Working draft

Valeriy Vyatkin

Modelling and Verification
of
Discrete Control Systems

with
Net Condition/Event Systems and
Visual Verification Framework

All rights reserved, ©, V. Vyatkin, 2007-2012, Auckland
Version 1/15/2012

Modelling and Verification of Discrete Control Systems

Disclaimer

This text is a working draft and may contain some fragments earlier published in papers
co-authored with other researchers, in particular with Hans-Michael Hanisch from
Martin-Luther University of Halle (Germany), Jose LM Lastra and Andrei Lobov from
Tampere University of Technology, (Finland), Gustavo Bouzon from University of Santa
— Catharina (Brazil) whose contribution and collaboration is greatly acknowledged and
appreciated.

The author is very much grateful to Cheng Pang for valuable contributions to this
document, especially for the graphical material in Chapter 11.

The author will be grateful for any comments. Please report to v.vyatkin@auckland.ac.nz

mailto:v.vyatkin@auckland.ac.nz

V. Vyatkin © 2007-2011

Table of Contents

1Tl F=] T PSS SPR 2
TabIE OF CONTENTS ...ttt reesre e 3
SEIUCLUIE OF The TEXL.. .ot sb e e 8
1 Introduction: modelling and verification of cyber-physical systems................... 9
1.1 Supporting Tool FrameworkK...........ccceveiieiieieiie e 10
1.2 History of NCES deVvelopments..........ccccveveiieiieie e 11

2 SIGNAIEVENT NELSottt 14
2.1 INEFOTUCTION ...t 14
2.2 SYNTAX et 14
2.3 SBMANTICS eouvieiiieitie et bbbttt r s 15
2.4 Conflicts and nON-determiniSM..........cceviriiiiene s 17
2.5 CONAITION @ICS ...viiviiriiiieieie ettt ens 18
2.6 Arcs with capacities (WEIGNLS)ccuvveiiiiiiis e 18
2.7 State and reachability ..o 19
2.8 State transSition MOUESeevveieiieiiee e 20
2.9 Synchronous tranSItioNScccccueiieiieiciecse e 21
2.10 Transitions without iINCOMING ArCS.......ccevvveiierieiieie e 24
T 4 1o 4 | (1= SRRSO 24
212 FINING TUIES ... 24

3 Modular S/E Nets = Net Condition/Event SYStEmMScccooveveierencnenennninns 26
3.1 Encapsulation of models into Modulescccoovviiiieiinencee 26
3.2 Model type definition...........cooiviiiiiiic i 27
3.3 TYPEANCES ...t 28
3.4 Capacities 0f CONTITION AICS......cciiiiieiiieiie e 29
3.5 Benefits OF NCES. ..o 30

4 Semantics of Modular MOGEISccviieiieiieieceee e 33
4.1 A condition/event input of a module is not assigned...........ccccoeevereniennnnn 33
4.2 Multiple arc assignments to a module’s input/output...........ccoecverierrnnnnnn 34
4.2.1 Condition arc weights between modules...........cccccevveiiieiie e, 35

Modelling and Verification of Discrete Control Systems

4.2.2 Several condition arcs originating in the same place...........ccccccoevevvennnne 35
4.2.3 Visual Verifier support of non-assigned module inputs............c.ccccvenee 36

5 TIMEAd MOUEIScciiieieiiee e ettt 38
5.1 DISCIELE TIMING ..cveetiiieiieeie ettt 38
5.2 Firing rules in TNCES ..o s 39
5.3 IMPIEMENTALION ... 42
5.4 RESIICTIONS ..o.viiviiiiitiiieieie ettt bbb 42
Modelling of closed-loop controller-plant Systems...........cccocceveveieiieeiecie e, 43
Basics of Plant Process Modellingccoovieiiineniiinisieeeee s 46

7.1 PIOCESSES ...ttt 46
7.2 SIMple process MOUEL ..o s 46
7.3 Process With @XCeptiON........c.cciveieiieiice e 47
7.4 Two time scales: ticks in controller and time-elapsing in plant.................. 47

8 Modelling Control Programs...........coeeieieeiieiie e ese e 49
8.1 Data storage and aSSIGNMENT..........oiiririieieree e 50
8.2 Linear sequence Of COMMANGScoiiriiirienie e 50
8.3 Conditional ChOICEccviiiereee e 51
8.4 BO0O0IAN OPEIrAtiONS........ccviiiieiieeie ettt 52
8.5 SUDIOULING Callccvveeieiiiee s 53

9 Co-existence of synchronous and asynchronous behaviour.............c.cccccceeueeee. 55
9.1 NON-tIMEd MOUEIS........eieeice e 56
0.2 TimMed MOEIS.....cceiieieiiee et 57
9.3 Testing timed NCES MOUIES..........ccouviiiiiiiiiiiieeee e 58
10 Complete Example: Cylinder CONtrol............cccveiiiiiiiiie e 59
10.1 ODJECt dESCIIPLIONveiiiiciie ettt srae e aeere e 59
10.2 Modelling the plant: Linear driVeccccveviiiiiciie e 60
10.3 DEAAIOCKS......ccvieeie e 66
10.4 BranCRINGccoiiiiiieiee ettt bt 68
10.5 DEEPEr @NAIYSISecvieiiiieieiie ettt 69
10.6 EXEITISES ..viiieiieiee ittt ettt sttt es 69
10.7 REVIEW QUESLIONS ...ocvviiiiiciie sttt ettt ettt ettt eaae e raeene e 69

V. Vyatkin © 2007-2011

11 Model Verification with Visual Verifier ... 70
11.1 Visual Verifier FUNCLIONS..........cciiiiiiieieie e 70
11.2 Data fOIMMALS......eoieiieeiieie ettt sree e 72
11.3 LIMITATIONS .ottt 73
114 Ahintfor clearer MOUEIScccovvvieiiiiiiie s 74

12 User Interface of Visual Verifier........ccocoiiiiiiiiiiiiseeeee e 77
121 TaDS ettt 77

12.1.1 Functional tOOIDArSccvviiiiiiieeee s 78
12.2 Typical sequence of steps using Visual Verifier.........ccccoovvvnnininininnnns 79
Step 1: Open the header file of the model............ccooiiiiiiiiii, 79
Step 2: Build a flat Condition-Event net model..............ccooooiiiieiiieiiie, 80
Step3: Generate reachability space of the flat S/E model...........c.cccoeiveinnen 81
Step 4. Check specifications using internal model checkercccccevvvevieenee. 82
12.3 MOGEI-CNECKETS.....cuviiiiieiiecie sttt 82
124 Command liNE SESAooi oottt 83
12,5 SESA TIOM VIVE ..ottt 84
12.6 Hints for analysing complex models.............cccooiiiiniiiienis 86
12.7 Exploring reachability SPaCe...........cccevuiiiiiecic e 87
12.8 Finding paths satisfying certain Criteria............cccceevevevieviievesiese e 89
12,9 IMIBLIICS oottt ettt ettt bbb nneene s 89

13 Verification Of PrOPertiEScccoiiiiiiiiiieieee e 91
00 R O 1V = Y 1= SRS 91
13.2 Syntax of SPECITICALIONSc.oiiiiiiiiieieie e 93
13.3 How to check SPecCifiCationsccoevveiiiieiii i 93

14 Distributed CONTrOIIEIS.c..iiieiieeie e 96
14.1 Discrete-state MOdel...........coovoiiiiiiii 96
142 TIimMed MOUEI ..o 97
14.3 Using SyNnchronous tranSitioNSccooeierereninesiseeeeee e 99
144 SYNCII0 SELS INVIVE ..cooiiiiiiiiiie e 99
145 Example of different firing rules application.............cccoeveviiiiiiviin e, 100

1451 NON-TIME ...t e 100
1452 TIMEU ..ttt e aneeneas 101

Modelling and Verification of Discrete Control Systems

14.6 Model modification: synchronous transitions...........cccceevvveevveresieesieennnns 102
14.6.1 NON-TIMEA ..o 103
14.6.2 THMEU ettt sttt ste et enbeenee s 104

14.7 Modelling CoOmmUNICALING PrOCESSES.ccververrerierieriirireeenrenre st seeeneans 105

15 Example of a distributed system: two CYlNAers..........cccovveveniienenie e 106

15.1 Reusing original CONtrollers..........cccooveiiiieiiiii e 106

15.2 Finding COMISIONcoivieieiic e 107

15.3 BIlock — permit protoColcocveviiiiiiiie e 109

15.4 Central CONTIOIIETocvveeeie e 109

155 EXEICISES c.uviiuiiiieieeiie sttt ettt sttt e be et esneentaeneenneenneanee s 109

16 Modelling Programmable Logic Controllers (PLCS)........cccovveieiiiencnininne 110
16.1 SYSLEM FOULINESocvieivieie ettt sttt te e sraeae e reeee s 110
T2 I o [0 < g (oo | oSS SO RURSTRSN 111

17 Modelling of CompPIEX PIANEScccveviiieiiiececce e 113

17.1 Process/Sensor MOTElcoovoviiiiiiiiee e 113

I I 3| SR 114

17.3 CONVEYOT ...ttt 115

17.4 BOriNg StAtION.....cc.oiiiiicie e 121
17.4.1 S/E Net model of a Boring Stationccccevveveeiiiic i 123
1742 CONIOIIEI ..ot 125

17.5 MOCEI OF DI ..o 127

A I £ 1 - [0 USSP 128
17.6.1 ENhanced Drill........ccoooiiieiiee e 128
17.6.2 AAVaNCed Drillccooiiiiiiie e 130

17.7 Modelling dynamic and 10giC Of ProCESSES.........ccvveviriivieiieiiee e 132

17.8 Verification model INNCES. ... 135

R O 14 £ 1- Vo SO 135

0 O T I - Vo [USSP 137

0 O I (- SRS 137

17.12 Examples of specifications of Lifter’s behaviourc.ccceeiiiiiinnns 140

18 Multi-level model design patterncccooveiieiec i 144

V. Vyatkin © 2007-2011

18.1 Hierarchies in MOUEIScccooiiiiiiiiiee e 144
18.2 IMOLIVALIONuiiiiciieiieie et bbb 144
18.3 Notation of the two-level modules...........c.cccoviriiiiiiii s 145
19 Specifications using Timing DIagramsccocooeririniniieiene s 149
19.1 Timing Diagrams for SPeCifiCationcccocviiniiinieicies e 150
19.1.1 DeFINITIONS .oovvivieiieieiie i 150
19.1.2 Specified SIgNalScceoeeiree e 151
19.1.3 Event Ordering in Different Signals............ccccocevvviiviiciiiciescseee 152
19.1.4 Specification of Finite BEhaVIOUTccocviiiiiiniiiccs 153
19.1.5 Specification of infinite BENAVIOUNccccooviiiiiiiiii s 154

19.2 NCES Model of TIming Diagramsccccoverireninieeienene e 155
19.2.1 EVENT GENEIALONeoiiieiieiiieetee ettt 155
19.2.2 Signal Generation Module...........ccooiiiiiiiiiiiicce e 156
19.3 Program Implementationcccccovveiiiiieiieii e 158
Annex 1: XML format of Condition/Event NetScccovvvieeiiiin i 160
Example of a basic module made in TNCES editorcccocvevviieenviinieeieanenn 160
XML of a "composite” NCES DIOCK..........ccoiiiiiiiiiece e 161
Annex 2: More formal definition of Condition/Event Nets..........cccocvvviiiiiiiinnns 162
19.4 NCES definitioN.......ccoiiiiiiiiiiiecieee e 162
195 C/ENEet definitioncccooe i 162
19.5.1 Set theoretical defiNItiON..........ccoevieiiiie i 162
19.5.2 State Of C/EN MOUEL.........coveeiiee e 163
19.5.3 FIFING TUIBS ..o 164
19.5.4 Step and state tranSitioNScccoovevieiii e 165
ANNeX 3. CTL syntax 0f SESA ..o 167
CHARACTERS ...ttt st st eneas 167
TOKENS ...ttt be e a e e et et et et e s benteaaeeneaneas 167
PRODUCTIONS ...ttt et 167
Annex 4: Command line SESA Parameters.........ccceveierenireneeieiesie e 172
RETEIEBNCES ... ettt bt 175

Modelling and Verification of Discrete Control Systems

Structure of the text

First part (Chapters 1-5) introduces the framework and modelling language of Net
Condition/Event Systems (NCES) as follows. Chapter 1 introduces the formal
verification framework. Chapter 2 starts with providing informal introduction into the
formalism of Signal/Event nets. Chapter 3 introduces modular Signal/Event nets called
Net Condition/Event Systems. Chapter 4 discusses some challenges to the S/E net
semantics brought by the modularity of NCES, and Chapter 5 adds time to the
Signal/Event nets.

Second part (Chapters 6-12) presents basics of modelling automation systems and
technique of their formal verification in the Visual Verification Framework as follows.
Chapter 6 introduces the framework of closed-loop modelling and verification, Chapter 7
presents some basic techniques for modelling objects and physical processes (plant) using
NCES, Chapter 8 introduces basic NCES elements to be used in controller models, such
as models of variables and operations over them. Chapter 9 discuses some challenges
arising from the need to combine purely deterministic and synchronous objects
(controller) with asynchronous and non-deterministic processes (plant). Chapter 10
presents an example of a simple automation system modelled and verified in the
presented framework. Chapter 11 considers the use of the Visual Verifier tool in more
detail, and Chapter 12 presents more details on the properties to be verified.

The third part (Chapters 13-15) presents some additional techniques and facts and is
structured as follows: Chapter 13 discusses specifics of distributed controller modelling.
Modelling of Programmable Logic Controllers is exemplified in Chapter 14. Chapter 15
is devoted to systematic modelling of plants. Chapter 16 introduces the ideas of
hierarchical model composition in NCES.

Annex 1 provides examples of XML representation of NCES models.
Annex 2 contains more rigorous definitions of NCES.

V. Vyatkin © 2007-2011

1 Introduction: modelling and verification of
cyber-physical systems

In computer science formal verification is an act of proving the correctness of programs
by using mathematical methods and models. It can be used as an automatic alternative to
the simulation-based testing and debugging, improving dependability and reliability of
automation systems. Unlike testing via simulation, the formal verification can explore the
complete set of system’s state space and prove mathematically that no undesirable or
dangerous behaviour occurs. This can reduce the effort spent on validation the same time
increasing its quality which especially important in safety critical applications. Formal
verification be also very helpful in proving the compliance with various certification
requirements.

Cyber-physical systems is a novel view on embedded systems that takes into account
the dynamics and the structure of the environment where the embedded device works. In
many control and monitoring applications this view has proven to be beneficial as
compared to a more narrow focus only on the computing hardware and software.

In particular, in control systems, usually the control software is the target of
verification. This software is further referred to as controller, and it is the essential part of
the embedded control device connected to the plant under control. Plant and controller
form the interconnected closed-loop control system. For example, in industrial
automation, the controller code usually is a variable part of the system, while the
hardware remains unchanged. The controller can be programmed in one of general-
purpose or specialized programming languages, e.g. following the IEC61131-3 standard
[38].

1. The closed-loop system is modeled using an appropriate finite-state or hybrid
formalism, e.g. finite state machines, Petri nets, etc. In closed-loop modeling the
model of the plant needs to be present explicitly. It has to be designed manually by
control engineers, while the model of the controller can be built automatically given
the code. In open-loop modeling only the controller part is verified under some
assumptions about its inputs.

2. The desired or forbidden behavior of the plant-controller system needs to be
described in form of specifications, i.e. the properties to hold or to avoid. The
specifications have to be formalized using a formal language compatible with the
description of the model.

Modelling and Verification of Discrete Control Systems

Given the model and a number of formal specifications, it can be formally checked

3.
whether the specifications hold with respect to the model. This process is called
model-checking.

