of the drill.

The model describes the uncontrolled behaviour as follows. The spindle moves free in

the upper part of the axis, no matter whether the workpiece present or not. When the

middle position is reached and the control signal SINK remains ON, the spindle

continues its moving downwards. Should the workpiece be in the home position, and the

bore spins, then normal drilling goes on. If the drill does not rotate, then it just hits the

blank workpiece and a failure occurs. If no workpiece is present, then the drill moves

down idle, with the speed higher than that of drilling. The same applies to the moving

upwards.

Note, that the presented model does not assume presence of the MIDDLE position

sensor. It only generates the POS numerical value. Thus the model applies to all types of

drills being in consideration.

V. Vyatkin © 2007-2011

 135

17.8 Verification model in NCES

The NCES formalism has been especially tuned for the needs of heterogeneous

modelling of systems combining synchronous and asynchronous behaviours. The

modelling in form of place/transition nets allows efficient handling of distributed state

models with concurrent synchronous/asynchronous behaviour.

The modular S/E interface that provides event and data inputs and outputs to the

model, makes the models semantically equivalent to Condition/Event Automata

introduced by Kowalewski and Chen. It also can be easier converted to the Net

Condition/Event Systems. Thus the application schema is proposed, as illustrated in the

following figure:

Figure 138. Development scenarios.

An initial description of the model is given in the intuitively clear form of Modular

Dynamic State Charts. Then the equivalent simulation program can be automatically

generated in the form of IEC61499 Execution Control Chart and algorithms to be

encapsulated into a function block and further into a component definition as it was

shown above.

17.9 Carriage

Model of uncontrolled behaviour of the carriage consists of two relatively

independent models of: 1) linear movement and 2) load status. Placement/removal of

workpieces onto the carriage is indicated by the corresponding events PLACED,

REMOVED and is possible, according to the model, only in the load position of the

carriage.

Modelling and Verification of Discrete Control Systems

136

Figure 139. Carriage

Similarly to the model of drill, the model of linear movement consists of the hybrid

dynamic model and two blocks representing logic position sensors.

Figure 140. NCES model of the carriage

V. Vyatkin © 2007-2011

 137

17.10 Loader

Figure 141 shows the model of overall behaviour of the loader, which provides

mapping between input parameters (control signals) and output parameters. No internal

structure of the loader is outlined, no information about its controller is available.

Note the differences in interfaces between the left figure representing input/output

interface of the loader, and model on the right, which requires also information about

presence of the workpiece. When the interconnected model is formed, this information

can be provided by the model of object formerly possessing the workpiece.

Output event signals REMOVED, PLACED indicate the events when a workpiece

correspondingly is grasped by the loader or released from it.

Figure 141. Uncontrolled behaviour of the loader.

17.11 Lifter

The automated lifter (product of Flexlink Automation Oy., FINLAND) as shown in

Figure 142 is used in production of electronic components. The lifter can be controlled by

two different controllers:

Modelling and Verification of Discrete Control Systems

138

- OMRON PLC programmed in ladder logic and

- Nematron SoftPLC (Lastra, 2000; Nematron, 2001) programmed in Visual Flow

Chart language.

Though both controllers achieve similar control goals, the internal logic of control

algorithms and even the logic of program execution are completely different (cyclically

scanned vs. sequential). However, both controllers eventually deal with the same object.

When the closed-loop plant-controller systems are validated, the model of the lifter

can be reused over and over again in connection with models of controllers of different

types.

The lifter consists of three transporters, one of which is mounted on a vertically

moving platform driven by a step motor as schematically represented in Figure 142. The

figure also shows sensors (B/S) and actuators (M) of the lifter described as follows.

Figure 142. The lifter, its structure and operation sequence.

The lifter is composed of three conveyor elements. The pallet is received from the

previous module at the lifter lower terminal, which is driven by motor M3 and is

equipped with B1 sensor that may detect the presence of the pallet. The pallet may be

conveyed from the lower terminal to the sledge conveyor that can move vertically

between lower and upper terminal (or otherwise it is restricted with the two safety

switches S7 and S8). The sledge has B3 sensor that detects a pallet and its belt is driven

by motor M1. The upper terminal sensor is B2 and the motor denoted by M2. Besides the

conveyors and their sensors and actuators, there is also an operator interface with

switches (S1 - S5), B5 sensor, which is a safety sensor to detect an obstacle between

sledge and terminals. The step motor and the rotary encoder that is used for vertically

V. Vyatkin © 2007-2011

 139

position the sledge are omitted in Figure 142. The figure does also not show the interface

signals (SMEMA) that are used between the lifter and the previous/next module.

Each sensor and actuator has a unique name in mechanical/electrical blueprints and

software code. The mechanical and electrical drawings with the general description of

functionality form the logical point to start plant modelling.

The structure of the model type “Lifter” can be represented by means of UML class

diagrams as shown in Figure 143.

The definition literally says that the object “Lifter” consists of 4 elements. The

loading and unloading one-directional conveyors are identical but turned in opposite

directions. The corresponding models are of type Conveyor. The vertically moving

platform (an object of type StepMotor) has a moving belt that moves pallets in both

directions (modelled as an object of type Conveyor2D).

Lifter

LoadingConv:

Conveyor

LiftingConv:

Conveyor2D

Vertical:

StepMotor

UnloadConv:

Conveyor

Figure 143. Definition of the model type (class) “Lifter” by means of UML class diagrams.

Note that the model in Figure 143 does not define an interface of the lifter, nor

dependencies between its constituent parts. These dependencies can be reflected in

modular models by event and condition connections between the corresponding modules

as exemplified in Figure 144.

Modelling and Verification of Discrete Control Systems

140

Figure 144. A model of Lifter represented as a network of NCES modules.

17.12 Examples of specifications of Lifter’s behaviour
2

Specifications are the formally expressed properties of system’s behaviour. Table 2

provides some examples of the formalization of specification of system requirements for

the Lifter object, whose description is provided in Chapter 15 (sections 15.3 and 15.11).

The first column in the table gives a logical proposition formula and expresses the

mapping of the local labels in the NCES modules to the global S/E Net label (given in

parenthesises). The second column provides a description of formula arguments given in

the first column. The last column contains the case description in a natural language. The

long names of arguments in the formulae are due to the hierarchy of the modules and the

places coming at the lowest level. For instance, “Controller._M1DIVIDECW.p4” is

interpreted as place p4 at M1DIVIDECW module (represents the motor of the sledge run

clockwise) in the controller module.

2
This Section uses the material developed by Andrei Lobov from Tampere University

of Technology. It was published in our common paper (Hanisch et al, 2006),

V. Vyatkin © 2007-2011

 141

Table 2. Examples of specifications

 #
Formula

Description of

arguments
Case description

S
A

F
E

T
Y

1. Controller._M1DIVIDEC

W.p4 (p213) AND

Controller.

_M1DIVIDECCW.p4

(p249)

P4 in _M1DIVIDECW

– sledge motor running

to download the pallet

p4 in

_M1DIVIDECCW –

sledge motor running to

unload the pallet

The processes of sledge loading and

unloading should never happen at the

same time that in terms of the models

means that both places should never

hold tokens simultaneously

M
A

Y

L
E

A
D

T

O

M
A

L
F

U
N

C
T

IO
N

S

2. Plant.Vertical.Vertical.Posi

tion.p2 (p472) AND

(Controller._M1DIVIDEC

W.p4 OR Controller.