4. The results of the model-checking have to be interpreted in terms understandable by

the engineers. For this purpose, a bi-directional mapping from the original system to

its model and back has to be provided.
This text presents a framework for modelling and verification which is based on the

formalism of Net Condition/Event Systems (NCES).

1.1 Supporting Tool Framework

To facilitate the use of NCES by engineers, the formalism is supported by tools and
methodologies. The framework is presented in Figure 1.

Model Generators: il
prsasnnsppsad > | for pLCS ,,,,,,,,,, > -’_’__“:- '_'_"'-:
f',’J-.ll\T-" C-J(?ﬁ é and—'Emgg '=x: é: .‘; ol & — _ ;
koo == AN =
= £ L7, 1 spresrinon ol
Iy T | Assambly
— |
""""""" s it 6 :
ViEd £ e

Closed loop model of ¢
Trandlation

interconnected ' ' ;
plant/controller system ‘ — S
A checki T_Externgl_
amsaois: | || “wodata” SNS in plait™"§)sdeichecker
text format SESA

Figure 1. Tool framework for modelling and verification

The functions of the tools are as follows:
Visual NCES editor (ViEd) providing full graphical authoring and editing of the

[}
models. Its manual is provided in a separate document;

10

V. Vyatkin © 2007-2011

e Visual Verifier (ViVe) — an integrated tool that contains a model builder (assembler),
a translator to the flat format for subsequent model-checking, interfaces to several
model-checkers, and the means for analysis of scenarios (e.g. their visualization in
form of state/time diagrams), or even system simulation along the selected scenarios.

e The model checker SESA allows for efficient model-checking of fairly complex
systems (millions of discrete states);

e The application methodologies are represented as libraries of standard model
elements and by the web-based documentation;

The NCES modelling language is open — an XML based data format allows the
development of add-ons to the existing tools, for example model-generators for particular
programming languages in which the controllers are programmed.

The graphical editor provides full graphical authoring and editing of the models. The
editor uses an open XML-based data format for basic and composite NCES models. The
data format of composite model blocks intentionally was made identical with that of
IEC61499 function blocks, supported by tool (FBDK).

The integrated environment Visual Verifier inputs the model type files given in XML and
is capable of:

e Assembling a composite, hierarchically organized model from modules contained in
different libraries. The component model types are instantiated into NCES modules.

e Translating the model into a “flat” NCES with the through numbering of places and
transitions. The inter-module connections are converted into event and condition arcs
between places and transitions. Thus the module boundaries are removed and the
model-checking tools can be applied. In particular, the translator generates files in the
input format of SESA model checker.

To enjoy the benefits of graphical formalisms the model authoring and maintenance have
to be supported in a visual intuitive way. The evolution of graphical tools is described in
the following section.

1.2 History of NCES developments

The first version of the tool for editing Timed NCES (TNCES) for was implemented
at the University of Halle, (Germany) as a template to Visio universal graphic editor. The
editor supported only the non-typed approach which did not allow for convenient re-use
of previously developed model components. The whole model needed to be developed

11

Modelling and Verification of Discrete Control Systems

from scratch and the re-use was possible only by “cut and paste” of some model
elements.

M IR fen Vewt Ten e W WV alpls

Figure 2. Visio TNCES Template.

The need to re-use models pushed the development of an open XML-based data format
for basic and composite NCES models. The data format of composite blocks was
intentionally made identical with that of IEC61499 function blocks, supported by tools
[17, 18]. Then the export to the XML format was added to the editor in order to create a
model type out of a single NCES module. This way the former Visio-based editor could
be used for populating the library of basic model types, while FBDK could be used for
creating complex model types.

However, FBDK is lacking convenience in dealing with module connections. Besides
the use of three software tools just for editing models is too complicated. For this reason
another editor (VIiEd) was conceived that integrates editing of basic and composite
models in fully intuitive visual way.

The model of a controller can be generated by the MOVIDA NCES Generator (Fig.
10). The generator takes as an input source code of controllers in several PLC
programming languages (for example Omron™) LD project represented as a textual file),
converts it into TNCES, and saves the data in XML based format. The openness and self-
explanatory XML representation simplifies the development of the tools that may work
with TNCES.

12

V. Vyatkin © 2007-2011

Figure 3. MOVIDA NCES Generator.

13

Modelling and Verification of Discrete Control Systems

2 Signal/Event Nets

2.1 Introduction

In this chapter we give informal definition of Signal/Event nets (S/E nets). A more
formal definition is presented in Annex 1 and in the document “Analyzing Signal / Event
Nets” [21].

The formalism of Condition/Event systems, suggested by Sreenivasan and Krogh in
(1990), provides a convenient framework for modular modelling of discrete-event
systems. Internal content of modules can be different: so far finite state and hybrid
automata [3, 4], as well as Petri net-like formalisms [7] have been studied in this role.

The Condition/Event model can serve to represent systems’ interface abstractions,
internal structure and behaviour of single elements. This model can be easily mapped
then onto IEC61499 function blocks [23], thanks to many similarities, namely event and
data interfaces and State Chart definition of functionality of single modules.

2.2 Syntax

A Signal/Event net is a place/transition model similar to Petri nets [4-11]. Basic
artefacts of the place/transition models are: places, which can bear tokens; (net)
transitions, and arcs connecting places with transitions and transitions with places,
known as token flow arcs. S/E nets in addition have two types of arcs: event arcs from
transitions to transitions (e.g. (t2, t4)), and condition arcs from places to transitions e.g.
(p2, t5). The model in Figure 1 is an S/E net.

A state of a place/transition model is determined by marking of its places, i.e.
allocation of tokens across the places. Tokens can “flow” from state to state in some
discrete moments according to the set of rules, known as “model semantics”. Such a
“jump” of tokens leads to a new state of the model, and is called a state transition.

It is said that net transitions can fire and transfer hereby tokens from a place to place.

14

V. Vyatkin © 2007-2011

i

Figure 4. A Signal/Event Net (book/examplel).

2.3 Semantics

The semantics of Signal/Event nets is defined by the firing rules of net transitions. There
are several conditions to be fulfilled to enable a net transition to fire.

First, as in the ordinary Petri nets, an enabled transition has to have a token
concession. That means that all pre-places have to be marked with at least one token as
shown in Figure 5 (or, in case of weighted arcs, with as many tokens as the weight of the
corresponding arc from the pre-place to the transition.)

Figure 5. Token concession of transition: a) transition t has token concession; b) there is no token

concession.

In addition to the flow arcs from places, a transition in S/E net may have incoming
condition arcs from places and event arcs from other transitions. A transition is enabled
by condition signals if all source places of the condition signals are marked by at least
one token (more rigorously — as many tokens as the capacity of the flow arc), i.e. if more
than one condition arc is connected to a place, the overall influence of the condition arcs
is decided by the “AND” of each single arc enableness, as shown in Figure 5.

15

Modelling and Verification of Discrete Control Systems

%) ° (@ %

®

Figure 6. If more than one condition arc is connected to a place, the overall influence of the condition arcs
is decided by the “AND” of the each single arc ‘enableness’.

Another type of influence on the firing can be described by event signals which come
to the transition from some other transitions in the net. With respect to incoming event
arcs a transition can have either OR or AND mode (event signal sensitivity mode). The
default event signal sensitivity mode of transition is OR, as shown in Figure 7.

Figure 7. The default event signal sensitivity function of forced transition is OR.

Transitions having no incoming event arcs are called independent, otherwise forced.
A forced transition is enabled if it has token concession and it is enabled by condition and
event signals.

transition

independent forced
has incommang

spontaneous greedy

Figure 8. Firing mode of transition.

16

V. Vyatkin © 2007-2011

Several S/E net transitions can fire simultaneously. A set of such simultaneously
firing net transitions is called step.

A step is formed by first picking up a nonempty subset of enabled spontaneous
transitions, and then by adding as many as possible of enabled transitions which are
forced to fire by event signals produced by the transitions already included in the step.
Such a step is called maximal with respect to its forced transitions.

2.4 Conflicts and non-determinism

A conflict in classic Petri nets occurs when the number of tokens in some places is “not
sufficient” to fire all transitions connected to them by flow arcs. This situation is
exemplified in Figure 9, a.

Marking
veclior

TIRE

/@_ (1) \@2

) b) 1T

Figure 9. Conflict (a) and reachability graph (b) (book/simple_conflict).

In case of a conflict, not all transitions can fire simultaneously. The reachability graph
in Figure 9,b shows that there are two steps “fireble’ in this state of the model: {t1} and
{t2}. Since both these steps can happen, it is said that the choice is non-deterministic. In
case if such a model is used for simulation either of this transition steps can happen. In
the reachability graph, however, both options are included.

17

Modelling and Verification of Discrete Control Systems

2.5 Condition arcs

Tokens do not flow through condition arcs, so one place with a single token in it can
enable many transitions and no conflict will arise, as illustrated in Figure 10 for the place

p3.

|
p: () P O ps

Figure 10. Single token in p3 is sufficient to enable transitions t1,t2 and t3, so no conflict is observed in
this situation.

2.6 Arcs with capacities (weights)

The token flow and condition arcs can have capacities determining the number of
tokens that will flow through the arc (for token flow arcs), or needed to enable the
corresponding destination transition (for condition arcs). If a source place has less tokens
than is required then the transition would not get the concession. A net with arc capacities

is illustrated in Figure 11.
1)5 1 l)\
2 2
' w

[* l, [,

P P Ps 2 é/& é/k

Figure 11. S/E Net with arc capacities.

18

V. Vyatkin © 2007-2011

For example, the flow arc from p1l to t1 has capacity 2, and the condition arc from p3 to
t1 has capacity 1. Both places p1 and p3 have 2 tokens, so the transition t1 is enabled.
The transition t2 is enabled because it has only one flow arc from p3 and there are enough
tokens in p3. The transition t3 is enabled because p5 has as many tokens as required (1)
and p3 has as many tokens as required (2). Note, that only one token moved from pl to
p2 and one got lost since the capacity of the arc (t1, p2) is only 1.

Also note, that in the next state transition t3 would not be enabled although p3 still has
one token. This is due to insufficient number of tokens in p3 to ‘activate’ the condition
arc (p3,t3) which has capacity 2.

2.7 State and reachability

A state of an S/E net is defined by marking of all places. A tuple M=<Z,R,so> denotes
the reachability structure of a S/E net, where Z is a finite set of reachable states, R is a
finite set of state transitions®, and so is an initial state.

A state trajectory is a sequence of states (s;)= So, S1, .., Si, ... , such that for each pair
Sj, Sjs1 € Z there is © € R such that sj+; is reachable from s; by the transition 7 (in
mathematical terms denoted as s; [t> Sj+1) . Figure 12 presents the reachability graph for
the S/E net from Figure 4.

1 Note the fundamental difference between net transition and state transition.

19

Modelling and Verification of Discrete Control Systems

Figure 12. Reachability graph of the model from Figure 4.

Nodes of the graph correspond to the states while the arcs correspond to the state
transitions. The arcs are marked with their respective steps of net transitions.

2.8 State transition modes

There are three ways to generate the transition step w.r.t. spontaneous transitions:

1. Include all possible combinations of spontaneous transitions (this was illustrated in the
previous section in Figure 12);

2. Include only one spontaneous in a step (The corresponding reachability graph is shown
in Figure 13, a);

3. Include maximum number of spontaneous transitions (the reachability graph is shown
in Figure 13, b);

20

V. Vyatkin © 2007-2011

<1010> <1010>

N

124] 3/ 6_:,
[/ {1} T

& Y YL
>: 155 (&1 (S,)
<0110> 121 <0101> N D
131 <0110> <0101>
i

<1001>

a) b)

Figure 13. Reachability graphs of the model corresponding to a) single spontaneous transition; b) maximal
set of spontaneous transitions.

In all cases forced transitions are included in steps according to the principle of
maximal set of forced as discussed in the previous section.

2.9 Synchronous transitions

There are special means provided for description of both asynchronous and
synchronous behaviour in the same net, which are especially useful for modelling of
interconnected plant/controller systems. This is achieved either by introduction of
synchronous transitions, firing whenever they are enabled, or by timing.

If a transition is marked with the synchronous (or greedy) attribute, it fires always
when enabled. Synchronous transitions should not have incoming event arcs. When a
firing step is formed, these are treated as spontaneous, with exception of that all enabled
greedy transitions are always included in the step. Let us illustrate the work of greedy
transitions on the example in Figure 14.

21

Modelling and Verification of Discrete Control Systems

Reachability Graph

S
Mode! s, L2
& & %,
S =
2.3} R
S, ! 4 [S
N
/"f/ B \\‘\
%
n \n:\
S,

Figure 14. Reachability graph of the model with all spontaneous transitions.

As one sees, the model’s behaviour includes all possible combinations of t1 and t2
with t3 and t4.

This example is provided in the Visual Verifier set of samples as
TestSimple2Spont.xml. Check it with the options: Maximal set of greedy transitions and
Combinations of spontaneous transitions as illustrated in Figure 15. The selected firing
mode implies that all greedy transitions will be included in the step and all possible
combinations of enabled spontaneous transitions will be added. If the set of Greedy is not
empty, then the combination with empty spontaneous set will be also considered.

22

V. Vyatkin © 2007-2011

@ Options

GESA settings Firing Rules l\-’iew] Reachab 4| *
Max Size

e

Greedy Mode
&l greedy
™ Combinations

Spont Mode
" Single

f* Combinations

" Maximal

[v todel Timed
[~ Recursive Model Checking

B=Es

Figure 15. Selection of the firing modes in the Visual Verifier.

In the next example (Figure 15, TestSimplelSpontlGreedy.xml) two transitions are
left spontaneous, while two others are made greedy. As a result, some trajectories have
disappeared from the reachability graph.

Model

/?_\\—/i

Reachability Graph

S|
| N\®
o ":; /.;9
7i(e) L
(2.3) 3
L1 S, . (14 | S,
3 5
3 @ =
a 4 .
S,

Figure 8. In case if two transitions are spontaneous and two others are greedy, the possible step

combinations are limited to those where a greedy transition is always included in the step.

If there is more than one greedy transitions enabled in the moment, they are included into
step similarly to spontaneous transitions, i.e. steps are formed from all possible
combinations of greedy, as shown in Figure 16, where all four transitions are greedy.

23

Modelling and Verification of Discrete Control Systems

Reachability Graph

Maodel S,
r1(e) P3(’01\ =
hy{ |2 ’xJ 1y 1 I
S %, - '
F2_J Fa_J SJ

Figure 16. All transitions are greedy.

Note: The “greediness” of transitions can be only used in non-timed models. A
similar concept can be achieved in timed models by using synchro sets introduced later in
Chapter 14.2.

2.10 Transitions without incoming arcs

A transition without any incoming arcs is always enabled.

2.11 Priorities

In place-transition modelling formalisms a priority is an integer attribute of a transition
determining preference of its firing with respect to other enable transitions. Only the
transitions with the highest priority (from the set of currently enabled transitions) are
included in the executable step. To avoid ambiguities, in S/E Nets priorities can be
assigned only to spontaneous transitions.

2.12 Firing rules

Visual Verifier supports several firing rules. The set of firing rules of SESA is a bit
different. The reasons for having different firing rules are in the history of these tools.
However, having several firing rules available may better fit to particular details of
different models.

The firing rules of the Visual Verifier are as follows:

- single spontaneous can fire ;

- all combinations of spontaneous transitions will be considered;
- only the maximal combination of spontaneous can fire.

24

V. Vyatkin © 2007-2011

Certainly for each set of spontaneous transitions as many as possible forced
transitions are added to form a step. This is called “maximum step”.

In SESA two firing rules are supported:

single spontaneous can fire ;

all combinations of spontaneous transitions will be considered to form the
maximum steps on their base;

9

In addition, the “greedy” transitions are treated in the VisualVerifier a bit

differently from SESA.

In ViVe two options are provided:
fire all enabled greedy transitions together or
consider all combinations of the greedy;

This is applied ‘on top’ of the spontaneous firing rule.

In SESA greedy transitions are treated as normal spontaneous transitions.

25

Modelling and Verification of Discrete Control Systems

3 Modular S/E Nets = Net Condition/Event
Systems

The formalism of Net Condition/Event Systems (NCES) was introduced by Rausch
and Hanisch in (Rausch and Hanisch, 1995) and further developed through the last years,
in particular in (Hanisch and Lider, 1999).

3.1 Encapsulation of models into modules

The general idea of Net Condition/Event systems supports the way of thinking of and
modelling a system as a set of modules with a particular dynamic behaviour and their
interconnection via signals. An illustrative example of the graphical notation of a module
is provided in Figure 17.

)
Lt LU R AT TR

1 e
i COPNIIT IO
Rl e

A module .~

- |}
flow are

Figure 17. Graphical notation of a module.

Once designed, the modules can be re-used over and over again. Each module has
inputs and outputs of two types:

1. Condition inputs/outputs carrying information on marking of places in other
modules, and

2. Event inputs/outputs carrying information on firing transitions in other modules.

Condition and event inputs are connected with some transitions inside the module by
condition and event arcs. Places of the module can be connected to the condition outputs
by condition arcs, and transitions can be connected to the event outputs by event arcs.

26

V. Vyatkin © 2007-2011

This concept provides a basis for a compositional approach to build larger models
from smaller components. The "composition" is performed by "gluing” inputs of one
module with outputs of another module as shown in Figure 18.

Figure 18. Modular composition.

The result of the composition of two NCES N; and N is an NCES N, obtained as a
union of the components and which can be represented as a new module. Inputs and
outputs of the "composition" are unions of the components' inputs and outputs, except for
those which are interconnected to each other, and hereby "glued"”, i.e. substituted by the
corresponding condition and event arcs, as shown in Figure 19. By the way, the resulting
module is equivalent to the S/E from Figure 4.

Module |,

Figure 19. Result of the modular composition.

3.2 Model type definition

In the version of NCES implemented in Visual Verifier a model must be encapsulated
in a module. A module is defined by its interface and content. The interface contains a
model name and names of event and condition inputs and outputs. The content can be
either a place-transition model, i.e. consist of places, transitions and arcs as described in
the previous section (such model types are called basic), or be a network of modules
interconnected via event and condition arcs (such models are called complex).

27

Modelling and Verification of Discrete Control Systems

Once defined and placed in the library, a module defines a model type. The module
name serves as the type identifier. Type instances can be used over and over again in the
complex models (strictly speaking, the modules forming the complex models have to be
instances of other modules).

As a consequence of the above definition a model can have a hierarchical structure as

the one presented in Figure 20. The hierarchical structure can be transformed into a plain
S/E Net by instantiation of a model types.

Figure 20. A hierarchical NCES model.

Dynamic models of complex objects usually consist of models of their constituent
components interconnected by event and condition signals. They may also include an
additional model that integrates and coordinates them. Such a “master supervisor model”
can also take care about input-output behaviour of the composite model.

3.3 Typed NCES
Further in this text we are using only the typed NCES modelling. This approach is based
on the following postulates:

1. All NCES models are encapsulated into modules. A module has interface that is
defined by event and condition inputs and outputs. A modular model, stored in a
separate file, defines a model type that can be later instantiated.

28

V. Vyatkin © 2007-2011

2. NCES models can be basic or composite.

3. A basic NCES model type consists of places, transitions and arcs. It cannot
have any nested modules.

4. A composite NCES model type consists of module instances and arcs
connecting 1/Os of the modules to each other and to the interface elements of the
model. The instances are obtained by instantiation of the model types, basic or
composite, existing in a storage media (library).

The process of model development can follow both top-down and bottom-up
approach. In the former case you may create new module interfaces and as needed
specify them and store as model types in the library. After that you can reuse the models
over and over again.

In the latter case you start with development of most basic model elements and save
them as basic model types in the library. More complex models can be created as
composite types using instances of the basic ones. This way you can create hierarchical
models of arbitrary complexity always remaining flexible and reusing the repetitive sub-
models.

3.4 Capacities of condition arcs

Condition arcs between NCES modules, or between a module and inputs/outputs of
another module where its instance is included, can have capacities, that are integer
numbers >= 1.

The capacities between modules can differ from the capacities of arcs within
modules. When the modules are “glued” into a single S/E net, the capacities of resulting
condition arcs are calculated as the minimum capacity of the segments forming them.

29

Modelling and Verification of Discrete Control Systems

Module ,

- e >l<l
"]:‘3 &

Module .,

Figure 21. The capacity 2 of the condition arc (p2, t5) is obtained as the minimum of capacities of the arcs
forming its segments within modules and between modules.

3.5 Benefits of NCES

There are two main reasons to prefer place-transition formalisms to many others
formalisms, e.g. finite automata. The first is their non-interleaving semantics (i.e.
possibility of firing several transitions simultaneously), which better fits to modelling of

distributed processes and of their interaction.
Concurrent state machines

;

‘ Stoke 811 -» State (2 { State A_2
-:-‘ :

Place-transition net (NCES)

’I 12 /L {

3 ‘4
\C%_v‘"’# P4

Figure 22. Model of two processes as parallel composition of state machines or NCES.

30

V. Vyatkin © 2007-2011

The second reason is the more compact reachability space, explained as follows.

Modelling of complex distributed systems with automata usually ends up in many
concurrent automata models communicating via common variables, as illustrated in Figure
23, left, where two state machines A and B are combined under “asynchronous parallel
operator”. Thus, the overall system model is a cross-product of the component automata,
and to do model analysis it is necessary to build the cross-product consisting in this case
of 9 states, as one sees in the right part of the Figure.

A;B, A;B,

Figure 23. Modelling of two communicating processes by means of concurrent state machines and their cross-product
automaton.

Alternatively, in Signal/Event Nets a state of a model is determined by the marking of
model places, so any global state of a distributed system is just one state of the model.
This is shown in Figure 24 where the same model is implemented in Signal/Event Nets
with places (pi-ps) corresponding to states of the automata A or B (in the obvious
manner) (Find it in the concurrent.xml file).

31

Modelling and Verification of Discrete Control Systems

Figure 24. The same model implemented using place—transition nets (S/E Net) and its reachability graph.

In the given initial state the reachability space of the model consists of only 4 states.
The same behaviour obviously will be shown by the automata model in Figure 23 (the
outlined path AB,— A;Bo,— AB,— A;Bs— ABi— A3Bz), but to get it the whole
cross-product automata needs to be built.

32

V. Vyatkin © 2007-2011

4+ Semantics of Modular Models

The modularity of NCES does not bring any extra semantic issues if compared to S/E
nets since the module boundaries are removed during the flattening process. However,
some “tricky” issues in S/E nets and NCES semantics need to be discussed.

4.1 A condition/event input of a module is not assigned

When an input is not assigned as shown in Figure 25 there are several possible
interpretations.

Module 1 Module 2

Figure 25. Not assigned input of a module.

The one shown in Figure 26 removes the event arc (eiy, tz) making the transition t;
spontaneous.

Module 1 Module 2

Y

K> <)
€Oy Ciy

Figure 26. First interpretation: the event arc is removed, transition t2 in
the Module 2 becomes spontaneous.

However, this interpretation might not always reflect the intentions of the developer
of the module 2, as the presence of the incoming event arc might indicate the forced
nature of the transition t,. Thus, the absence of any input arcs to the input ei; may mean
that t, should not fire at all. This can be implemented as shown in Figure 27 by adding a
module (Module 3) with a transition (t;) that never fires, connected to t, of Module 2.

33

Modelling and Verification of Discrete Control Systems

Module 3
7
.- =0
Module 1 o Module 2

Figure 27. Second interpretation: an always dead transition

4.2 Multiple arc assignments to a module’s input/output

Multiple arc connections to inputs and outputs of modules as those shown in Figure
28 were not allowed in the previous versions of NCES due to ambiguities in
interpretation.

Module 1 Module 2

Figure 28. Multiple assignments of arcs to 1/0s.

However, since the signal arcs eventually influence the firing of transitions, we can
shift the semantic load to the definition of the firing function of transitions, and interpret
the concentration of arcs at inputs and outputs by connecting places/transitions in the
resulting S/EN with an arc if a connected path exists from the corresponding source
place/transition to the target transition in the original NCES. This is illustrated in Figure
29.

34

V. Vyatkin © 2007-2011

Vodule 1 Viodule 2

Figure 29. Signal arcs in S/E N as a result of multiple arc resolution in NCES.

4.2.1 Condition arc weights between modules
ViVe provides two options for resolving the weight of the condition arc appeared as a
result of structural composition (Options/NCES tab).

Intermodule condition arcs

{* Minimum capacity on the path

(" Maximum capacity on the path

Thus, if the first option is selected, the arc with the minimum weight determines the
weight of the resulting arc after the assembly.
Module | Module ,

Figure 30. Multiplicity of the resulting condition arc.

4.2.2 Several condition arcs originating in the same place

In process of assembly there could be a situation of several condition arcs ending in the
same transition and originating in the same place.

35

Modelling and Verification of Discrete Control Systems

Module

Figure 31. Two condition arcs originating in p2 end in t5.

There are two options to resolve this situation. The first option is to take the
maximum capacity across all paths leading from p2 to t5. The result in this case would be
as shown in Figure 32.

Figure 32. Maximum path capacity is taken (1 in this case).

Another option is to assign the cumulative capacity to the resulting arc.

Figure 33. Sum of capacities is taken.

4.2.3 Visual Verifier support of non-assigned module inputs

Ambiguous issue Support in Interpretation
ViVe
Non assigned event input Supported The destination transitions are connected
to the “always dead transition”

Non assigned condition | Supported The destination transitions are connected
input to the “always empty place”
Multiple arcs to an event | Supported The destination transition is connected to
input or output the transitions where the arcs are

36

V. Vyatkin © 2007-2011

originating from.
Multiple arcs to a condition | Not supported
input/ output
Module
Module

Figure 34. Prohibited condition connections.

37

Modelling and Verification of Discrete Control Systems

5 Timed models

5.1 Discrete timing

The concept of discrete timing is applied to the S/E nets as follows: to every pre-arc [p, t]
of the transition t we attach an interval [l, h] of natural numbers with 0 < I < h <oo. The
interval is also referred to as permeability interval. If a pre-arc has no explicitly
designated permeability interval, it is assumed to be [0, o]. The interpretation is as
follows. Every place p bears a clock u(p) which is running iff (if and only if) the place is
marked (m(p)>0), and is switched off otherwise. All running clocks run at the same speed
measuring the time the token status of its place has not been changed. If a firing transition
t removes a token from the place p or adds a token to p, the clock of p is turned back to 0.
A (marking-enabled) transition t is time-enabled only if for any pre-place p of t the clock
at place p shows a time u(p) such that I(p,t) < u(p) < h(p,t).

An example is given in Figure 35.

Subsequent states

{l)_mt!' 'II.U\)] 'f_nl\] p A
‘l h Iy
.
P P P 3
’ t
{0.00] 3
\
. ’»l
Ps Discrete time

0 1 2 3

Figure 35. Timed S/E net and firing of its transitions.

Thus, in timed NCES a state is characterized by the marking of places plus the values
of local clocks at the places.

A state is called dead if no transition is time-enabled and no transition would become
able to fire after any increments of the clocks.

There are two slightly different interpretations of time in different NCES
implementations. Let us consider illustration in Figure 36, a.

38

V. Vyatkin © 2007-2011

In one interpretation (implemented in SESA model checker), time delay is an attribute
of the state where the transition originates. If in state S; there is such a minimum
increment A that some of the transitions become enabled after elapsing it, then it is said
that the state transition t:Si—Sj has a “delay” A. Conversely, it can be interpreted as the
state S;j has a “duration” A that specifies the time increment of the clocks of this state
required to make the transition enabled. So, first the time elapses, and then a state
transition occurs. This is illustrated in Figure 36,b.

Marking Marking

]] I'\,._./'" State delay=3 Wi ’ Time Vvecke ;
[3‘1] ‘[- . ' mcrement=() > . '
1 U (1)
4
})2 I:\ /;l i Kl Time e
o Stare delay=10 SZ . = o i 8 S2 ! =
a) b) 0)

Figure 36 An example of timed S/E net and reachability graphs for two time interpretations.

Another interpretation (implemented in Visual Verifier) uses the concept of time
increment. This attribute belongs to the state where the state transition leads to. The
reachability graph generated along with this interpretation is in Figure 36,c. This
interpretation allows interpret the elapsed time as an (implicit) attribute of the state
transition.

Although in this example, the number of states in both reachability graphs is the
same, in general it can be different.

5.2 Firing rules in TNCES

At a given state all (time-) enabled steps have to be computed and placed into the list
of enabled steps. Firing of each step brings one more state successor to the current state.
Repetitive application of this procedure to every subsequent state forms the reachability
space of the model. Time-enableness is a required but not sufficient condition to include
transition to the firing step. The interpretation of the timing intervals is defined by the
timing firing rule.

39

Modelling and Verification of Discrete Control Systems

1. Strong vs. weak firing: with the strong rule all marking enabled (spontaneous)

transitions, which have pre-places with clock position equal to either low or high
time limit, are obligatorily inserted into the step (can be specified to make e.g.
either strong earliest firing rule, or strong latest firing rule). If the weak rule is
chosen then at least one of the enabled spontaneous transitions has to be included
in step.

Earliest vs. interval firing: In case of the interval firing a transition is time-
enabled at every clock position within the interval [I,h]. In the earliest firing rule a
transition is time-enabled if it has a pre-place with the clock value equal to the
low bound I of the time interval.

Ultimo firing: is a certain combination of the interval and strong rules: a
transition is time-enabled at every discrete time moment within the interval and

must fire at the latest at clock position equal to h.

In case if a transition has several incoming arcs with permeability intervals
[11,h1],[12,h2],...[1n,hn] then, to enable the transition all arcs have to be permeable, which is
achieved in the interval [I,h], where I=max(l;), h=min(h;).

Among all possible combinations of time constants and time-firing rules, some were
found of interest in some industrial applications. These combinations are presented in

Table 1.
Time Firing rule Interpretation
constants
1. I>0,h >1 Interval, weak Event is expected with minimum
delay I, maximum delay h, or may
not occur at all.
2. I>0,h >1 Ultimo Process must get terminated within
the interval [I, h]
I>0,h=c0 Earliest, strong Process has duration |, and all
3. simultaneously started processes
with the same duration finish
simultaneously
I>0,h=00 Earliest, weak Process has duration |, but
4. termination of all processes with the
same duration may be not
synchronized .

Table 1. Combinations of time-firing rule and time intervals commonly used for modelling.

40

V. Vyatkin © 2007-2011

The lower or higher time limits may or may not (depending on the corresponding
rule) force transition to fire. The "interval" firing rule accepts presence of empty
transition steps, when time elapses even in the absence of any enabled transitions. This
option may be useful if aimed at finding of all possible combinations of overlapping
processes and, correspondingly, simultaneous events. On the other hand it obviously
explodes the reachability space. Perhaps, the variety of choices discussed in this Chapter
is a bit confusing, but it extends the modelling horizons and allows more concise
description of models. The following example explains the differences between firing
options.

Figure 37. Timed version of a plant-controller interaction model

The following state-time diagrams illustrate different combinations of timed firing
options. The earliest strong firing rule forces to fire all transitions when the low time
bound is reached by clocks, at the earliest weak rule steps are formed from combinations
of time-enabled transitions, at ultimo the firing may occur at every discrete time value
within the permeability interval.