_M1DIVIDECCW.p4)

Plant.Vertical.Vertical.

Position.p2 – lift is in

the middle of its

journey.

It never should happen that a lifter is

in the middle of its vertical move

while sledge is loading or unloading.

3. Plant.Vertical.Vertical.Posi

tion.p3 (p473) AND

Controller.

_M1DIVIDECW.p4

Plant.Vertical.Vertical.

Position.p3– lift is in

the upper position

It never should happen that the lift is

in the upper position while the sledge

is loading

4. Plant.Vertical.Vertical.Posi

tion.p1 (p471) AND

Controller.

_M1DIVIDECCW.p4

Plant.Vertical.Vertical.

Position.p1– lift is in

the lower terminal

position

It never should happen that the lift is

in the lower terminal position and the

sledge is unloading

C
H

E
C

K
P

O
IN

T
S

5. Plant.Low_Conv.Sensor.p

2 (p503)

Plant.Sledge_Conv.Sensor.

p2 (p515)

Plant.Up_Conv.Sensor.p2

(p486)

Plant.Low_Conv.Senso

r.p2 – Low lifter

terminal sensor detects

a pallet

Plant.Sledge_Conv.Sen

sor.p2 – Sledge sensor

detects a pallet

Plant.Up_Conv.Sensor.

p2 – Upper lifter

terminal sensor detects

a pallet

All three states have to be found in

the model. The pallet has visited all

the conveyors.

The requirements specifications given in

Table 2 were simplified from the real ones for illustrative purposes. Let’s consider

verification of each formula in more details:

1. ‘p213 AND p249’ when evaluated in Visual Verifier fulfils in no states. That means

the controller never turns the motor of the sledge to run into both directions, which

could have lead to the physical damage of the motor.

Modelling and Verification of Discrete Control Systems

142

2. Checking of the second formula “p472 AND (p213 OR p249)” gives a set of states

for which it is true. Thus there are states where the lifter is in the middle of its

vertical move and the sledge motor is running in either one direction or another.

The next step in analysis is to identify the reason. The first step is to define in what

direction the motor is running (loading – p213, unloading – p249) or both. This is

can be identified by two separate formulae: “p472 AND p213” and “p472 AND

p249”. Checking both formulae has given the result that only “p472 AND p213” is

TRUE and has a number of states in the reachability graph. Furthermore, the

direction of motion may be defined by “p205 AND p472 AND p213”, where p205

represents upward motion. The formula is false if there is p221 (downward motion)

instead of p205. The direction of the vertical and conveyor belt motion is therefore

identified. Now, we know that the motor of the sledge runs at the lower terminal

level to retrieve the pallet from the terminal. The next step is to find out where the

pallet is located. There are several possibilities:

a. Plant.Sledge_Conv.Sensor.p2 (p515) – on the sledge;

b. Plant.Sledge_Conv.Position.p10 (p529) – the pallet is not on the

sledge;

c. Plant.Low_Conv.Sensor.p2 (p503) – the pallet is at the lower terminal;

We checked the formula “p472 AND p213 AND p205 AND p515” and it is

fulfilled in no states. This means that the sensor does not detect the pallet. Checking

the “p205 AND p472 AND p213 AND p529” formula finds the same states in the

reachability graph as the initial formula “p205 AND p472 AND p213”, which

means there is no pallet on the sledge at all. Formula “p205 AND p472 AND p213

AND p529 AND p503” again fulfils in the same states.

This situation may be interpreted as follows: The pallet is stuck at the lower

terminal and has not been transmitted to the sledge. After some timeout for

receiving the pallet and without getting it, the lifter starts upward motion while the

sledge conveyor continues running.

Further investigation shows that the low terminal motor is running as well

(Plant.Low_Conv.Status.p1 (p499)), but the pallet remains at the lower terminal

(the formula “p205 AND p472 AND p213 AND p499 AND p510 AND p503”

gives the same states in the reachability graph). Furthermore, this situation is not

found for the sledge in the upper terminal position (Plant.Vertical.Vertical.p3

V. Vyatkin © 2007-2011

 143

(p473): checking of the following formula “p205 AND p473 AND p213” gives no

states found).

This error reveals an uncontrollable object’s property when nothing can be done by

controller to resolve it. If this situation were to occur with the real lifter the

operating personnel would be required to resolve it and reset the lifter.

However, the reason why the controller commands to move up while the loading

operation of the sledge is not complete is interesting, but not the primary goal. The

primary goal is the conclusion that there were no states found in which the pallet

has been successfully loaded onto the sledge (p515), the lifter is half way (p472)

driving up (p205) and the sledge motor is running (p213) (“p515 AND p472 AND

p205 AND p213” checking gives no states found).

This situation is one of such type which would not be detected by the common

testing.

4. The next formula represents the situation when the sledge motor is running to

download the pallet while the lifter is at the upper terminal level where the pallet

should be unloaded “p473 AND p213”. Checking this simple request gives no

states found in reachability graph. It is therefore possible to conclude that the sledge

conveyor belt will not run to the wrong direction at the upper terminal level.

5. Next formula describes a situation opposite to the previous one: ‘p471 AND p249’.

The sledge conveyor is running to unload the pallet at the lower terminal level.

Checking of the formula also returns a false result meaning that no such states exist

in the reachability graph.

Places p503, p515 and p486 model TRUE value of the pallet sensors of the low conveyor,

sledge conveyor and upper conveyor respectively. Checking if any of these places ever

holds a token gives an affirmative answer. In this example, we may highlight one of the

advantages in applying CTL. The CTL formula ‘E[E[EF m(p503)=1 U EF m(p515)=1]

U EF m(p486)=1]’ represents the case when a path exists in the reachability graph where

first the low terminal sensor detects a pallet, then the sledge terminal sensor detects a

pallet and finally the upper terminal sensor detects a pallet. This is an example of a

checkpoint rule, proving which we may conclude that the lifter is able to transfer a pallet

through it.

Modelling and Verification of Discrete Control Systems

144

18 Multi-level model design pattern

18.1 Hierarchies in models

Hierarchical representation of behavior has been addressed in Harel Statecharts and in

hierarchical Petri nets.

Figure 145 Petri net with hierarchical states and equivalent semantics

In NCES similar behavior can be modeled as follows:

Figure 146 Implementation of the 'hierarchy' in NCES.

18.2 Motivation

A piece of equipment with complex internal dynamic behavior can be seen from the

outside as a simple one with respect to the material flow on the factory shop level.

However properties and conditions of its primitive material-flow relevant functionality

(take one pallet – give it away) may strongly depend on the internal behavior.

V. Vyatkin © 2007-2011

 145

The modeling of such units asks to take in account this particular feature and

represent the multiple facets of the behavior as necessary.

The general idea of the suggested modeling approach is schematically illustrated in

Figure 147. Both internal and external models of an equipment unit are represented by

NCES modules.

Figure 147. The idea of the two-level pattern of modelling.

Mutual influence between internal and external levels of modeling is defined by

means of event and condition arcs that may connect places and transitions of both

modules in both directions, i.e. from level 1 to level 2 and from level 2 to level 1. The

inputs and outputs of the internal model may be connected in closed-loop with the model

of controller, while inputs and outputs of the external model serve for connection with

external models of other objects.