Earliest strong Earliest weak Ultimo - interval
Subsequent states
R‘ l A / A

Discrete lime 0 I
0o 1 2 3

3]
(P87
<
3]
(5]

a) b) c)

Figure 38. State-time diagrams representing different combinations of timed firing options.

41

Modelling and Verification of Discrete Control Systems

5.3 Implementation

Not all timing modes are currently implemented in the available model-checkers.

5.4 Restrictions

A transition with incoming timed arcs (i.e. [l, h] where 1>0) cannot be forced, i.e. cannot
have incoming event arcs.

42

V. Vyatkin © 2007-2011

6 Modelling of closed-loop controller-plant
systems

An industrial automation system can be considered to be built from two conceptually
different parts: controller and plant. The controller is a hardware device driven by
software code that performs data processing, communication and decision making, the
plant refers to the physical part of the equipment.

Figure 39 shows examples of such control systems. Figure 2,a shows control of the
liquid level in a tank The tank has an input valve that controls the liquid supply. Once the
tank is filled the valve should be closed. A level sensor (L) indicates the level where the
filling should terminate.

a)

Figure 39. Examples of automated systems: a) control of the liquid level in the tank;
b) manufacturing cell - an automated drilling station.

Figure 2,b presents a model of an automated machining process: drilling station.
Modelling of automation systems can be done in either open-loop or closed-loop way.
The open loop modelling usually is a more economical solution which bases on the
partial model of controller inputs which help to generate the outputs and then verify their
correctness.

43

Modelling and Verification of Discrete Control Systems

Figure 40 Closed-loop NCES model of the automated drilling station.

In the closed-loop approach exemplified in Figure 40, the model of the automated
drilling station system is composed of two independent components: a model of the
object (also known as plant) and a model of the controller, connected in a closed-loop by
control signals and process data. Both parts are modelled using a common formalism.
This approach allows for specification of desired/prohibited behaviour of the automation
system in terms of the events/statements related to the object rather than in terms of
input/output variables. The closed-loop approach is also beneficial in terms of complexity
as a feasible model of plant restricts the controller’s input combinations. The model of
plant not only generates the inputs of the controller but also receives the outputs and
correspondingly modifies its internal state.

Certainly the latter approach is more complex as the modelling of uncontrolled
reactive behaviour of objects is required. However its benefits overweight the extra work
needed. Both parts of the system (plant and controller) are modelled by NCES modules
with condition signal inputs and outputs. The connection between controller and plant is
implemented via logic level signals which are modelled using condition arcs. Event
signals are used in both models of plant and controller but not between them. In the
model of plant events may be used, for example, to model the causal behaviour of sensors
influenced from the observed processes. In controllers the event signals model the actions
explicitly defined as event-driven (say, event-connected function blocks in IEC61499), as
well as a lot of other internal operations: procedure calls, setting/resetting variables, etc.

The closed-loop approach allows for a number of application scenarios that can be
derived from the diagram in Figure 41. The scenarios include source-code based
modelling of the controller or controller prototyping by a model, as well as formal

44

V. Vyatkin © 2007-2011

synthesis of the controller. In all cases, the model of controller is combined with a

manually created model of plant.

Do

=l

formal
specification

model of
the plant

[synthesis]

I composition

model of the
controller

genersiion vansiaton

e S

analysis /
modelchecking

verification /
falsification

Figure 41. The framework for using formal methods in cyber-physical systems.

The prototyping scenario can be less resource-consuming during the validation if
compared to the source code based model generation as the model of controller may

cover only essential issues without implementation details.

Depending on the accuracy of modelling, the model of plant may include components
for each drive, motor, valve, electric relay, sensor, actuator, and other elementary pieces
of equipment. These component models may be integrated to composite models of

equipment units, such as machine tool, or other material processing and storage units.

Modelling of discrete controllers using NCES simplifies the assembling of the model
from the components. Besides, such key features of NCES as event/data connections
closely correspond to the latest trends in controller design methodology presented in the

new international standard IEC61499.

45

Modelling and Verification of Discrete Control Systems

7 Basics of Plant Process Modelling

7.1 Processes

The behavior of a plant can be seen as a concurrent (usually asynchronous) composition
of several processes, each of which has a start event s and ending event e, and some
duration D.

P

8 7
________________ | / o
1} -
A €
s, Ps e,

Figure 42. Asynchronous concurrent processes.
Process 3 initiates process 2 by sending a message.

7.2 Simple process model

Such simple processes can be modeled by the S/E Nets as shown in Figure 43.

P 3

Ttime-consuming
[/ /l] State (process runs)

[,

_next state (process ended)
o

2

Figure 43. Model of a simple process.

46

V. Vyatkin © 2007-2011

Usually we model states of the plant components as S/E net places with safe (0/1)
marking. In particular, for the processes with known minimal duration D>0 the time
limits may look like I=D, h=o0; In this case the model contains no obligation for the
action to occur.

If duration of action is not defined by an exact value, but bounded within the interval
[D1, D2] (0<D1<=D2) then I=D1 and h=D2. In each state with clock value as
D1<=clk(p1)<=D2 the action may finish, i.e. t; may occur.

Combination [0, D2] is interpreted as “no minimal duration, but maximal time limit
exists”.

7.3 Process with exception

To model a time consuming action (i.e. with 1>0) with exception possibility the initial
place p; is connected with two transitions: one of which stands for the normal operation
mode with duration as described in the previous case, while the other models the
exception, which interrupts the normal operation and may occur anytime within the
normal operation time.

In case if h#eo, the reached upper time limit forces only one of the transitions: either
ending the action normally, or abnormally with an exception thrown.

P 1 P
3 < &2 w
A y fime-consuming

[/. /IJ state (\process runs)

next stare
(process ended) ’[

l _next staie

£ (process ended)

O

Figure 44. Model of a state with an exception.

7.4 Two time scales: ticks in controller and time-elapsing in plant

Timing can be used in both plant and controller models to achieve adequate behavior of
the model. In return it allows for quantitative time estimations, or for solving
optimization problems like finding control strategy with minimal duration of the
technological cycle, etc. Once all the NCES modules have been interconnected into

47

Modelling and Verification of Discrete Control Systems

Signal/Event Net, the resulting net has common time unit. That is why for modeling of
objects with different time scale the minimum basic time unit over all components has to
be selected.

Every time increment brings the model to a new state, which, obviously means state
explosion if we try to decrease the basic time unit. This is especially sensitive in the
closed-loop models. The common sense suggest to accept the time scale of the most
relevant processes in the plant, and assume that processes in controller (or some electric
units of the plant, such as sensors, or relais) as having zero duration.

However some estimations in controller still can be done by measuring the number of
executed commands (or number of transitions in S/E N).

P, _

Figure 45. Program delay: model of the controller module which requires 100 commands for
execution.

Modeling of a program unit which takes 100 commands for execution can be modeled
as shown in Figure: initial place p1 is loaded with 100 tokens, and with every transition t1
one token flows from pl to p2 through the flow arcs with multiplicity 1 until all the
tokens come to p2. Then all the tokens come back to pl in one transition t2 through the
arcs with multiplicity 100.

48

V. Vyatkin © 2007-2011

8 Modelling Control Programs

Special industrial programming languages are applied for implementation of the
control algorithms in Programmable Logic Controllers (PLC). The most of the known
programming languages in the field were standardized in IEC 61131-3 in 1993
(IEC61131, 1993). The standard includes four programming languages: Instruction List
(IL), Function Block Diagrams (FBD), Ladder Diagrams (LD) and Structured Text (ST),
and a common element Sequential Function Chart (SFC) that serves for program
organization into logical steps and expressing the transitions between the steps.

Despite the successful standardization of PLC programming, there is a number
vendor specific programming approaches that have not been included in IEC61131-3,
although they are quite popular in certain application areas.

A model of the controller can be built based on the source code of the control
program. Relevant properties of system routines also have to be taken into consideration.
The source code based validation gives an additional assurance in the correct behaviour
of the system after commissioning.

The basics of the modelling of discrete controllers using place-transition formalisms
were developed in (Hanisch and Thieme, 1997). In general the modelling of controllers
can be split into the following sub problems:

e Modelling of system routines such as scan cycle;

e Modelling of PLC execution is related to the performance of PLC hardware
represented by times, instructions execution times, etc;

e Modelling of basic Boolean data and operations;
e Modelling of non-Boolean functions;

The use of NCES simplifies the assembling of the model from the components.
Besides, such NCES features as event/condition connections closely correspond to the
latest trends in controller design methodology presented in new international standard
IEC61499.

The following examples serve to illustrate basic principles of mapping from
commands of a programming language to NCES models.

49

Modelling and Verification of Discrete Control Systems

8.1 Data storage and assignment

Boolean variable cell can be modeled by the net having two places po and p; and two
transitions t; and t, as shown in the Figure 1. Setting of the variable is modeled by

transition t; and resetting by t;.

assign 7

A FALSE

resel <

sel

value [

Jd TRUE

verdiie

Figure 47 Model of a Boolean variable implementing also ASSIGNMENT of a value.

8.2 Linear sequence of commands

Consider how a linear sequence of two commands (e.g. A; B) can be modeled in NCES.
Transitions to, t; correspond to the commands A and B . Once t, fires it forces to start the
model of the command A. Upon completion of A, the transition t; starts the model of
command B.

50

V. Vyatkin © 2007-2011

- |
Stared|- -ﬂ—f[,—-o [~=9Start Ended

__ﬂ_‘sr] [JL;—-O:Start En:ler:lij—

Pr

:In':

H——e[] Ended

Figure 48 Model of a two commands’ sequence.

assign free]
| reset Jolwe 1
o ser

'I"I'.IIFHF.'

verfue

value vehiie

Figure 49. Model of an assignment operator.

8.3 Conditional choice

Conditional choice of type IF X THEN Sequence A ELSE Sequence B can be modelled
in NCES as shown in Figure 5. Transition ta has incoming condition arc which relays
value of X, and tg has incoming condition arc marked with not X. Since the conditions
are orthogonal, only one of the transitions is able to fire.

51

Modelling and Verification of Discrete Control Systems

FRTENARSE S

| —+ostare Ended—

“03kark Endad[}—

Startd

Figure 50. Model of a conditional choice operator.

8.4 Boolean operations

Since every Boolean variable is modelled by two places (as was shown in Figure 46), we
do not need a specific model for getting negation of a Boolean variable. As for the AND
and OR operations, they can be modelled as shown in Figure 6, a) and b)
correspondingly. Both models have two incoming event signals: compute and reset.
Computation of the result takes one state transition.

compute <+ compiite o
resel & resel o
X = 00 TRUE ‘l'E O RUE
0 'l :
) y o b). !

Figure 51 Models of Boolean operations.

52

V. Vyatkin © 2007-2011

8.5 Subroutine call

An example of a flowchart calling a subroutine is presented in Figure 52. The example
includes modelling of the data that is passed to subchart, modelling of the Boolean
operation, the subchart call and all the flowchart blocks.

| Start | [Start
g —
' | VARY = »z AND OUTZ |
Moyl w1 ‘ ~
~— -
- e = Mt — >
Sub_test \) ' ‘
INT = puat * !
IN2 = hpika Input3 ®

OUT1 ;= Dutputt "En VARY
OUTZ ‘= Outpit? -
OUTS := Cutputd | |

= I | TurMON OUTY |
| TURN OFF Cutputd i |

S
| Retum v
T N2

, it
TURN ON QUT3

"
el
Retum

Figure 52. Flowchart with a call to sub-chart

The main flowchart has a sub-chart call block, which invokes the sub-chart. The
flowchart passes five variables: IN1, IN2, OUT1, OUT2 and OUTS3 to the sub-chart. Four
arguments of these variables are passed by reference, one argument passed by value and
one is a local variable of the sub-chart. The modelling of the given flowchart and sub-
chart starts with the modelling of the local and argument-by-value variables.

The resultant model is shown in Figure 53. For the sake of simplicity it shows only
the modules modelling variables VAR1 and IN2, the module implementing the operation
AND over two operands; and two modules representing the logic of the main and sub-
chart respectively.

The NCES model of local variable VAR is modified as compared with the model in
Figure 46 as follows: an event input with an arc to the t1 transition is added. The input
provides variable reset at the moment when sub-chart is called. A NCES module is
necessary for the variable IN2 due to its passing by value (although IN2 does not get
modified inside the sub-chart in this example). It is modelled as the Boolean input similar
to the model in Figure 58.

53

Modelling and Verification of Discrete Control Systems

Thus, the local variables and the variables passed by value to the sub-chart are
represented as independent NCES modules. Variables passed by reference are treated as
global PLC variables and they can be modified directly by the sub-chart.

The NCES module corresponding to the main flowchart has two outputs that are
related to the commands - “TURN ON Output2” and “TURN OFF Output4”. All the
other provide the representation of sub-chart call mechanism - “SET SUBCH VARS”
and “CALL SUBCHART”, and “YIELD” serves for yielding the control after
termination.

P I W
") A -
gty 3 TR
4N A
O i L [P 7O e W ol
> o W' i |y
S BE
Chit | .,."J_. Yf/_ L
~ | U—fin— L S|

Je) s
/TN Wy A 1
. /1 ‘
|
|
8

S |
i 70 AL

= Erre i
x [4 3
S-p-n-nlo-np-

Figure 53. Full model of the sub-chart and main chart.

The sub-chart module has an event input labelled as “START SUBCHART”, which
initiates the execution. The input is connected by event arc to the “CALL SUBCHART”
event output of the main flow-chart module.

54

V. Vyatkin © 2007-2011

9 Co-existence of synchronous and asynchronous
behaviour

Usually transitions in models of plant represent start or finish of some time
consuming actions, while transitions in the controller's part of the model represent almost
instantaneously executed commands. Hence, when two transitions are enabled, one in the
plant, and the other in the controller, first the latter has to be executed. Consider a simple
example of process/controller communication as shown in Figure 54
(PlantObserverTest.xml).

ONg
T
DETECT :
STATEOrT —{:—o—T] 001: WAIT STATE=ON
i) | O s
K3
ﬂ 002: COMPUTATION
N +
‘A‘:':»\./' /v
STATE=ON | &
RE’-[E—/.\MS-E] 003: WAIT STATE=OFF
]u_ 004: JMP 001

Figure 54 Model of plant and observer.

The process is represented by the basic unit of plant which has two flip-flop states (as
up--down, left--right, on--off) modelled by places p; and p,. The transitions t1 and t2 are
spontaneous. First assume that the model is not timed (by ignoring the time intervals
attached to the arcs).

The block “Observer” makes an “instant photo" of the process, i.e. reads the value of
state in the loop (input DETECT) and when it is "ON" (i.e. m(p2)=1), performs some
computations and stores the value in the memory. When the state becomes "OFF" (input
“RELEASE”), the observer clears the memory and returns to the initial state.

55

Modelling and Verification of Discrete Control Systems

{1
Figure 55 Reachability graph of the model of plant/controller interaction.

If transitions in the observer were also spontaneous then, in the state shown in the
Figure 54, there would be the following enabled steps of transitions: s1={t2}, s2={t3},
s3={t2,t3}. However, the first step is not feasible: it reflects the situation when the event
occurred (m(p2)=1), but the controller does not start the corresponding action though it
was able to do so (was not busy), and the information about the action is lost.

Figure 56 Desirable and incorrect sequence of plant/controller states. The sequence presented in the right
Figure can never occur on the reality but is generated by the model.