Thus, this chapter suggests a specific application-oriented pattern of using NCES.

18.3 Notation of the two-level modules

In the following we are introducing notation which is intended to simplify

representation of the hierarchically built multi-domain models. The notation however

does not imply any new semantics as compared with NCES, as the mapping from it to the

NCES will be introduced.

The two-level modules are structures that destined to encapsulate models of both

internal dynamic behavior of an object along with its externally observed behavior of

interest.

Figure 148 shows the corresponding graphical notation of a module for the two-level

formalism. The module consists of the head containing the external model, the body,

Modelling and Verification of Discrete Control Systems

146

containing the internal module, and event and data interconnections between them. Both

external and internal sections may have event and data inputs and outputs, and can be

further specified as networks of modules.

Figure 148. A two-level module.

A two-level module with an empty EXTERNAL part makes a usual NCES module

(single level). The EXTERNAL part of a double-level module can be specified via a

network of single-level modules. The INTERNAL part can be specified by a network of

two-level NCES modules. This is illustrated in Figure 149.

Figure 149. Composition of two-level models into a composite model.

V. Vyatkin © 2007-2011

 147

This example shows that the suggested encapsulation pattern can be used for defining

of hierarchical models of an arbitrary complexity.

The multi-domain model is a network of interconnected modules whose inputs and

outputs are divided on two groups: one for interconnection with other facets (“internal”

IOs) and the other for interfacing their domain counterparts in other models (interface

IOs).

Figure 150. A two-level model of a conveyor belt.

We illustrate the application of the two-level modeling pattern when the Lifter is a

part of a more complex automated machinery system that consists of several storage

buffers and transportation units, as shown in the example in Figure 151.

Goals of the modeling are:

- simulation and observation of the material flow relevant properties, e.g. average

loading of buffers, absence of deadlocks, etc.

- checking correctness of the distributed control

Modelling and Verification of Discrete Control Systems

148

Figure 151. An automated storage and transportation system built from modular machines.

The process going on in the object can be seen from several perspectives:

Level 1: 4 pallets in the shop

Level 2: 2 pallets in buffer 1, 1 pallet in the lifter, 1 pallet in buffer 2

Level 3: In lifter: the pallet is being transferred from the entry conveyor to the lifting

conveyor

Level 4: position of the pallet is 4/5 on the lifting conveyor

V. Vyatkin © 2007-2011

 149

19 Specifications using Timing Diagrams

Control engineers are not familiar with the languages commonly used for formal

specification, such as temporal logic. Therefore the engineers would benefit from user-

friendlier means of specifying the desired or forbidden behaviour of a model.

Inspired by the timing diagram specification languages developed in the domain of

digital systems design (e.g. by K. Fisler [45], N. Amla et al., [46], R. Schlör [47]), a

graphical language for describing the dependency of interface signal changes was

proposed in [49].

In this Chapter we proceed with the issues that are specific for application of timing

diagrams for specification and verification purposes of some classes of industrial

automation systems. Visualising the behaviour of discrete-state models using diagrams is

quite helpful. In Figure 152 one sees the waveform diagram representing values of some

model parameters along a certain path in the reachability graph (the model was

introduced earlier in Figure 19).

Figure 152. Reachability graph describing the complete behaviour of the model from Figure 19 and

timing diagram in one of the trajectories.

This Chapter suggests two procedures for translation of visual specifications that

differ slightly depending on whether the verified module has inputs.

Modelling and Verification of Discrete Control Systems

150

19.1 Timing Diagrams for specification

The idea of using timing diagrams for specification is to draw a specification graphically

and then ask the model checker the question: If the inputs behave like it is shown in the

input diagram, would the outputs behave like in the output diagram?

However, a single timing diagram describes only a single scenario. Sometimes it is

desirable to define a class of input scenarios with certain properties and then check if

certain output patterns are observed among all or any trajectories in the reachability

graph. The idea is illustrated in Figure 153. The diagram consists of two parts: the upper

(if) part presents the “input” part of guaranteed signals and the lower part is the

“conjecture” to prove. In this example there is a conditional restriction added between the

rising edge of M1.co1 (event e2) and the falling edge of M2.co1 (event e3). The restriction

says that e3 occurs after e2. Note that the signal M1.co1 belongs to both parts. In the

“input” part it is specified by a single waveform change that is simultaneous with the

event M1.eo1. The waveform of the same signal in the “output” diagram is more

complicated.

Figure 153. Timing diagram specification

Comparing the “then” part of the specification with the timing diagram of real behaviour

in Figure 152 one can see that the specification holds in the given path. The problem is to

implement such a check automatically using model checkers.

19.1.1 Definitions

The use of Timing Diagrams (TD) as a method of formal specification requires

formal definition of its graphical notation and its semantics.

V. Vyatkin © 2007-2011

 151

Diagrams are represented by sequences of signals’ value changes. Given the subsets
outin EEE and outin CCC , a specification for a signal set CEA is described as a

tuple),,(gfAS , where
ce fff defines sequences of specification values. The mapping

*
: ee Ef (alwaysmaybenoevente ,,) specifies sequences for event inputs and

outputs, while *
: cc Cf with onestableanyzeroc ,,, defines values for condition signals.

The partial function),,(NN: AfAfg assigns an ordering operator

(precedence, simultaneity or non-simultaneity) between signal changes from different

signals in such a way that g(ai,m,aj,n) indicates an ordering restriction between the m-th

signal change of ai and the n-th signal change of aj. We assume the signals value changes

at the beginning of the diagram to be simultaneous across all signals. If the ordering

operator for a pair of changes of different signals is not defined, the horizontal position of

the changes won’t imply any implicit ordering.

Consider the example in Figure 154.

Figure 154. Specification including two event inputs, one condition output and a simultaneity operator.

The semantics of the diagram is as follows: when the set of levels specified at the

beginning of the diagram is achieved, it is required that the sequence of changes of the

signals does not violate the partial ordering specified in the diagram, until a final state is

reached.

19.1.2 Specified Signals

In order to describe specifications of NCES models, TDs must provide different

representations for event and condition signals. Thus, we define the following

possibilities of specification:

 in the case of a condition signal, the specification might assume four possible

levels: zero, corresponding to a logical zero; any, representing the situation

where the signal may take any logical value; stable, which also means

undefined, however assuming that the signal remains at a single level; or one,

corresponding to the logical one;

Modelling and Verification of Discrete Control Systems

152

 event signals are specified in two possible levels: no event, in the case where

the occurrence of the event is forbidden, and maybe, meaning that the event

might occur. It is also possible to specify an obligatory occurrence of the

event signal (always), but in this case only as a single impulse, because of the

instantaneous nature of an event signal.

We define a diagram event as: any level change specified at a condition signal; a level

change from no event to maybe or vice-versa, at an event-signal; or a specification of an

obligatory occurrence of an event (always peak at an event signal).

19.1.3 Event Ordering in Different Signals

If a partial ordering semantics is assumed, no prior ordering of events on different

signals is implicit. In other words, although each signal presents an ordering of its events,

two events of different signals may occur at any sequence, except when special operators

explicitly define their sequence. On the other hand, it is also possible to assume that the

ordering of all events is defined through their position at the visual description. In this

case, we are talking about a strict or sequential ordering.