9.1 Non-timed models

The first, “greedy” transition approach is aimed at non-timed models. All spontaneous
transitions in the controller (like those in the “execution logic” part) are marked as

56

V. Vyatkin © 2007-2011

greedy. According to the greedy firing rule, if a greedy transition is enabled, then each
executable step must include at least one greedy. This guarantees that all enabled
transitions (commands) in controller will be executed until the next action occurs in the

plant.

o)
o N
\ N\
\ '\,
| \ N3
1 " \
Ty - 77 i ¥ . \
STAT L8 | \
l‘l
J
% ."Jv s _“.;/‘l
= 3 «
wt { \
H ' .</ a "‘. 24}
, {4 > N\ 1y
: A o \ \
/ ~ (4] & _\ ‘-,‘
3 56,
i1l

a)
Figure 57 Reachability graph of the interconnected system. Trajectories eliminated by the “greedy” tick
generator are dotted.

To fix the behaviour of our model we introduce greedy transition tg connected to t3,
t4, t5 via (dotted) event arc. Since tg is always enabled, it fires at every state transition
sending forcing “ticks” to the commands in the controller no matter what is going on in
the plant. All the transitions t3, t4, t5 could be marked as greedy instead and that would
yield in this example the equivalent behaviour. But we prefer forcing such transitions
from the greedy “tick” generator for the reasons which become clear in the next section.

9.2 Timed models

In case of timed models, the use of greedy transitions in the former example is
obsolete - the desired behaviour is obtained automatically since at the clock value
u(p2)=0 (i.e. right after place p2 gets marked) the process in the plant is delayed, and the

only enabled transition is t3.

The only possible sequence of firing is: t3 -> t4 -> (after 1 time unit) t2 -> t5, if all
arcs in the controller model have zero-delay (i.e. time interval [0, «]).

57

Modelling and Verification of Discrete Control Systems

Figure 58 Timed model and its reachability gaph.

9.3 Testing timed NCES modules

a] [x]
S
STATE=ON |

)nll'\

M O:TeCT
STATE=OFF |

RELEASE

For testing of timed models one may develop a structure similar to that in Figure 58,
but with non-timed left “tester” module emitting random values in a loop. However, this
will lead to the situation when the time is not getting incremented in the right, timed part

of the model.

A cure can be to make the tester part also timed.

58

V. Vyatkin © 2007-2011

10Complete Example: Cylinder control

10.1 Object description

As the first example let us consider a very primitive control system of a single linear
drive implemented using a pneumatic cylinder.

11}
L

[CPU | Imipy JouTioy.

QS!art E n%j

Figure 59. Cylinder with two end-position sensors (Start and End) and two control signals FWD and
BACK.

The operation of the object is straightforward. Suppose we want to retract the
cylinder to its leftmost position and from there enter the eternal loop of moving forth and
back. To achieve this suppose we write the following program in Sequential Function
Charts (SFC) (as shown in the left part):

.
w
Bl TAY oy
FACEI= 1)
2 PENSTART R0 _ REVY
- | F— . - . -0

e SCECE
4

Bmm- 3 .
L Fwten

]

a) * b)

Figure 60. Control program in SFC language (a) and its model in NCES (b).

59

Modelling and Verification of Discrete Control Systems

Now let us try to study this program applying the formal verification technique. For that
we create NCES model of the controller, which is quite straightforward, the result is
shown in Figure 60, b. Then we connect the model of controller with the model of plant
as shown in Figure 61.

&l sTopP
& RESUME
FWD END posSTART
L o nFWD START posEND
o] BACK

’—(n_BACK

Figure 61. Block diagram of the Plant-Controller NCES model.

This model is provided with ViVe tool set and is called Cylinder.

10.2 Modelling the plant: Linear drive

The most typical motion process in automated machines can be modelled and
encapsulated for further re-use in the model of linear drive shown in Figure 62.

e
F
0 i A
X

Figure 62. Linear drive.

The model which quite precisely represents uncontrolled behaviour of the drive is
shown in Figure 63. Main modelled parameter is linear coordinate of the drive x.

There are 6 states distinguished in the behaviour of drive, two of which are dynamic
that means the speed is more than 0. The dynamic states are shown as circles, while the
other static states are represented by rectangles with rounded corners. Model’s inputs
include two control signals FWD and RETR for forward and backward motion
respectively. Input event STOP serves to relay all sorts of possible failure situations
during the motion.

60

V. Vyatkin © 2007-2011

LINEAR DRIVE

FWD

RETR

STOP,

RESUMESQ!

Speed

home
=0, x’=0

VD & wl RETH st FWT & RE

"'I‘TH“").I szr:'J)
Spmerl =0

uETR

L woe RETW .
&

RESIME end

x=A, ='=0

failure
- a2’=0

sTor

Figure 63 Continuous/discrete (hybrid) state-chart model of the linear drive.

The source of the failure is external to the model of drive, but consequence of the
failure has to be taken into account within the model. According to the model, input event

T

STOP leads to the static state “failure”, and input event RESUME enables transition from
that state to state “stop”. The model above provides the numeric value of x as a function
of time conditioned by the values of inputs.

In order to represent similar model by means of a discrete state formalism we

decompose functionality of the drive to most basic characteristics, for example as

follows:

- motion status (stands ready to move, moves forward, moves back, stands in

failure);

- motion position (depending on the used formalism can be either represented as a
numeric coordinate value, or as a discrete position).
This template is illustrated in Figure 64.

61

Modelling and Verification of Discrete Control Systems

—_ = [T WITO_ ok JO "~y Wt
Los LU

LI A
AAAn 4

I IELE L

Figure 64. Status-Position-Sensors template illustrated on the cylinder’s example.

Discrete model of the motion status is very similar in structure to the state-chart
model. In contrast to that, it is purely discrete and does not include time.

Status

g

Figure 65. Motion status of the linear drive.

The motion status model is illustrated in Figure 65. The model converts the values
of Boolean control signals to the status of motion — thus when all control signals go
off, the status must change from movement (either place 1 or 3) to stop (place 2).
Besides, external event FAILURE causes transition to the state “Emergency stop”.
Places in the model represent the following discrete states:

62

V. Vyatkin © 2007-2011

P, Motion forward
P, Stands still

P; Motion back

Py Emergency stop

The input signals of the model have the following meaning:

FWD Control signal “Move forward”
RETR Control signal “Retract”

STOP Event causing failure
RESUME Event that recovers failure

A specific feature of NCES modelling is that control signals need to be represented
by two condition inputs for positive and negative value of the signal. It explains by the
fact that sources of condition inputs are places, so to obtain the negation of a certain place
marking we would need to connect to a place complement to the source.

Transitions between states are driven by the values of inputs relayed to NCES
transitions by means of event and condition arcs. Thus, transition from state “Stands still”
(p2) to “Moves forward” (pl) is conditioned by the input combination “FWD and not
RETR”. The corresponding NCES transition t; has two incoming condition arcs from
inputs “FWD” and “not RETR”. Abnormal halt of the drive is conditioned by an external
event delivered via event input “STOP”. This event brings model from whichever motion
state to the state “Stands in failure”, which is recoverable by event signal “RESUME”.

The model delivers information about its motion status by means of two condition
outputs “Moves forward” and “Moves back”. Since we cannot get the continuous value
of X out of a discrete state model, there are several possible options exist how to
approximate it.

63

Modelling and Verification of Discrete Control Systems

Position

FWD

RETR

Figure 66. Simple timed model of the position change.

The most primitive way to identify position is to distinguish three positions: start, end and
in the moving in between the two. The model in Figure 66 gives correct results assuming
that the status of the movement never changes once it has started. Place p2 stands for the
state “in between” and it takes 75 ms to get in either state “start position” (pl) or “end
position” (p2). Should both condition inputs go off while the token is in p, there would be
no way to figure out the coordinate of the drive.

A more precise way to represent the coordinate with a discrete formalism could be to
divide the interval on segments and represent each of them in a way similar to that in
Figure 67.

Position

Fwp O

RETR

0

R S I | |

Figure 67. Model of position in the interval divided on 5 segments.

64

V. Vyatkin © 2007-2011

The resulting model of the cylinder can look like the one in Figure 68. Status and

Position modules here are grouped under composite model “Cylinder”, although this is
just a matter of convenience.

Cylinder

= Sensor
Status Position

Figure 68. Complete NCES model of the cylinder.

Controller

Linear Drive with 2 Position Sensors
MovingStatus::Status
g .
%
- 2
- -
: s
* —— PR }—<
N 5
—te - . 1= B A
S| —a
* 7
A/ -~
- N - v
_I% N ed o u
| i ¥
. T | « < -0
) 1
l /
. - A -
.
1

Figure 69. Complete closed-loop plant-controller model.

65

Modelling and Verification of Discrete Control Systems

10.3 Deadlocks

The first step in analysis of this model (Cylinder) using the
Visual Verifier (ViVe) is generation of its reachability graph. In
this case it consists of just 3 states. While doing this ViVe
reports that the reachability graph contains deadlocks. Thus,
without spending any time for step-by-step testing of the
program on the real object (or its model) we were able to tell
that the program drives the object to a deadlock state! This
already is quite significant result provided that for a more
complex object the reachability space may include a lot more
states and manual finding of a deadlock can take very long time.

7]
il

QO

Figure 70 Reachability
graph of the plant-
controller model.

The reachability graph for this simple control system consists of 3 states as shown in
Figure 70. Arcs of the graph are marked with the numbers of transitions of the NCES
model. The graph contains 1 deadlock state. ViVe can help with understanding of why

the model gets into the deadlock.

Thus, as Figure 71 shows, in the deadlock state 3 the controller cannot leave the state
MOVELEFT since the sensor START never becomes TRUE. The reason of that can be
found in the model of the plant. Models of both sensors initially are in state ZERO and
nothing makes them transiting to the state ONE. As a result, the controller stuck, waiting

for sensor START to become TRUE

66

V. Vyatkin © 2007-2011

B Visaad Verities v, 0.1
OF Asiestie fodyie Ootow et
@] 1] ©] 0o © Bl - (O S I ¥ - 11525 A
Vol |pG | Fome | Owen | #ual .
Pie —
=
o
i’ e) P17
=
o {u]
P
=
I
Pis
=
& — e]
P
=
'—{.'LJ
s -
; a =
:I' wes
= =
2
s hd
1 3
- 21 i
frangsout mve e ituk

Figure 71. ViVe shows the controller status in state 3.

The remedy for this would be initialization preceding model’s operation. The
initialization needs to set parts of the model to the appropriate initial states, e.g. model of
sensor START to the state 1. Given this hint we can modify the model of the plant so that
the overall behavior gets closer to the desired.

First, after introducing the INIT input signal as shown in Figure 73 (Cylinder_INIT
model) the plant adjusts values of sensors before the controller starts its operation.

NIT O
v

67

Modelling and Verification of Discrete Control Systems

(28,1427}

(22,20}

; i (23 21}
{23 |21; 6] mlts)
|

|
{81

(a1g)
o -4
{10

Figure 72.
Reachability graph

of the model with

initialization.

Figure 73. Closed-loop model with initialisation.

As a result, the overall behavior changes to have 15 reachable states as
shown in Figure 72. This model however also has a deadlock state. The
reason for the deadlock becomes clear after looking into models behavior
in the last 3 states before the deadlock. While the cylinder is in its
extended state (END), the controller jumps to the
‘STATE MOVINGLEFT’ and waits for the sensor START to become
true. However, the controller did not issue the control signal BACK !

This problem can be easily fixed by modifying step 9 of the
controller by adding the ‘BACK:=1" command. The NCES model also
needs to be modified accordingly. As a result the behavior becomes
deadlock — free as expected in the system that operates in eternal loop
(Figure 74). The corresponding model is provided in
Cylinder_CTLcorrected.

10.4 Branching

The reachability graph, however, contains a few states with several
outgoing branches and one may wonder what this model’s behavior
corresponds to in the real object’s operation.

Thus, state 3 has two alternatives: either ts fires or tos,ty; fire

together. The former corresponds to the model’s of plant evolution from
the state StSTOPPED to stM_BACK in the module MovingStatus.

The latter 1is controller’s transition from the state
STATE_MOVELEFT to the STATE_LEFT with setting to zero the

output signal BACK.

Since plant and controller operate concurrently either of these actions can occur
first in the real settings. However, if the latter occurs first it will make the former
obsolete, as there is no more signal BACK present at the input of the plant and therefore
there is no need to transition from the status stSTOPPED to the status stM_BACK. One

can see that in the branch S3—S5—-S7—...
S3—»S4—S6—...

transition ts never occurs, while in the branch
the transition step tp3,t2; 0ccurs right after ts.

68

o

(32,1427

©

{2220}

;]
AY
stz
o O
[

Figure 74. Deadlock-
free reachability graph.

Technically speaking, the reason for branching is the
interleaving semantics of spontaneous transitions used for
generation of theses reachability graphs — only one spontaneous
transition can fire at time (ViVe supports also other options: all
combinations of enabled spontaneous and maximum set of
enabled spontaneous transitions to fire simultaneously).

Other branching cases in the states S6 and S12 are of the
similar nature.

10.5 Deeper analysis

Although ViVe allows following various traces of a model’s
behavior in the visual way, for more complex models more
analytic methods of analysis are required, namely using
specifications formulated in CTL. Usually the following classes
of properties are of interest:

a. Liveness — i.e. deadlock-free behaviour

b. Checkpoints of the process or properties of the
product — assurance that the product always
satisfies specifications;

c. Safety —not entering certain ‘prohibited
behaviour’ scenarios.

10.6 Exercises

1. Develop an example plant — controller system where the controller gets into a
deadlock while the whole model is alive.

2. Develop a model illustrating the idea of a ‘dynamic trap’ where e.g. controller
enters eternal loop but the model of plant stuck.

10.7 Review questions

1. Why branching is observed in the behavior of the automated cylinder?

69

Modelling and Verification of Discrete Control Systems

11 Model Verification with Visual Verifier

11.1 Visual Verifier functions

The integrated environment for Model Assembly, Translation, and Checking (Visual
Verifier) inputs the model type files (in the XML-based format) and is capable of
assembling, translating and checking the models.

B Vil Ver it v. 0,14
Fie Aste Awiys Optaw About
] el 2l @] o0 W “— ey 1 S /3§ 13}31) ¢} 2
Mo 1eG | Eoer | Ok = CI . . S o I
o 3P:
. 2l
) I /l f——
//\7 [—J
*/ — T]
- 144 ’ 450)
- -
P
3
= -
.| A
[~
= T R EE R E R
et (3 oy A8 reie bty o a0 drii N (et

Figure 75. Visual Verifier screenshot.

Assembling means creation of a flat model from a composite, hierarchically organized
modular model using the modules from different libraries of model types. The component
model types are instantiated into NCES modules.

Translating the model into a “flat” NCES with the through numbering of places and
transitions (Figure 76). The inter-module connections are converted into event and
condition arcs between places and transitions. Thus the module boundaries are removed
and the model-checking tools can be applied. In particular, the translator generates files in
the input format of SESA model checker.

70

V. Vyatkin © 2007-2011

¥
-— " —|
& #__.‘ fo. 3 E S mamaes T meem—
- — - { — » F— — -
¢ LS - < . e Ry ooy
S 4 J— PR) e = IRy
——— = | - o oW —
By & = ” . e - sinn ’ L e
s o 7 . o —— P T T
e y » —
Jn % gorey C— ot —
e Lo . o V M - Y o L4 ety
e R I r 4 T s L
o e Ve
L Aol chmadt ey reniel

Figure 76. Visual Verifier creates a flat model from a hierarchical model.

Visual Verifier can prove specifications in the form of the first order predicates or can
pass the temporal logic formulae to the SESA model checker. The internal model checker
of Visual Verifier generates the reachability graph for the model, either completely or
dynamically while it checks the formula. It can also import a reachability graph generated
by SESA and visualize it.

Once a state with particular properties is found in the reachability space, Visual Verifier
can visualize a path from initial (or any other state) to the found one. The visualisation is
done in a form of state-time diagram for a selected set of system variables (both from
plant and controller). A user can select between different views and see the model in each
state. The visualisation options proved to be very useful in practical verification.