Although more intuitive, adopting a sequential ordering would limit the

representational capabilities of a diagram. Therefore, we adopt a partial ordering

semantics for the TD language. In this case, the same TD represents a set of possible

behaviours of the system, each one represented by a different event chain on the modelled

system. Each chain is called scenario, and the set of scenarios defined by the diagram is

named diagram language.

In Figure 155 (a) we observe the specification of two signals s1 and s2. If we have

adopted as our convention a sequential ordering semantics, only one scenario would

compose the diagram language: s2
+
s1

-
s2

-
. As the temporal dependence among events from

different signals is not predefined (assumed partial ordering semantics) the same figure

represents a TD with the following scenarios: (s2
+
,s1

-
)s2

-
; s2

+
(s1

-
,s2

-
); s1

-
s2

+
s2

-
 and s2

+
s2

-
s1

-
.

Figure 155(b) indicates the timing diagram that, based on the adopted semantics, accepts

as its only scenario s2
+
s1

-
s2

-
, by introducing operators that indicate the obligatory ordering

among events from different signals. The meaning of these operators will be stated in the

next section.

V. Vyatkin © 2007-2011

 153

Figure 155. Temporally independent signals (a) and event ordering (b).

In order to constrain the ordering of two events from different signals, we define the

following precedence operators:

≠ : events are not allowed to occur simultaneously;

= : events must be simultaneous;

> : event from the first signal must occur prior to the event from the second signal.

19.1.4 Specification of Finite Behaviour

The TD represents a finite behaviour that must be satisfied by the model. The

satisfaction of a TD is evaluated from the moment when all specified signals are in their

initial levels and some of them execute an initial transition, as indicated at the beginning

of the diagram. The verification process ends when all signals achieve their final state,

indicated in the end of the diagram. The initial part of the diagram, denominated

precondition, corresponds to a condition, whose satisfaction by the model indicates that

we must start comparing the model’s behaviour with the remaining part of the TD. The

comparison ends up when the final part of the diagram, called postcondition, is reached.

Both pre- and postcondition are highlighted at the diagram (Figure 156).

When a TD specifies a finite behaviour, different interpretations are possible:

Existence of a scenario (from the diagram language): here we require that at least one

of the specified scenarios will occur at the model. In other words, there is a path at the

state tree of the model, where the precondition is satisfied and the behaviour of the model

does not contradict the specification.

Existence of all scenarios: the existence of each scenario must be tested inside the

state space of the model.

Modelling and Verification of Discrete Control Systems

154

Generality of a single scenario: here a single scenario from the set of scenarios

specified at the diagram, must be present in every path, indicating a situation that has to

occur in the future, regardless of which path is taken by the model.

Generality of the diagram’s language: the behaviour specified by the diagram will

eventually occur, no matter which scenario, in each path from the reachability graph of

the model. Note that, in this case, the existence of a path with no occurrence of the

precondition would already be a counter-example.

Satisfaction of a single scenario: every satisfaction of the precondition must be

followed by the satisfaction of the same scenario, among those that are possible

according to the specification. This corresponds to an assume-guarantee clause, where the

precondition plays the role of an assumption that, when fulfilled, guarantees the

occurrence of a given sequence of events.

Satisfaction of the diagram: the specified behavior must not be contradicted, which

means that every occurrence of the precondition at the model leads to a behaviour that is

accepted by the diagram language. As a particular case, a model that presents no

occurrence of a given precondition satisfies every specification starting with this

precondition. The following topics will be based on this interpretation of the TD.

19.1.5 Specification of infinite behaviour

The timing diagram could also correspond to a specification to be satisfied from the

time when the precondition occurs, without the need to specify a postcondition. In this

case, the final state specified at the diagram would correspond to a restriction that must

not be violated.

Figure 156. Pre- and postcondition.

The absence of a specification for the precondition could indicate that the initial state

of the model should comply with the levels specified at the beginning of the diagram.

Although these two approaches also present a practical appeal, the absence of

postcondition or precondition will not be issued in the work, as a matter of simplicity.

V. Vyatkin © 2007-2011

 155

In order to allow the translation of the timing diagram into a formal model, some

requirements have to be done in respect to the events presented in each signal. Diagrams

satisfying the requirements are said to be feasible.

19.2 NCES Model of Timing Diagrams

When verifying autonomous NCES models without inputs, each signal specification

is translated into a NCES supervisor module comprising two basic submodules: an event

generator creates sequences of transitions, one for each change of level specified for the

signal. Each transition stimulates, through an event arc, the corresponding event input of

a signal generator, which causes the output of the signal generator to recreate the signal

according to the input stimulated. Ordering operators are translated into special places

and transitions that create interdependency of event generators.

The verified module is then connected through event arcs to the event generators of

the corresponding signals, in such a way that every change of signal in the first is

reported to the latter. Along with the translation of the specification into NCES modules,

a set of automatically generated temporal-logic statements is created. The composite

module is then model-checked against these statements to verify if each transition at the

supervisor always fires whenever the corresponding transition at the verified module is

fired.

The graphical specification also provides automatic test possibilities for input/output

behaviour or non-autonomous NCES modules. In this case, the NCES supervisor

modules that describe input signals are used for generating the specified sequences of

input signal changes, while the output signals are again verified as described before. The

components of the NCES model of the timing diagram are detailed in the following

sections.

19.2.1 Event Generator

The main part of the NCES model for the specification is called event generator and

consists of a set of parallel processes (sequences of transitions and places), started

simultaneously by the firing of a transition denoted tstart. Each process is responsible for

reproducing the behavior specified for one signal. Events on the signals are translated

into transitions at the processes.

For each signal i, there is a place pnotstart,i which is a preplace of tstart and postplace of

the last transition of the corresponding process. The transition tstart indicates the

beginning of the timing diagram. The situation where the diagram language is not being

executed corresponds to the marking pnotstart,i=1 for every signal i.

Modelling and Verification of Discrete Control Systems

156

In the case that at least a signal j has the marking pnotstart,j=0, the marking pnotstart,i=1

for a signal i indicates that this signal has already achieved the last level specified at the

diagram.

The precedence relationships among events of different signals are mapped to special

interconnections among the corresponding processes, as shall be detailed in the following

section.

19.2.2 Signal Generation Module

For each specified signal, we create a signal generator module which reproduces, at

its output, the possible values for the signal, according to the level specification

stimulated at its input. Each event on the timing diagram (modelled by the firing of a

transition at the event generator) stimulates, by an event arc, the corresponding change at

the signal generator, which guarantees that the NCES module, resulting from the

combination of the event generator with the signal generators, will reproduce at its output

the diagram language. The idea is illustrated in Figure 157. A signal generator module is

assigned to each condition signal included in the specification. The module hasfour event

inputs, corresponding to the four possible specification levels, and two condition outputs,

indicating the two possible values assumed by the condition signal (zero or one).

Figure 157. Translation of a single specification for a condition output, and linking to the verified model.

Figure 158 shows the structure of a signal generator for a condition signal.

V. Vyatkin © 2007-2011

 157

Figure 158. Generator of condition signals.

The transitions tozero, toone, tostable and toany receive event arcs, respectively,

from the zero, one, stable and any event inputs.

Firing one of these transition means that the corresponding signal has changed its

specification level to, respectively, zero, any, stable or one – in other words, a diagram

event has occurred. The condition outputs not_signal and signal are linked to the internal

places zero_p and one_p. The remaining transitions and places implement the desired

non-deterministic behaviour - after the firing of tostable and toany, the marking of

places zero_p and one_p should be non-deterministic, and may change randomly in the

latter case, until another input event is stimulated.

Figure 159 presents the internal structure of a signal generator for an event signal.

Figure 159. Generator of event signals.

Event signals are represented by modules with three event inputs, corresponding to

the three possible specification values, and an event output, whose firing corresponds to

the generation of the event. Internally, this generation corresponds to the firing of the

result transition.

Modelling and Verification of Discrete Control Systems

158

The transitions to_noev# (1 and 2), to_maybe# (1 and 2) and to_always# (1 and 2)

are fired by stimulating the no_event, maybe and always inputs respectively. Every

diagram event leads to the firing of at least one of these transitions – actually, an always

peak at the specification, followed by the specification of a new level, implies that both

the result and the transition that leads to the new level specification (to_noev# or

to_maybe#) will be enforced to fire.

Model to be verified
(XML)

Specification
 (XML)

Composite model

(verifed model +

specification model)

Composite model

 (XML)

Model under SESA format
.pnt file (SNS model)

.in (script / eCTL formulas)

Figure 160. User interface of the TDE tool and file formats adopted for data storage.

19.3 Program Implementation

The Timing Diagram Editor (TDE) is an application developed with the aims of

providing the following functionalities:

 create, edit, save and load specifications of function blocks whose internal

logic is specified by means of a NCES. These specifications are generated and

visualized graphically as timing diagrams, while each signal at the timing

diagram may be of one of the following types: event signals and condition

signals; the signal levels allowed for each type of signals that were presented

above.

 translate the combination of a function block and the behaviour specified for it

into a composite finite state model (NCES) and temporal propositions written

in the eCTL [51] format, in such a way that the composite model, and

consequently the original function block, can be verified formally with the aid

of the SESA tool [52]. If all the generated eCTL propositions evaluate to true

V. Vyatkin © 2007-2011

 159

with regard to the composite model, we conclude that the behaviour of the

original model satisfies the specification.

 The TDE tool uses XML as a storage format for both timing diagrams and

NCES models and converts them to the input formats of the SESA model

checker as illustrated in Figure 160.

Modelling and Verification of Discrete Control Systems

160

Annex 1: XML format of Condition/Event Nets

Example of a basic module made in TNCES editor

XML

<!DOCTYPE NetConditionEventSystem>

<?TNCES-Editor Version="1.06.06 (eps)"?>

<FBType X="65" Y="251" Num="0" LocNum="0" Name="spont_eo" Comment="" Width="30.0" Height="35.0" >

 <InterfaceList>

 <EventOutputs>

 <Event X="193" Y="140" Num="1" LocNum="1" Name="eo1" Comment="_"/>

 </EventOutputs>

 </InterfaceList>

 <SNS LeftPageBorder="70.0" RightPageBorder="770.0">

 <place X="52" Y="157" Diameter="6" Num="1" LocNum="1" Name="p1" Mark="1" Clock="0" Capacity="1" Comment="_"/>

 <place X="51" Y="123" Diameter="6" Num="2" LocNum="2" Name="p2" Mark="0" Clock="0" Capacity="1" Comment="_"/>

 <trans X="39" Y="140" Width="6" Height="6" Num="1" LocNum="1" Name="t1" Type="AND" TransInscription="_" SwitchMode="s"
Comment="_"/>

 <trans X="64" Y="140" Width="6" Height="6" Num="2" LocNum="2" Name="t2" Type="AND" TransInscription="_" SwitchMode="s"
Comment="_"/>

 <arc StartPoint="p1" EndPoint="t1" ArcWeight="1" TimeValue="" Comment="_">

 <Point Num="1" X="52" Y="157"/>

 <Point Num="2" X="39" Y="140"/>

 </arc>

 <arc StartPoint="t1" EndPoint="p2" ArcWeight="1" TimeValue="" Comment="_">

 <Point Num="1" X="39" Y="140"/>

 <Point Num="2" X="51" Y="123"/>

 </arc>

 <arc StartPoint="p2" EndPoint="t2" ArcWeight="1" TimeValue="" Comment="_">

 <Point Num="1" X="51" Y="123"/>

 <Point Num="2" X="64" Y="140"/>

 </arc>

 <arc StartPoint="t2" EndPoint="p1" ArcWeight="1" TimeValue="" Comment="_">

 <Point Num="1" X="64" Y="140"/>

 <Point Num="2" X="52" Y="157"/>

 </arc>

 <evarc StartPoint="t2" EndPoint="eo1" Comment="_" EventPos="1">

 <Point Num="1" X="64" Y="140"/>

 <Point Num="2" X="193" Y="140"/>

 </evarc>

 </SNS>

</FBType>

V. Vyatkin © 2007-2011

 161

XML of a "composite" NCES block

Interface Content

<FBType Name="drive" Comment="Composite Function Block" >
 <InterfaceList>
 <InputVars>
 <VarDeclaration Name="not_BACK" Type="BOOL" />
 <VarDeclaration Name="BACK" Type="BOOL" />
 <VarDeclaration Name="not_FWD" Type="BOOL" />
 <VarDeclaration Name="FWD" Type="BOOL" />
 </InputVars>
 </InterfaceList>
 <FBNetwork >
 <FB Name="STATUS" Type="movingstatus" x="447.0588" y="241.1765" />
 <FB Name="POS" Type="movingposition" x="1294.1177" y="241.1765" />
 <DataConnections>
 <Connection Source="BACK" Destination="STATUS.BACK" dx1="317.6471" />
 <Connection Source="FWD" Destination="STATUS.FWD" dx1="335.2941" />
 <Connection Source="not_BACK" Destination="STATUS.not_BACK" dx1="252.9412" />
 <Connection Source="not_FWD" Destination="STATUS.not_FWD" dx1="270.5882" />
 <Connection Source="STATUS.STAND" Destination="POS.STOP" dx1="129.4118" />
 <Connection Source="STATUS.MV_BACK" Destination="POS.MOVES_BACK" dx1="205.8824" />
 <Connection Source="STATUS.MV_FWD" Destination="POS.MOVES_FWD" dx1="158.8235" />
 </DataConnections>
 </FBNetwork>
</FBType>

Modelling and Verification of Discrete Control Systems

162

Annex 2: More formal definition of

Condition/Event Nets

19.4 NCES definition

NCES is a place-transition net formally represented by a tuple:

),,,,,,,,,,,,,(0mDCBBECECENCNFTPNCES tsec

outoutinin

Where:

P is a non-empty finite set of places,

T is a non-empty finite set of transitions, disjoint with P,

F is a subset of PTTP - the set of flow arcs.

CN is the set of condition arcs TPCN .

EN is the set of event arcs TTEN .

C
in

 is the set of condition inputs.

E
in

 are the event inputs set,

C
out

 and E
out

 are conditions and events outputs.

Bc is the set of NCES module condition inputs arcs TCB in

c ,

Be is the set of event input arcs TEB in

e .

Cs is the set of condition output arcs outEPCs ,

Dt is the set of event output arcs outETDt , and

m0: }1,0{P is the initial marking.