For documentation it is possible to export the picture of model or the reachability graph
in the BMP format.

Figure 77. Visualisation of a reachability graph

71

Modelling and Verification of Discrete Control Systems

11.2 Data formats

The data format of Condition/Event Nets is based on XML. The Document Type
Definition (DTD) of the S/EN model types is given in Annex 1.

The installation package of Visual Verifier contains a number of examples in that
format that will be commented here.

Model-checker SESA has its specific data formats which are explained in detail in its
documentation. It is important to remember that input for SESA does not include any
module information and has a through enumeration of network places and transitions
each starting from 1. For this reason SESA input format will be referred to as “flat”
model format.

FBT format is used to provide compatibility with IEC61499 and its supporting tools.
FBT is XML-based, but contains only a description of model interface. The XML format
for S/E Nets also contains interface part but their syntax is different.

The FBT files can be generated automatically for each S/EN module along with XML
file containing full model description. Then they can be used for creating composite
models as networks of interfaces interconnected via event and data connections in
Function Block Editor.

File extension: Basic S/EN module Composite module
XML - full S/E | Created by S/EN editor Created by S/EN editor
model

FBT — interface of | Created by S/EN editor Created by FBEditor
the model

Visual Verifier currently supports several input formats on NCES models:
For basic modules:
S/EN editors:

1. VIEd format: the editor of typed NCES developed at the University of Auckland,
New Zealand. The centre of axes is in the middle of the picture. The coordinates are in
pixels.

72

V. Vyatkin © 2007-2011

2. TNCES Editor

The editor was developed in Martin Luther University of Halle-Wittenberg, Germany.
The coordinates of elements are given in pixels, centre of coordinates is in the top left
corner.

Older editing tools and generators:
3. VISIO format

Coordinates are given in millimetres, the vertical coordinate axis is directed upwards;
Element's coordinate indicates the centre of the element.

4. Generated by MOVIDA generator

In addition to position coordinates some elements may have explicitly assigned size,
either via Width, Height or via Diameter parameter.

Visual Verifier has default sizes for graphic elements. If the size is assigned once to any
element in the model, Visual Verifier scales correspondingly sizes. If the size is not
present, then Visual Verifier takes this default scaled size.

For composite modules:

1. FBDK format: coordinates are measured in basic units that are equal to 1/10th of
interval between parameters of a module.

2. ViEd and TNCES Editor format.
3. MOVIDA Generator format.

11.3 Limitations

There are many input syntax limitations of ViVe which are not always properly
detected by the input parser.

1. Symbolic names of places, transitions, I/Os cannot contain spaces. Example:
Correct: TrueToFalse , True_To_False
Incorrect: True To False

2. Objects within a module cannot have same symbolic names, even in different
case. For example, event input “END” and place name “end” will be treated as the
same.

73

Modelling and Verification of Discrete Control Systems

11.4 A hint for clearer models

Sometimes NCES models can be overloaded with arcs which reduces their clarity. To
cope with this problem ViVe suggests 2 solutions. First you can select which graphical
elements to show, and which not, on the pane NCES of Options, as illustrated in Figure

¥
!)

a) All graphical elements are shown b) Only token flow arcs and numeric
identifiers of elements (e.g. p;) are
displayed)

Figure 78. Hiding event and condition arcs and timing intervals.

The second trick applies to the VIiEd NCES editor. To make the picture in the editor
clearer a special textual notation can be used in comments of the corresponding arc
destination elements. For example, in Figure 79 the same cylinder2s.xml model is opened
in VIEd. As one can see, not all inputs have graphical links. For example, the condition
input RETR in ViEd has no outgoing graphical link connections.

74

V. Vyatkin © 2007-2011

Lyt
m +
+ -«
¥ F * A . x
o - v ’ <
5 L
o - »
i
1 " e 5 of =t
. v o -
C] | v
Y. - -
™ ‘- Y { Ao i} b 1 X .
= FUN - h . 7: 7 Yol
e oS ¥ »* ™™ . B
° v s / -
e
o Wi
e 1 L J
o ®, b
e L -
e - Yo <
o
e : 2
- e > ik
e %)
@ — il
& 4 A~ o
= - v o
°
oL gi T
- 4 4 e
- -
S
. |
- | 51
/A S { wowe
{ wn s
’ »

Figure 79. Same model opened in ViEd.

One of these links goes to the net transition t;. If this transition is selected, as
illustrated in Figure 81 one would see its parameters in the right pane, including the
comment:

>PLANT EV
>RETR
>negMOVE

This comment defines arcs having their destination in t3 by enlisting their sources.
Actual type of the arc (condition or event) is not important as far as it is not ambiguous.
When the model will be opened in ViVe, the arcs will be created automatically.

75

Modelling and Verification of Discrete Control Systems

Me IR e Dyaes e
DSRE ARA il
A Brown Ala, o iwsex s !
FPYEE e ——
! =) R — wens
o "n . X B e
0 o L * 1 Pt Wit 1
(= h | a Henm
c v ’ —
¢ 1 L —_ LT v
- - |
.9 C . —te . | TR
. |
o s j2h » / e = S L vagacan
- v v 7
C | - x
- i - w1 ¥
P 4~ Acw ‘ - .
e 4 a7 R o el gl ol 3 S,
e Wisl T % * e -
o > T
o ¥o
C]
o S
e ~ - B 4
o . L,
e R - .
@ — Y
o
< ; 4
s . .
e L =
@ . il
pes - oy
e ~ - '
® o
- o i e
= - —T
s
o SFETR | #lit
b { unr
. | | v
5 |« ' '
T Aonee
v
xre ™ EndloreTl" AarWeighrsTl” TtamVeloe"" Coummte”
TR ——

Figure 80. Transition t5 is selected.

Such “symbolic” arcs can be established between:
Event input —> transition
Condition input -> transition
Place -> transition (condition arcs, not flow arcs)
Transition -> transition
Place -> condition output
Transition -> event output

In all cases, the link is defined at the destination elements using the syntax described

below:

> source [,source] [, source]

76

V. Vyatkin © 2007-2011

12 User Interface of Visual Verifier

A Visual Verifier screenshot with annotated screen areas is presented in Figure 81.

Tree view -
maodel nesting

structure

mstancet
MyMoadeiType

— f cotfit Instance2

PR [T eet \ TV

MyMode(Type

OB

i

‘ ‘

Figure 81. Visual Verifier screen.

12.1 Tabs

Madel | R | Editor | Check |

Model tab — Viewer of NCES model currently opened (if Basic) or currently selected in
the model tree view (after assembly).

RG — Reachability Graph — shows the generated reachability graph if
1) The graph has been generated (for that the model needs to be built);
2) The Geo checkbox is checked;

Editor — Edit the flat S/E Net.

Check — provides the tools for specifying CTL formulae and verifying the current NCES
model.

7

Modelling and Verification of Discrete Control Systems

12.1.1 Functional toolbars
Files toolbar

Open model file (*.xml)

Build flat model

Create reachability graph in the memory area 1

Alw | |-

Interrupt the model checking/ reachability graph generation

Specification toolbar:

=lalal | B

1 Open specification file;

2 Save specification

3 Look for a state complying with spec in the reachability space. If the space is not

generated yet, it will be generated on the fly until the desired state is available

Reachability graph toolbar

Geo |+

1 Geo check box — creates geometry of the reachability graph. Needed to
visualise the reachability graph (if unchecked the reachability graph still
can be used for model checking but cannot be visualised)

Trace toolbar

s = O I e I o 5 = x[3[3

78

V. Vyatkin © 2007-2011

1 First state number of the trace

2 List of intermediate state numbers. To add a number to the list: type the number in
the field, press “Enter”. To delete number from the list: select the number in the
pull-down menu and press “Space”. The path will be created trough all the
selected states (if such path exists).

3 Last (target) state number of the trace Generate Trace

4 Generate Trace

5 Load a trace from file

6 Save trace to file

Figure 82. To delete element from the states list: select it in the pull-down menu, and press
“Space”

Multiple reachability graphs toolbar

x| 1-2 2-1| 1 2|

Compare states of RG1 and RG2 (until first discrepancy is found)

Compare topology of RG1 with RG2 (until first discrepancy is found)

Compare topology of RG2 with RG1 (until first discrepancy is found)

Alw | |-

Navigation in reachability graph: Find the target state in RG1 and show it on
screen

Find the target state in RG2 and show it on screen

12.2 Typical sequence of steps using Visual Verifier

Step 1: Open the header file of the model

The header file is the module of highest hierarchy. If the header is a composite model,

then it refers to other model types whose instances make a network of modules. Open, for
example, src/book/NewCompositeModel.xml and you will see the following:

79

Modelling and Verification of Discrete Control Systems

,‘.‘JR‘.I_:.:.',QI el oy X i = ﬂﬁ"i' sofrala VI:T_J]

i
ot 156 | Eibw | Ok | *Halal [

MyMode(Type MyModelType

Y_INPUT colf————<1|MY_INPUT

coljr

N T
g <+ g
Tm _—

iuv L

R . |

e 1
+ » -
. ll1|

O e e e .
I et s (- TS0
S N e e L L s
Cl

\

2.The tree
is created

U R

.. and the =

flat C/E Net

Figure 83. Generation of the flat S/E net from hierarchically dependent NCES modules.

80

V. Vyatkin © 2007-2011

After the button “Build” is pressed, the model is assembled from model types. Then
the nested structure of the model appears in the Tree View window, and the flat model in
the Edit pane window.

Model AG | Edtor | Check | You can switch back to the Model view and
you will see that after the “Build” operation one
module has added to the network of modules. This
is the module dummy of type “Service”. This
module is needed to set values of those inputs of
other modules which are not assigned.

Switch panes
using tabs

The dummy module has two places — one always
empty and the other always full. It also has one
transition which is never enabled.

This transition is connected during the build to all
unassigned event inputs of all modules in ALL
LEVELS of hierarchy!

The always empty place is connected to all condition
inputs of all modules via condition arcs.

Step3: Generate reachability space of the flat S/E model

Then, if you check the “Geo” radio button the corresponding reachability graph will
be created. It can be viewed under the RG tab in the main pane.

81

Modelling and Verification of Discrete Control Systems

vz s = vty D w9 TN et

Figure 84. Reachability graph visualized in ViVe.

Step 4. Check specifications using internal model checker

The internal model checker allows check specifications given in predicate logic over
the state (marking) variables.

If the reachability graph has been already generated then the specification will be
checked on that graph. Alternatively, the graph will be generated “on the fly” until a
counterexample is found.

12.3 Model-checkers

ViVe has two built-in model-checkers and, additionally, can call external model-
checker SESA. The first built-in model-checker checks only specifications in form of first
order predicates, the other understands temporal logic formulae in CTL. As illustrated in
Figure 85, access to both built in model-checkers is provided from the pane “Check”. The
CTL checker (also referred to as STARK) is based on SESA and supports the same syntax
of the specifications as SESA.

82

V. Vyatkin © 2007-2011

B vl Vorttivy v 0 19

Llil o O & AG slalos
Modw | I fcon > ALY
Log window
of the CTL
checker

Parameters
and controls
of the CTL
checker

and controls
of the predicate
checker

Figure 85. The Check pane contains controls of both built in model-checkers.

12.4 Command line SESA

The command line version software tool SESA for the analysis of Signal-Net
Systems. SESA has been developed in 1999-2002 at Humboldt University of Berlin

(Germany) by Professor Peter Starke and his group.

\all\My Progs\iMAnew\sesa\SESA.exe

R3S
Version 1.6

Helcome to the Signal Het Analyzer S E 8 A
Humbo ldt—University Berlin

Current net options are:
token type: black
time option: no times
firing rule: arhitrary
synchros I not to
greedil I not

i i I not

maximal steps
used
used

Do You want to
edit ?
fire 7 .
analyse
read the s

delete the

change optio

quit ?
choice > _

LK
38 Sep 2802

Figure 86. Screenshot of SESA.

83

Modelling and Verification of Discrete Control Systems

SESA was developed in collaborative R&D project "Function Blocks™ conducted
with the group of Professor Hans-Michael Hanisch at Martin Luther University of Halle
(Germany). The project was funded by DFG - German Research Foundation. After the

retirement of Professor Starke SESA support by Humboldt University has been
discontinued.

In 2008, the group at The University of Auckland’s has created a new build of SESA
(SESAcmd) which is 64-bit capable. This means it can use RAM beyond the 2GB limit
of the 32-bit SESA.

The description of the command line version is in (SESA Manual, 2005).

With permission of Prof. Starke the code of SESA has been adapted and integrated
into ViVe as the second model-checker STARK (also referred here as CTL-checker).

12.5 SESA from ViVe

Another version of SESA can be called from within Visual Verifier (Menu
‘Analyze/Call SESA”). The built-in version of SESA allows checking specifications in
both Computational Tree Logic (CTL) language and in Predicate Logic.

245 SESA - waiting 3

SESA Analyzer for Windows W12
“ Humboldt-Universitat zu Berlin 12 Sep 2000
waiting computed states 4
bound=tiue
dead_trang=falze
dead_states=falze
formula EF ([m{p1)=1] 4... =true

Stop | E xit |

Figure 87. Calling SESA from Visual Verifier produces such a window

SESA goes through a particular verification scenario and stops after net pre-check is
completed. The button “STOP” is a bit confusing: in reality it means “CONTINUE”! So,
while SESA is busy pre-checking the “STOP” button is blocked, but when it stops, the
button becomes available. Pressing the button will conclude the reachability graph

84

V. Vyatkin © 2007-2011

generations and will start the formulae verification. After formula has been proved, press

EXIT.

The current version of SESA does not support timed NCES checking. So, if the
checkbox “Timed” in ViVe is ON SESA would stop reporting an error. In this case press
the “STOP” button to continue model-checking as shown in Figure 88.

214 $E5 - walting 53

2 SE50 - walting, 53
SR Ancho L Wirdome iz

Hurcod Uresssid da Bedd T2%ep 2N
v b

mow. | ned
narake

SE 54 S o W o
lf‘i Hurbobat Un veneat 2 Bxin

kg

2024 Timed
i
Jend_ilyeselniie
o aiue
dend_hoeseboe

S |

12Cap 2000

corgded vy 8

b)

Figure 88 a) SESA stops after encountering the “Timed” option. Just press “STOP”; b) The model-

checking continues.

The following table summarizes the dialects of NCES supported by these model

checkers.

Features

Timed firing rules
Interval ultimo
Earliest weak

Spontaneous transition

firing

Greedy transitions

Synchro sets

Specifications
Predicate logic
CTL

Analysis
Static analysis
Reachability graph

NCES
Colours
Priorities

Editor

SESA

X
X

-maximal steps
- single

X

X
X
X

X X

Visual Verifier

X
X

- all spontaneous,
- all combinations,

- single
X
X
X
Yes:
- for spontaneous

85

Modelling and Verification of Discrete Control Systems

transitions

12.6 Hints for analysing complex models

The three available model-checkers have different performance. For that reason the
following sequence of steps can be recommended.

1.
2.

Assemble the model.

Call external SESA (without entering any specification) in order to estimate the
number of states in the reachability graph. You can also enter some CTL
specifications, but SESA will be able to give only “YES’ or ‘NO’ answer without
providing a counterexample.

The built-in CTL checker is currently about 10 times slower than SESA as such,
but it can export reachability graphs and provide counterexamples for CTL
properties (which takes extra time).

The predicate checker (which is 3 times slower than the CTL checker, but does
not take extra time for loading the reachability graph) can be used for initial check
of model’s feasibility. With it you can quickly create a smaller part of the
reachability space and check if your model behaves reasonably. An indication of
non-reasonable behaviour can be too large reachability space (generated by
SESA). The predicate checker has two options:

a. Breadth — first search (default)

b. Depth — first search (selected by the “Recursive model-checking” check
box);

c. The “Check-on the fly” option allows checking a predicate without prior
creation of reachability graph. Graph generation stops when a state
satisfying the predicate is found. The created graph can be re-used for
checking other predicates and it can be incrementally extended if
necessary if the “->” button is pressed.

The CTL checker provides a choice of two firing rules: ‘single spontaneous’ and
‘maximal steps’. The first rule leads to interleaved firing of spontaneous
transitions and can eliminate some effects of a modelled concurrency. The second
rule handles concurrency better.

The predicate checker offers an additional rule: “all combinations of spontaneous”
which can be useful for modelling asynchronous concurrent processes.

ViVe can store two reachability graphs, generated by different model-checkers
and/or with different firing rules. The switch of the “Current RG” implies that a
relevant operation (such as generation of a trace to a state) will be applied to the
currently selected reachability graph.

. After reachability graph created by the CTL checker has been loaded, it can be

also used for checking predicates with the “Predicate checker” using the “Search
in the created graph” button.

86

V. Vyatkin © 2007-2011

12.7 Exploring reachability space

ViVe provides an option of looking into the reachability space by visualising the
reachability graph. After the reachability space is generated in either of the two internal
model-checkers, it can be visualised by checking the “Geo” box, which will assign
geometrical layout to the generated states. Then the reachability graph will appear in the
“RG” pane. This option, however, is beneficial only until the space becomes large. Here
the available navigation options are:

- Zoom/ Unzoom the graph;

- Select a particular state by clicking on it; The selected state becomes current, so
marking of any model part will be shown in this particular state if selected in the
navigation tree.

Clicking on a state opens the new window providing a

“| detail look on the state as shown in Figure 89. The
state and its immediate successors are shown in the
upper part. All states here are “clickable”, i.e. one can
“travel” through the graph without having visualised
the whole graph.

The lower part of the window shows the transition
steps from the selected state.

Figure 89. Selected State
window.

Another navigation option is via the “Timing diagram view” of a particular path in
the reachability space as shown in Figure 90. The path can be specified by its start
state, end state and a number of intermediate states.

87

Modelling and Verification of Discrete Control Systems

In Options window

one can salect the

which variables fo

show in the - : "
timing diagram .

3
PR

Clicking on the state area in
timing diagram brings this state
in the Selected State window

Figure 90. Navigating with timing diagram view of path.

88

V. Vyatkin © 2007-2011

12.8 Finding paths satisfying certain criteria

ViVe can find a group of paths from the initial state to the target state. This facility is
located in the “Check” tab. It works for a generated reachability graph.

Currently, it can find either certain number of paths satisfying one of the criteria:
maximum number of states or time duration not exceeding a limit. Clicking on a path in
the list will display it in the timing diagram window.

Figure 91. The paths search.

12.9 Metrics

The largest SNS model built with ViVe so far was built of 744 modules and contained
more than 6700 places and 10000 transitions. Its reachability space, however, was quite
small — less than 5000 states.

SESA reportedly can deal with reachability spaces of millions of states. More hints
for handling large model spaces in the CTL model-checker
If the model-checker stops without notice, most likely it is due to the “Out of memory”
problem. In this case, however, the reachability graph is saved to disc (file with the name
of your model and extension *.arc). You can explore this reachability space without
visualising the graph as follows:

89

Modelling and Verification of Discrete Control Systems

1) Quit and Restart ViVe;
2) Open and build the model again;

3) To minimize memory requirements in Options/View unselect all variables and
select just those needed;

4) Read the reachability graph (but don't try to create its geometry!);
5) Generate timing diagram to the last state;

6) Go along the timing diagram and by clicking on states see in more details how
many successors the state has. This may give you some idea of the RG structure.

In case if the model-checker crashes without a message (which is a symptom of the
“Out of memory” situation), you can do the model-checking in 2 steps.

First, build the model, then exit ViVe, then open model but not build it and directly
start generation of RG. The CTL checker takes the flat model saved during the previous
run and starts RG generation. Then follow the steps described above. The model-building
is taking extra memory which can be saved in this case.

90

V. Vyatkin © 2007-2011

13Verification of Properties

13.1 Overview

The validation of automation systems modelled by NCES can be performed by
simulation and formal verification via model checking. The simulation usually can follow
a limited number of scenarios in the system’s behaviour while the potential flaws can be
in those paths left out unvisited. The multiple scenarios may result from the influence of
some unpredictable factors, such as variable durations of some operations,
communication delays, malfunctions, etc. In contrast, the model-checking explores all the
existing scenarios.

The verification consists in proving specifications with respect to the dynamic
behaviour of the model. The specifications can be given either in form of second order
predicates, or in form of temporal logic expressions, for example in Computational Tree
Logic (CTL). The basic terms of these expressions in most cases are the “values” of
inputs and outputs (either of plant or controller) or, literally, the marking of the
corresponding NCES modules modelling the data variables. As the hierarchical NCES
model is converted into a flat S/E Net model this provides the through place/transition
numbering, and these numbers are used as references to the values.

In case of the lifter the following groups of specifications were of the primary
interest:

e Avoidance of potentially dangerous situations that may lead to a breakdown of the
lifter or to damage of the product being transferred by the lifter. Example: when used
in manufacturing of precise electronic components, such as hard drives, the lifter
introduced and described in Section 15.12 must never allow the situations when the
pallet leans or jumps. Such problem can be caused by inexact synchronization of
conveyors’ levels, which, in turn, may be a result of wrong synchronization of control
programs;

¢ Robustness of the system in case of malfunctions of some sensors;

e Control programs can have branching logic of execution. Formal verification helps to
prove that the response time is never exceeded in any feasible 1/0 combination in any
branch;

e Avoidance of deadlocks or “dynamic traps” that may result from wrong
synchronisation of operations;

91

Modelling and Verification of Discrete Control Systems

e Presence of certain “checkpoints” in any possible scenario of behaviour that
guarantees all necessary operations have been applied to the product in any
circumstances;

The overall model of the automated Lifter had 3 hierarchy levels and after assembly
from modules encountered 571 places and 828 transitions. However, the model-checking
of the normal behaviour (without modelling malfunctions in sensors) resulted in a
reachability space not exceeding 60000 states which was generated on a usual laptop less
than in a minute. This result reflects the efficiency of distributed state modelling with
NCES.

Besides the possibility to verify or falsify certain properties of the system, another
important advantage is that the method may be applied in absence of physical controller
and physical plant. Consider the following scenario: the manufacturing line where
conveyor modules, lifters, workstations, robotic cells, etc., is being installed. Mechanical
and electrical engineers do installations and tests of the equipments. The time for project
runs out, the deadline is approaching, but the control engineer had no chance to test the
line, since the physical equipment is not ready yet. In this situation the application of this
method (model-based validation with the model of controller derived from the source
code) may provide an environment for independent development of control, while the
physical plant is being set up.

92

V. Vyatkin © 2007-2011

13.2 Syntax of specifications

The combination of Visual Verifier and SESA allows verify specifications given as first
order predicates, and temporal logic formulas given in Computation Tree Logic language
(CTL). Note that at the moment syntax of specifications allowed by Visual Verifier and
SESA is a bit different.

A first order predicate is a Boolean expressions that uses marking of places or firing
of transitions as variables along with usual Boolean operations such as & - and, ! —or, ~ -
not, and brackets. In Visual Verifier specification can use only Boolean expressions over
marking (i.e. place is marked or not marked).

Example:
Visual Verifier | pl & ~p4 Search for states where
pl and not p4 marking of place p1>0 and
marking of place p4 is 0.
SESA m(pl)=5 Search for states where
marking of place plis 5
SESA (m(p1)=5)AND (m(p2)=2) No spaces are allowed
between terms in SESA
For Boolean marking:
AG(p1ANDp2)

NOTE: In Visual Verifier operands and operations MUST be separated by spaces. No
spaces are allowed between terms in SESA.

13.3 How to check specifications

1. Enter a specification, e.g. a CTL formula in the specification area. For example:
EG ((m(p1)=1) AND (m(p4)=1))

93

Modelling and Verification of Discrete Control Systems

P Amaviie Arwiym Optom Abost
@il &] O] 5w @ o < ki <] &1 %15 o] 12} 1] 2]
Mot |AG | Edber | Check | @l

Specification
area

ol

3)p2
e

| o |rm{’a-mu ‘

Figure 92. Field for entering specifications in Visual Verifier.

2. Go to the “Check” tab.

V. Vyatkin © 2007-2011

e = o 7 L 2 A z-l

<Commmniim e V¥ YT W' 200 twaht="A1 />
"

e A

Fwa— ¥ Tewed , Pt 1S | N)-ﬂ
i Ovachis ot CT Iowwdsn | Ocked ot peckosisy
Owch an tu by
P | Owck CTL sawele & 2]
— o] reets oty gion
Germsde it o
& | pe E Suve vactatity pich
& Iﬂndn-aﬂ,.dn
Frrgnm gnl-“'w'
1 Single ok seedat < s
7 Ml iopn oo
Frmg s b ot srwes
— wh & @
Freke - ‘ s
| I sote || vl e e
ET. T 7 © Mes
Do
@ Faxbogete
™ contmancrn
PG o bt
" & [~ Rscrasve pockceching
QJ Ciwd wwsn<) ereedege UIF S0 .
4 PRy i e T v v Lo T XML chaven e * st hawat acuions T, WD) her 5]
“ o Pl o Vol RCE S B 2 D0 dthns’™ D" 201005 187 Dyt aptions’™ &
<rtodacelint 5
— wt-ml'm-m-"-mu"m%aauvm:s
Cpinen Mo NG V1 27 Detene S0 0 Kawes 01" Nuwe ™1 Lochume’ 1" Vo' * Oock » "0 Casaotpe" V" Conmesta" '
g:-oa'/»v-v-vuw.v Hugrt=2r /s
< placen
! <place Xie 1B Vo BT Charwetons™ 0 0" Mirwew’ 12 Shirwe' 2 Lochhan"2" Nk =T Clocks 1" Cagracn™| " Corwmnt=_" .

End-. craphics i reac habdty arach srcx 100N madv.

3. Press the “Check CTL formula” button.

Examples of specifications are presented in 15.12 for the Lifter introduced in Section

15.11.

95

Modelling and Verification of Discrete Control Systems

14 Distributed controllers

14.1 Discrete-state model

Distributed control systems may include several autonomous controllers either
working asynchronously (with data exchange via network), or co-existing within one
device thus being synchronized. The distributed architecture may create new trajectories
in the system’s state space which are not the case in local centralized architectures.
Consider the case of two previously presented subsystems working concurrently.

e T
I— ;:»‘1 Mgl
— e

Plant-2

Figure 93 Two concurrent processes in the plant being observed by two independent controllers.

In the non-timed model the greedy transitions ensure that the model generates all
possible sequencing of commands. In the state presented in the Figure there 12 enabled
steps: {{tg1,t3},{tg2,t8},{tg1,t3,t92,t8}} X {{} {t2} {t7}.{t2,t7}}.

For example, { tg1,t3,t2},{tg2,t8,t2,t7}, {tgl,t3,tg2,t8}, etc. Thus, the step {tgl, t3}
models the situation when the Observerl has started processing, while the other observer
still has not.

The proposed solution allows easy change from distributed to centralized architecture.
To model placing both observers in the same controller device (synchronisation), it is
enough to substitute the two tick generating transitions tgl and tg2 by tg12 as shown in
the Figure 1. Then only 4 steps would be possible in the given state: {tgl2, t3, t8} X

{2} {4} {3}

96

V. Vyatkin © 2007-2011

14.2 Timed model

In timed models behaviour similar to the “greedy” transitions can be modelled by
means of synchro-sets. The synchro set model is implemented only in SESA model
checker (and in STARK). All transitions in the controller part of the model, which are
enforced by the arcs from “greedy” transitions in the non-timed model, are marked as
members of a particular synchro-set, associated with the controller. Membership in a
synchro-set has the only consequence on the firing of transitions: all enabled transitions
belonging to the same set are included in the firing step only all together. It has no impact
in the simplest case when a module has the safe marking and one firing spontaneous
transition at once. But in case of several simultaneous actions taking place in controller
there is need to separate them out from other groups of actions taking place in other
controllers.

Synchro set | Synchro set 2 _
O
Es B
Plant-2
= e x.
1. |0 I"j\';\ 4\.> 4
"4 *
| @]
[1 | N\ e _{/‘ 2
I }3‘, \r)"‘— —

Figure 94 Synchro sets.

In the example in Figure 94 we defined two synchro sets: S1={t3,t4,t5} and
S2={t8,19,t10} to model the allocation of the observers to separate devices. The
reachability graph for this model is presented in Figure with initial state S1 equivalent to
that shown in Figure 95 and with clock values equal to O at all places.

97

Modelling and Verification of Discrete Control Systems

(18) +] 48)

y {8 ,@) ,@ @ 3 .@ @ ,@ {6}
{6}

+1

Figure 95 Reachability graph for the timed model with two synchro-sets

(The “observers” reside in independent devices). The bold arcs have duration 1.

A path in the reachability graph corresponds to a particular scenario of system’s
operation. Consider, for example, the path outlined in Figure 3. The state/time diagram of
the model propagating along this path is shown in Figure 4. The behaviour along the path
is as follows: the observer 1 starts computation in respond to occurrence of the marking
in p2. It makes two computation steps before the observer 2 starts its execution in
respond to another event (marking in p7). Since the results of computations may be used
by other controllers, their sequence is important.

98

V. Vyatkin © 2007-2011

OFF — 1
Process 2

e ———.

ON [T
T = |
g
e

Figure 96 State/timing diagram of the outlined path in the reachability graph. (Small intervals represent

states with zero-duration, larger intervals represent states with duration 1).

14.3 Using synchronous transitions

To use synchrosets in SESA one needs to create a file with ext ‘*.syn’ and same name
as the model file. An example of such a file is as follows:

Synchro for net 1:
1: 188, 189;
2: 173, 175;

@

This file defines two synchro sets, one with transitions t188 and t189, and the other
with t173 and t175.

14.4 Synchro sets in ViVe

The model generator of ViVe automatically creates the *.syn file when assembles the
flat model if the parameter “timed” is ON and if the model includes greedy transitions.
All greedy transitions are included into the same synchroset.

To enable synchrosets when model checking with internal SESA, one needs to use the
“Maximal steps” firing mode. In the “Single spontaneous” mode synchrosets are ignored.

You can modify manually the *.syn file in order to define another “layout” of synchro
sets and then use either command line SESA or STARK.

99

Modelling and Verification of Discrete Control Systems

14.5 Example of different firing rules application

We illustrate differences between available firing rules in both model-checkers using
the following example.

Figure 97. Test model of two concurrent processes.

14.5.1 Non-timed
In the non-timed mode the timing on arcs is ignored.

100

V. Vyatkin © 2007-2011

STARK

Single spontaneous

Maximal steps

14.5.2 Timed
ViVe model checker

Single spontaneous

All combinations

Maximal

.
%

l|>\\

101

Modelling and Verification of Discrete Control Systems

STARK model-checker

Single spontaneous Maximal steps

14.6 Model modification: synchronous transitions

Let us consider how the behaviour of the model would change if we constrain the
behaviour of a single process by making one of the transitions synchronous as show in
the Figure below.

Figure 98. One transition is made synchronous instead of spontaneous in each model.

102

V. Vyatkin © 2007-2011

14.6.1 Non-timed
STARK:

Single spontaneous

Maximal steps

ViVe

Single spontaneous

All combinations

Maximal steps

All Greedy together

||
C- "‘n

All Greedy together

Combinations of
greedy

103

Modelling and Verification of Discrete Control Systems

14.6.2 Timed
ViVe checker

Single spontaneous All combinations Maximal steps

o o O
oM oNlodogolO)

; I \ 4 l .“ { Vl" //‘A 5 ’,‘_,» ;\\\ I 11, .
{ = y -

'\. 7 / +-—
m

STARK

In STARK, in timed mode only the “Maximal steps” firing rule is applicable if the model
includes synchronous transitions. These are interpreted as one single synchro set.