19.5 C/E Net definition

19.5.1 Set theoretical definition

Timed C/E Net = (P,T,F,V,B,W,S,M,m0,eft,lft)

where

P is a non-empty finite set of places;

T is a non-empty finite set of transitions disjoint with P;

V. Vyatkin © 2007-2011

 163

F is the set of flow arcs, where F ⊆ (P × T) ∪ (T × P);

V maps a weight to every flow arc and V : F → ℕ;

B is the set of condition arcs, which carry condition signals and B ⊆ P × T;

W maps a weight to every condition arc and W : B → ℕ;

S is the set of irreflexive event arcs, which convey event signals and S ⊆ T × T;

M maps a event-processing mode (AND or OR) to every transition, M : T → { ∧ ,

∨ };

m0: P → ℕ0 is the initial marking of SNS, where for each place p ∈ P, there are np ∈

ℕ0 tokens;

eft maps the earliest firing time to every pre-arc [p, t] ∈ F, eft: F ∩ (P × T) → ℕ0; and,

lft maps the latest firing time to every pre-arc [p, t] ∈ F, lft: F ∩ (P × T) → ℕ0 ∪ {ω},

where ω ∈ ℕ and 0 ≤ eft(p, t) ≤ lft(p, t) ≤ ω. The interval [eft(p, t), lft(p, t)] is called

the permeability interval.

19.5.2 State of C/EN model

C/EN places bear integer clocks whose values are denoted as u: P → ℕ0, where for

each place p ∈ P, the clock reading in the place is denoted as up ∈ ℕ0 ;

Figure 161. C/E Net

Modelling and Verification of Discrete Control Systems

164

All clocks have zero value at the initial state of the model. The clock of a place resets

to zero anytime marking of the place changes.

A state in timed C/EN is defined as a pair z=[m, u], where m is a marking of P and u

is the P-vector of the clock positions and u(p) > 0→m(p) > 0.

A state of C/E net model is determined by a) m – vector of marking of its places, i.e.

allocation of tokens across the places; and b) u – vector of clock values:

Evolution of a C/E net consists in changing its states. A state change (also called state

transition) can consist in changing net’s marking, or changing values of clocks (elapsing

of time).

In every state there could be some enabled net transitions. If there are no enabled

transitions then the clocks count (increment they value by 1) in all marked places and the

C/E net transitions to a new state. Otherwise, i.e. if there are some enabled transitions,

then it is said that one or several enabled transitions fire that leads to the change of

marking as explained by the firing rules. The set of simultaneously firing transitions is

called step. In a given state there could be several different steps ready to fire, meaning

that a state of C/E net can have several successor states.

19.5.3 Firing rules

Let St denote the set of incoming event arcs of transition t: St ≔ {t’|[t', t] ∈ S}. If St is

empty, which indicates that no incoming event arc is associated with transition t, then t is

spontaneous, otherwise it is forced. Firing of a forced transition is caused by firing of

some other transition connected to it by an event arc. Both are included in the same step,

i.e. fire simultaneously. Enabled spontaneous transitions can fire regardless of other

transitions.

For example, the transition t4 in Figure 161 is forced and other transitions are

spontaneous. Accordingly, the transition set T in can be subdivided on two disjoint sets:

, where

 Spont is the set of all spontaneous transitions of the C/EN, and

 Forc denotes the set of all forced transitions of the C/EN.

For any transition t, there can be three kinds of markings: the marking on incoming

flow arc t
-
, the marking on outgoing flow arc t

+
, and the marking on incoming condition

arc , defined as follows:

V. Vyatkin © 2007-2011

 165

For any subset s ⊆ T, the marking s
-
 and s

+
 denote the sum of markings t

-
 and t

+

respectively, and represents the union of markings for t ⊆ s.

The firing of a spontaneous transition is determined by the three factors listed below:

1. Token concession: A transition is said to have a token concession or is token-

enabled when all the flow arcs from its pre-places are enabled. More specifically,

a flow arc is enabled when the token number in its source place is not less than its

weight, i.e. m(p) ≥ V(p, t). For example, given the marking m, transition t is

token-enabled if t
-
 ≤ m. Transitions which have no pre-places are always

marking-enabled.

2. Permeability interval: The permeability interval defines the time constraints

applied to the input flow arcs of transitions. A transition t: (p, t)F is time-

enabled only when clocks of all its pre-places have a time u(p) within

permeability interval of the corresponding place-transition arc: eft(p, t) ≤ u(p) ≤

lft(p, t).

3. Incoming condition signals: A spontaneous transition may have incoming

condition arcs. It is considered condition-enabled when all the condition signals

on its incoming condition arcs are true, i.e. .

A spontaneous transition is eligible to fire only when it is token-enabled, time-enabled,

and condition-enabled.

19.5.4 Step and state transitions

C/EN models are executed in steps, meaning that for each state transition there is a

unique set of concurrently firing transitions . A state is dead if no further step is

Modelling and Verification of Discrete Control Systems

166

enabled or will be enabled by elapsing time. For non-dead states, the delay D(m,u)

denotes the minimum amount of elapsed time before a step is enabled.

A step is referred as executable at the state [m, u] if all of its constituent transitions

fire after D(m,u). The execution of an executable step s at state [m, u] is accomplished by

first elapsing D(m,u) amount of time and then firing s.

The new state [m', u'] led by the execution of step s is determined by:

 , and

Subsequent step executions from the initial state construct the reachability graph of

the C/EN model, which illustrates the relationship of all realizable states within the state

space. The reachability graph of a timed C/EN can be represented as a 3-tuple:

 ,

where Z is a finite set of reachable states, R is a finite set of state transitions, and z0 is the

initial state [m0, u0].

For any subsequent states [mi, ui] and [mi+1, ui+1] ∈ Z, there is a state transition τ ∈ R,

such that [mi+1, ui+1] is reachable from [mi, ui] via state transition τ. This state transition is

also denoted as .

The step s causing a state transition τ is defined by the mapping , i.e.

V. Vyatkin © 2007-2011

 167

Annex 3. CTL syntax of SESA

CHARACTERS

digit = "0123456789" .

letter = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_" .

TOKENS

number = digit {digit} .

name = '"' {letter | digit} '"' | "'" {letter | digit} "'".

add = '+' .

less = '>>' .

equal = '=' .

unequal = '#' | "" | "!=" .

less_equal = ">>=" .

not = "NOT" | '-' | '!' .

and = "AND" | '&' | '^' .

or = "OR" | 'V' | '|' | 'v' .

impl = "IMPL" | "->" .

equiv = "EQUIV" | "" .

infinity = "oo" | "o" .

true = "TRUE" | 'T' .

false = "FALSE" | 'F' .

PRODUCTIONS

ctl

 = formula EOF

formula

Modelling and Verification of Discrete Control Systems

168

 =

 impl_expr

.

impl_expr

 =

 (equiv_expr

 [impl equiv_expr

]

)

.

equiv_expr

 =

 (or_expr

 { equiv or_expr

 }

)

.

or_expr

 =

 (and_expr

 { or and_expr

 }

)

.

and_expr

 =

 (factor

 { and factor

 }

)

.

factor

 =

 (true

 | false

 | predicate

 | not factor

 | '(' formula ')'

 | ('E'

 | 'A'

) [transition_formula]

 ('[' formula

 ('U' [interval]

 | 'B'

) formula ']'

 | 'X' [interval] factor

V. Vyatkin © 2007-2011

 169

 | 'F' [interval] factor

 | 'G' factor

)

)

.

transition_formula

 =

 transition_impl_expr

.

transition_impl_expr

 =

 (transition_equiv_expr

 [impl transition_equiv_expr

]

)

.

transition_equiv_expr

 =

 (transition_or_expr

 { equiv transition_or_expr

 }

)

.

transition_or_expr

 =

 (transition_and_expr

 { or transition_and_expr

 }

)

.

transition_and_expr

 =

 (transition_factor

 { and transition_factor

 }

)

.

transition_factor

 =

 (true

 | false

 | ['t'] node

 | not transition_factor

 | '(' transition_formula ')'

)

.

Modelling and Verification of Discrete Control Systems

170

interval

 = '[' number

 ','

 (number

 | infinity

) ']'

.

predicate

 =

 (atomic_pred

 | def_pred

)

.

def_pred

 =

 ('P'

 (number

 | name

)

)

.

atomic_pred

 =

 (atomic_term

 { condition atomic_term

 }

)

.

atomic_term

 =

 (atomic_factor

 { add atomic_factor

 }

)

.

atomic_factor

 =

 (variable

 | constant

)

.

condition

 = less

 | greater

 | equal

V. Vyatkin © 2007-2011

 171

 | unequal

 | less_equal

 | greater_equal

.

constant

 =

 (number

 | infinity

)

.

variable

 =

 (marking

 | clock

)

.

marking >

 = 'm' '(' ['p'] node ')'

.

clock >

 = 'u' '(' ['p'] node ')'

.

node >

 = (number

 | name

)

 ['.' (

 number

 | name

)]

.

END ctl.

PRODUCTIONS

Modelling and Verification of Discrete Control Systems

172

Annex 4: Command line SESA parameters

Command line options start with "-". Some options can have different names for the same

purpose most of them can abbreviated (characters in [] can be omitted). If the <filename>

argument to "-command" and "-options" is "-", then the default names (COMMAND.sna

and OPTIONS.sna) are used.

If the last argument has no leading "-", then it is interpreted as a name of a .pnt or .cnt

file (please include the extension of the file).

Ordering of "-reset", "-command", and "-options" is relevant and resets the influence

of previous command line options.

-help show option summary

-b[lack]

-pnt

-ptn

-toktyp=b[lack]

use only black tokens:

-c[olour]

-cnt

-cpn

-toktyp=c[olour]

use coloured tokens:

-notim[es]

-time=no

-arctim[ed]

-time=yes

-time=arcs

-tim[ed]/[es]

use arctimes or not:

-nopr[iorities]

-pr[iorities]

Use priorities or not:

V. Vyatkin © 2007-2011

 173

-nogr[eedy]

-gr[eedy]

Use greedy transitions or not:

-nosy[nc]

-sy[nc]

Use synchronisation sets or not:

-max[imal]

-fmod=m[aximal]

-fmod=n[ormal]

-s[ingle]

-fmod=s[ingle]

-red[uced]

-fmod=r[educed]

Determine the firing mode:

-stubborn

-symmetric

-diamond

Apply different reduction techniques:

-names

-named

-nonames

Write place/transition names in the output or

not:

-pre[fix] <prefix>

Prefix for file names for options, commands

and session results

(set before file name options):

-def[ault]

-reset

Reset to default options (same as starting

with -nooptions):

-noopt[ions]

-opt[ions] <filename>

Ignore OPTIONS.sna or load options from

file:

-nocom[mand]

-nocmd

-com[mand] <filename>

Ignore COMMAND.sna or load commands

from file:

Modelling and Verification of Discrete Control Systems

174

-cmd <filename>

-se[ssion] <filename> Save session results in file:

V. Vyatkin © 2007-2011

 175

References

1. Clarke, E., E.A. Emerson and A.P. Sista.: Automatic verification of finite state

concurrent systems using temporal logic., ACM Trans. on Programming

Languages and Systems, vol. 8, 1986, pp. 244-263

2. J.S. Ostroff. Temporal Logic for real-time systems, Wiley, London, 1989.

3. R.S. Sreenivas and B.H. Krogh: On condition/event systems with discrete state

realizations. Discrete Event Dynamic Systems: Theory and Applications, 2(1):

209--236, 1991.

4. C.A. Petri: „Kommunikation mit Automaten“, 1962: Dissertation, University of

Bonn

5. Harald Störrle: Models of Software Architecture - Design and Analysis with UML

and Petri-Nets, Books on Demand GmbH, ISBN 3-8311-1330-0

6. Robert-Christoph Riemann: Modelling of Concurrent Systems: Structural and

Semantical Methods in the High Level Petri Net Calculus, Herbert Utz Verlag,

ISBN 3-89675-629-X

7. Kurt Jensen: Coloured Petri Nets, Springer Verlag, ISBN 3-540-62867-3

8. James Lyle Peterson: Petri Net Theory and the Modeling of Systems, Prentice

Hall, ISBN 0136619835

9. Wolfgang Reisig: A Primer in Petri Net Design, Springer-Verlag, ISBN 3-540-

52044-9

10. Mengchu Zhou, Frank Dicesare: Petri Net Synthesis for Discrete Event Control of

Manufacturing Systems, Kluwer Academic Publishers, ISBN 0792392892

11. Mengchu Zhou: Modeling, Simulation, & Control of Flexible Manufacturing

Systems: A Petri Net Approach, World Scientific Publishing Company, ISBN

981023029X

12. Jörg Desel and Gabriel Juhás, "What is a Petri Net? -- Informal Answers for the

Informed Reader", Hartmut Ehrig et al. (Eds.): Unifying Petri Nets, LNCS 2128,

pp. 1-25, 2001.

13. Alur, R., C. Courcoubeitis and D.L. Dill, Model checking for real-times. In Proc

5th Annual IEEE Symposium on Logics in Computer Science, Philadephia, 1990.

14. Aygalinc, P. and J.P. Denat, Validation of functional Grafcet models and

performance evaluation of the associated systems using Petri Nets., Automatic

Control Production Systems A.P.I.I.,1993, 27,81-93

15. De Loor, P.J. Zaytoon and G. Villerman-Lecolier.: Abstraction and heuristics for

the validation Grafcet controlled systems, European Journal of Automation, 1997,

31, 561-580

http://wikipedia.org/wiki/Harald_St%F6rrle

Modelling and Verification of Discrete Control Systems

176

 Hanisch, H.-M., Thieme, J., et al (1997). Modelling of PLC Behaviour by Means

of Timed Net Condition/Event Systems, 6th International Conference on Emerging

Technologies and Factory Automation, Los Angeles, USA

17. Heiner M. and Menzel T., Instruction list verification using a Petri net semantics,

IEEE International Conference on Systems, Man, and Cybernetics, vol.1, October

1998, pp. 716 -721

18. Bani Younis, M., Frey, G. (2003). Formalization of Existing PLC programs: A

Survey, In Proc. Of Computing Engineering in Systems Applications, Lille,

France

19. Rausch M. and Hanisch H.-M.: Net condition/event systems with multiple

condition outputs. Symposium on Emerging Technologies and Factory

Automation, Paris, France, October 1995, Proc., Vol.1, pp. 592-600, INRA/IEEE

20. H.-M. Hanisch, T. Pannier, D. Peter, S. Roch, and P. Starke: Modelling and

verification of a modular lever crossing controller design,

Automatisierungstechnik, 48, 2000.

21. Analysing Signal-Nets with SESA: http://www.informatik.hu-

berlin.de/lehrstuehle/automaten/sesa/, 2004

22. V. Vyatkin, H.-M. Hanisch: A modelling approach for verification of IEC1499

function blocks using Net Condition/Event Systems, IEEE conference on

Emerging Technologies in Factory Automation (ETFA'99), Proc., pp. 261-270,

Barcelona, Spain, September, 1999

23. IEC61499 - Function Blocks for Industrial Process Measurement and Control

Systems, International Standard, International Electrotechnical Commission, Tech.

Comm. 65, Working group 6, Geneva, 2005

24. Vyatkin V., Hanisch H.-M. Verification of Distributed Control Systems in

Intelligent Manufacturing, Journal of Intelligent Manufacturing, special issue on

Internet Based Modelling in Intelligent Manufacturing, vol.14, N.1, 2003, pp.123-

136

25. J. Thieme: Symbolische Erreichbarskeitanalyse und automatische

Implementierung struktuirter, zeitbewerter Steuerungsmodelle, Dissertation zur

Erlagung des Grades Dr.-Ing., Berlin: Logos Verl., 2002

26. A. Lobov, J. LM Lastra, R. Tuokko, V. Vyatkin: Modelling and Verification of

PLC-based Systems Programmed with Ladder Diagrams, INCOM’2004, Proc.,

Salvador, Brazil, April, 2004

http://www.informatik.hu-berlin.de/lehrstuehle/automaten/sesa/
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/sesa/

V. Vyatkin © 2007-2011

 177

27. A. Lobov, J. L. Martinez Lastra, R. Tuokko, V. Vyatkin: Methodology for

Mo1delling Visual Flowchart Control Programs using Net Condition/Event

Systems Formalism in Distributed Environments, IEEE Conference on Emerging

Technologies in Factory Automation (ETFA'03), Proc., Lisbon, September, 2003

28. Vyatkin V., Hanisch H.-M., Pfeiffer T., “Modular typed formalism for systematic

modelling of automation systems”, 1
st
 IEEE Conference on Industrial Informatics

(INDIN’03), Proc., Banff, Canada, August 2003

29. V. Vyatkin, H.-M Hanisch, G. Bouzon: Open Object-oriented validation

framework for modular industrial automation systems, INCOM’2004, Proc.,

Salvador, Brazil, April, 2004

30. H.-M. Hanisch and A. Lüder: Modular Modelling of Closed-Loop Systems,

Colloquium on Petri Net Technologies for Modelling Communication Based

Systems, Berlin, Germany, October 21-22, 1999, Proc., pp. 103-126

31. Starke P.H., Hanisch H.-M., Analysing of Signal/Event Nets, In Proc. 6th IEEE

International Conference on Emerging Technologies and Factory Automation

ETFA-97, Los Angeles, USA, pages 253-257, September 1997.

32. P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, A. Lüder: Analysing signal-event

systems, Technical report, Humboldt Universitat zu Berlin, Institut für Informatik,

http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/, July, 2004

33. V. Vyatkin, H.-M. Hanisch, P. Starke, and S. Roch: Formalisms for verification of

discrete control applications on example of IEC1499 function blocks, Conference

"Verteilte Automatisierung" (Distributed Automation), Proc., pp. 72-79,

Magdeburg, Germany, March 2000

34. M. Bonfè and C. Fantuzzi: Design and Verification of Industrial Logic

Controllers with UML and Statecharts, submitted to the IEEE Conference on

Control Application 2003, June 23-35, Istanbul, Turkey

35. K. Thramboulidis: Using UML for the Development of Distributed Industrial

Process Measurement and Control Systems, IEEE Conference on Control

Applications (CCA), September 2001, Mexico.

36. Hanisch H.-M., Lüder A., Thieme J., A Modular Plant Modelling Technique and

Related Controller Synthesis Problems. IEEE International Conference on

Systems, Man, and Cybernetics, October 1998, vol.1, pp. 686 –691

37. Hanisch, H.-M. and A. Lüder: Modular modelling of closed-loop systems,

Colloquium on Petri Net Technologies for Modelling Communication Based

Systems. Proc., pp.103—126, Berlin, Germany, 2000

Modelling and Verification of Discrete Control Systems

178

38. International Standard IEC 1131-3, Programmable Controllers - Part 3,

International Electrotechnical Commission, 1993, Geneva, Switzerland

39. Nematron Corp., OpenControl: About open architecture,

http://www.nematron.com/OpenControl/oc_architecture.shtml, September 2001

40. Lastra, Jose L.M., Evaluation of New Open Control Systems for Light Assembly

Applications. M.Sc. Thesis. Tampere University of Technology, 2000

41. FBDK - Function Block Development Kit at www.holobloc.org, visited in June,

2005

42. Lobov, A., An Approach to the Formal Verification of Automated Manufacturing

Systems with Programmable Control, M.Sc. Thesis, Tampere University of

Technology, April 2004, thesis related material:

http://www.pe.tut.fi/movida/LobovThesis/

43. K. Thramboulidis: Development of Distributed Industrial Control Applications:

The CORFU Framework, 4
th

 IEEE International Workshop on Factory

Communication Systems, August 2002, Vasteras, Sweden

44. K. Takatsuka and S. Tomita: On modelling and an algorithm for verifying

behaviour of discrete parallel production system, PSE2002ASIA

45. S.Kowalewski, P.Herrmann, S.Engell, R.Huuk, H.Krumm, Y.Lakhnech,

B.Lukoschus, and H.Treseler: Approaches to the formal verification of hybrid

systems. Automatisierungstechnik, 2:66--73, 2001.

46. Fisler, K.: Timing diagrams: Formalization and algorithmic verification. Journal

of Logic, Language, and Information, 8(7), July 1999.

47. Amla, N., Emerson, E., Kurshan, R., and Namjoshi, K: Model checking of

synchronous timing diagram,. Conference on Formal Methods in Computer Aided

Design, Proc., Nov. 2000

48. Schlör, R., Allara, A. and Comai, S.: System Verification using User-Friendly

Interfaces. In Design, Automation and Test in Europe, pp. 167-172. IEEE

Computer Soc. Press, 1999

49. Vyatkin, V. and Hanisch, H.-M.: Application of Visual Specifications for

Verification of Distributed Controllers, Proc. of IEEE Systems, Man, and

Cybernetic Conf, pp. 646-651, Tucson, 2001

50. G. Bouzon, V. Vyatkin, H.-M. Hanisch: Timing Diagram Specifications in

Modular Modelling of Industrial Automation Systems, IFAC World Congress,

Prague, 2005

http://www.holobloc.org/
http://www.pe.tut.fi/movida/LobovThesis/

V. Vyatkin © 2007-2011

 179

51. Roch, S.: Extended Computation Tree Logic, in Proc. of Workshop on

Concurrency, Specification and Programming, Berlin, 2000

52. P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, and A. Lüder, Analysing Signal-

Event Systems, Technical report,

Humbold,[Online]:http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.ht

ml