Single spontaneous Maximal steps

- Not applicable

104

below.

V. Vyatkin © 2007-2011

14.7 Modelling communicating processes

Communication can be modelled using the standard buffer approach as illustrated

Pro_ce»ssr 1

[/ .’\’ ol
e

8 ._‘_
! twad
o vV 5T

3 \T

.”\ p2

M 82

[
—'/r"L writy

[™

<'i_J ™ '_vl:-:_

A~
\\

f
14

Buffer
o> - "I v ",|
4 b
1 /
; ~(2 X m
L)l %)
_'.
\

Process 2
. §
T—K: l t v
,‘\ pe
\» -"In'.’
/]
Cofs o o

Figure 99. Model of two processes communicating via buffer of a unit capacity.

Process 1 Buffer

Process 2

Figure 100. Message passing between process.

105

Modelling and Verification of Discrete Control Systems

15Example of a distributed system: two cylinders

Now let us consider a more complicated example of a system with distributed control. In
the system of two cylinders in Figure 101 each cylinder pushes a workpiece to the
destination hole. The process starts when the workpiece appears in front of the
corresponding cylinder as indicated by sensors P1 and P2 respectively.

As it is clear from the Figure, cylinders can collide in the middle point, therefore the goal
of controller design is to avoid such a situation.

Workpiece presence

sensors P1, P2__ Fwb2

() HOME2

‘;: - | \ i (MID2
m' P1 ’

Workpiece

f_xzsmmmm::
‘. : () END2
HOME1 MID1 END1

Figure 101. Two cylinders with a potential clash in the middle.

There are many possible ways to achieve the desired behavior, which can be done by
designing a “central” controller of both cylinders, or a protocol ensuring that distributed
controllers collaborate correctly. Distributed control is of interest for many practical
reasons: imagine that control logic is “embedded” in each cylinder, so they can start
working as soon as powered on.

15.1 Reusing original controllers

What if we take the individual cylinder controller introduced in Chapter 10 and let the
cylinders to operate? A slight modification will be required to start the operation only on
appearance of a workpiece. For that we introduced new input “wps” (workpiece Sensor)
as shown in Figure 102.

106

V. Vyatkin © 2007-2011

| D'V—j:.’ \ JEQH
:
\. ':!,' PUN
& i , BTATE_MOVELE
o o | Lo
l STAT F
. q 1K >)
Y., STATE_MOVERIOHT
!
(i 1 —_‘ 114 b WCoft
* STATE_RIGHT
i]

Figure 102. Modified cylinder controller with the added “wps” input.

15.2 Finding collision

The entire model of two cylinders is presented in Figure 97. The module “materials”
models the position of workpieces. The workpieces can be pushed by the corresponding
cylinders. The cylinders have an additional output “exc_mid” indicating that the cylinder
is extended so that its tip exceeds the middle position. Cylinders collide if both exceed
the middle position.

107

Modelling and Verification of Discrete Control Systems

.
ARAa L

.
AR R

.
AN
L)

Figure 103. The model of two cylinders with a possible collision.

The role of the “collide” model (Figure 104) is to emit the “stop” signal after which
both cylinders will move to the “Emergency STOP” state encoded by the place p4 in
Figure 65. When cil and ci2 are TRUE, the model jumps to the p2 state and emits the
event “stop”.

Figure 104. Model of collision.

The model will automatically enter the deadlock in case of a collision.

108

V. Vyatkin © 2007-2011

15.3 Block — permit protocol

Now, let us change the control logic so that one cylinder would allow the other to move
only if it is not moving itself. For that we add an input “can_move” and output “permit”
to the controller module types. The model is shown in

Figure 105.

.
e

AAAA
AAAAT Y
.

-

Figure 105. Model with controllers’ coordination.

If this model is checked with the “single spontaneous rule” it shows no deadlocks,
implying that no collision of cylinders can occur.

15.4 Central controller

15.5 Exercises

1. Check the model of two cylinders with distributed coordinated control using the
“all combinations” firing rule. Explain the results.

2. Develop a central controller module for two cylinders.

3. Develop a supervisor module for correct avoidance of collisions with minimum
time losses on waiting.

109

Modelling and Verification of Discrete Control Systems

16 Modelling Programmable Logic Controllers
(PLCs)

16.1 System routines

Precise modelling of automation systems requires taking in account low level details
of the control program execution in a PLC. The PLC programs are executed in a cyclic
way. One cycle consists of the following phases: first the inputs are read, then the
program logic is executed and then the outputs are written. Figure 26 depicts a NCES
skeleton for a PLC model. Place p; holds a token representing the initial state of the PLC
execution, if the PLC program is enabled (condition input to the t; transition) the cycle is
started by the update of outputs and acquisition of input values. The firing of t1 transition
generates these events. When a token is placed to p2, it resides there until a signal
notifying about the change in the system enables transition t2. The monitoring of the
changes in the systems is needed in order to not start a new PLC cycle unless something
has changed in the system.

Skeleton

Figure 106. PLC model skeleton

The state of the NCES model is distributed and is defined by the marking of all
places. Additionally to the marking, the state is characterized by the time stamp, e.g. the
time the certain state (marking) is valid. Thus the two states representing the same
marking but holding different times are different states.

A special module that monitors the change in the system has to be added to the model
(Figure 107). The module has two event inputs for retrieving information about any

110

V. Vyatkin © 2007-2011

change of the PLC program variables during the scan cycle. It does not make sense to run
the model over the new scan-cycles if the markings in the model remain unchanged, i.e.
when nothing would change during the next scan. The marking may change in the model
of the plant or if the time dependent transition fires in a timer NCES module in the model

of controller.
Change_check

Figure 107. Change monitoring NCES module.

16.2 Ladder logic

Let us consider an example of ladder diagram in Figure 108. Textual representation of
the first rung of the diagram is given on the right. The textual representation of LD
resembles the Instruction List programming language.

4l L

| | .
RipF— | O STN Valve In

Tank_Full Yalve_In LD Tank Full

Figure 108 Tank control program

An LD instruction (that stands for Load) loads the value at 1X_Tank_ Full variable
into accumulator. At the second row, the negated value of accumulator is stored to output
variable QX_Valve_In that controls the valve. So, once the tank is filled, IX_Tank_Full
becomes TRUE, the FALSE value is stored into the QX Valve In, that will close the
valve.

In the given example it is just an evaluation of a single bit variable IX_Tank_Full. If
the variable was not met in previous racks its model will be added to the PLC model. The
PLC model skeleton is extended by the rack representation. In the current example, which
has only one rack, p3 place along with t3 and t4 transitions represent the rack 0. Figure 10
represents the PLC logic model. The whole PLC model consists of interconnected 1/0

111

Modelling and Verification of Discrete Control Systems

modules (Figure 46), a change monitoring module (Figure 107), and a PLC logic model

(Figure 109).

Y Ll

updae _outduls

ENABLED / . N | sampis_nputs
L O At "o g
not_Tank_Ful | / !
L}\\ / ‘ r
Sy, / G
Tank _F 25 \r '
SoaL_re —]:YQ—] ¢ |, Se1_Voi
C}—-C“ - B l S = "o 1_Valve_in
N & -~ | Awset Vave_in
— .
changn_octuted \ '111; - new_scan
o —o_} A
\ \\
.\
W\
W\
\\\. 1
'9"3 3]
|

Figure 109. PLC logic model for tank control program.

112

V. Vyatkin © 2007-2011

17Modelling of Complex Plants

In this Chapter we present more details on how the modelling of plant may benefit from
the hierarchical model organisation and the reuse opportunities provided by the extended
NCES. Thus, common modelling components may be reused in the same model and
across different models.

Models of the plant and model of the controller are interconnected into the closed-
loop providing the representation of entire system that consist of the controlled
equipment and control device. The combined model is subject for making a judgement
about modelled system properties by means of model-checking.

Depending on the required accuracy of modelling, the model of plant may include
components for each drive, motor, valve, electric relay, sensor, actuator, and other
elementary pieces of equipment. These component models may be integrated to the
complex models of equipment units, such as machine tools, other material processing and
storage units, and the transportation means. The approach presented in this section
extends the ideas of plant modelling of (Hanisch et al, 1998), (Hanisch and Luder, 2000).

17.1 Process/Sensor model

Event arcs are able to express the variety of instantaneous actions, one of which is
operation of sensor which detects the changes of the plant’s state. Once transition t1 in
the model of the process fires, it also switches the sensor ON by means of the event arc.
Model of sensor comes first to the transitional state (marking in p2) and after the delay D
— to the state with p3=1. Reading of the sensor usually comes to controller as a logic
value modeled in our formalism as a condition signal. The sensor itself can have internal
dynamics, e.g. delay D, as it is shown in the Figure 110, or an additional “malfunction”
state (not shown in the Figure, but similar to the “exception state” considered earlier.
Note that in the figure we model the “malfunction free” sensor which always produces
the required value upon elapsing the specified time D. Model of sensor can be either
simpler (just a bi-stable) or much more complicated, depending on the required results of
modelling.

113

Modelling and Verification of Discrete Control Systems

previous stale =

Sensor

o 3 C trolley
the state being — tocontroller

detected

next staie

Figure 110 Model of sensing: sensor detects when the process comes to the observed state and with delay
produces the required logic value (places p1,p4 of the module “Sensor”).

17.2 Tank

Common modelling components may be reused in the same model and across different
models. A common example of that is modelling of Boolean input and output variables
that can be seen in Figure 111 that represents a plant model of the tank from Figure 39.
The model of the plant has two Boolean variables corresponding to the valve and the
level sensor. The valve is modelled by an input variable while the level sensor by an
output variable. This is opposite to the model of the controller, where PLC program has a
valve related variable as an output and the level sensor as an input.

update [vae |
) \ ‘ SHO B

O MINUS HO &

4o Sample HG Sensor_On > PO PLUS {

ALV_ON | S C

re [1SETY VALY I~ 1 valve \ VALY I')-

A"‘#:(F (",,.. o = LB _Of | i
O————ae(] SETI VALD [— VALOD [}

] '

Figure 111 Model of the filling process —with valve input and level sensor output.

Figure 111 shows the model of the plant that embodies all the low level modules and
is ready to be interconnected with the model of the controller. The filling process model
of the tank has one condition input valve_open and one event input turn_on_Sensor.
Figure 112 shows (a very simplistic) model of the process in detail. This is a trivial
abstraction of the real filling process that has only two states (pl and p2) that may be
seen as not filled (p1) and filled (p2). Once the incoming condition signal of the transition
tl1 is TRUE for at least of 10000 time units (here 1 unit = 1ms) the t1 fires generating
output event that actually turns sensor on.

114

V. Vyatkin © 2007-2011

valvé_opan

Figure 112. Model of the filling process

N Fllling Up

Sensor_On

Models of the plant and model of the controller are interconnected into the closed-
loop providing the representation of entire system that consist of the controlled
equipment and control device. For the tank example, Figure 113 depicts the model of
interconnected controller and plant. The combined model is subject for making a
judgement about modelled system properties by means of model-checking.

Update
] ENABLED Vaive_On
——@(] Tank_Levell Valve_Off

‘_—C Tank_Level0

update
VALV_ON LEVEL_ON
VALV_OFF LEVEL_OFF

Figure 113. Closed-loop representation of the system at the highest level of hierarchy.

17.3 Conveyor

Let us consider the model of a conveyor shown in Figure 114, left side.

115

Modelling and Verification of Discrete Control Systems

Conveyor Conveyor
O FAILURE il ¥

Figure 114. Conveyor and the NCES model interface

We will use two different types of conveyors— one capable of moving only in one
direction, and another moving in both directions. The model of the more complex
conveyor can be created based on the simple model using the mechanism of inheritance.

The interface of the model type “Conveyor” can be seen in Figure 114, right side.
The model itself can be conceptually divided into three elements: Status, Position, and
Sensor as shown in the class diagram in Figure 115, left. The Status element of type
MovingStatus models the behaviour of the motor that drives the conveyor and converts
the logic control signals into one of the states “Moving” or “Standing still” (that
corresponds to the one-directional conveyor). Input “PRESENT” indicates if a pallet is
present, and input “FORCED” is used to indicate the influence of a neighbour belt on the
movement of the pallet. The output condition FW_ST is used by the model of belt
position.

The structure of the model of the bi-directional conveyor is identical to that of the
uni-directional one. The difference is in the module Status that has type
MovingStatus2D that inherits the interface properties of the one-directional
MovingStatus and extends them with one more input and output for the retracted
movement. This is shown in Figure 115(right). All transporters are equipped with a single
position sensor indicating the presence of the pallet (fully loaded on the conveyor).

116

V. Vyatkin © 2007-2011

MovingStatus

inputs
FWD: bool;

FAILURE: event;
Conveyor RESUME: event;
outputs
FW_ST: bool
— MovingStatus 2D
Status: Position: Sensor:
MovingStatus DiscretePosition LogicSensor inputs:

RETR:bool;
outputs:
RET_ST:bool;

Figure 115. Model type definition of the conveyor and inheritance of the MovingStatus model types.

The condition and event flow connections between the sub-models constituting the
model of the conveyor are represented in Figure 116.

CONVEYCR

|
nnnQnn-n
R
7 2
o

4
w e =
OO UUD

Figure 116. Modular view of the model of conveyor.

The basic models can be described further in form of NCES modules. Figure 117,A
shows an implementation of the MovingStatus in NCES. The model receives the control
signal FWD and transforms it into the state of the belt: place p, corresponds to the state
“belt stands still”, place p; — belt moves and ps to the state indicating a failure. The belt
moves when the control signal FWD is ON, and stops when the signal goes OFF (in the
model the negation of the signal FWD goes on).

An occurrence of a failure is indicated by an external event that may come from the
corresponding model. For example, that can be a nondeterministic model of failures. Note
that the model is sensitive to failures only when the belt moves, i.e. when the place p; is
marked. It is assumed that the failure can be fixed by an external interaction indicated by
the event input RESUME.

117

Modelling and Verification of Discrete Control Systems

The model MovingStatus2D for the bi-directional moving belt is shown in Figure
117,B. It models an additional state of backwards moving, and correspondingly has more
transitions between the possible states.

The position of the pallet on the belt can be modelled with different precision. A
qualitative model in Figure 118 distinguishes only 3 states of a pallet on the belt: no
pallet, pallet on the belt with its front edge between the belt’s ends, and pallet’s front
edge is beyond the right end of the belt.

A more precise modelling of the position can be done using the timed version of
NCES. Let us assume that the belt is three units long and the pallet is two units long as
shown in Figure 119. The speed of the belt is one unit of the length per second. Then it
will take three seconds for a pallet to reach the right end of the belt and 2 more seconds to
leave the belt completely.

@ MovingStatus MovingStatus2D

res Legend
B]
l) -moving
T [0 forwand
RS hl\‘)."l:-n‘)l'-ﬁl":l
B Py-moving hack
G i
P y-Toilare
< <
Legend: py-movieg

P
I
- 3]
Pstanding
S 1
Fy-Taikae

Figure 117. Models of the moving status for uni-directional and bi-directional belts.

Place p; corresponds to the state “No pallet”. When a pallet appears (input condition
“Present”) and the state of the moving belt is “Moving forward” (indicated by the input
condition FWD) then the transition t; occurs and the token goes to place p..

118

V. Vyatkin © 2007-2011

Position Legend:
Present C -no palle : he
— P00 pallet on the belt
2 In)
FwvD O Po-pallet moves on the belt
Po-front edge of the pallet
reached end of the beht
RETR O > Sens ON

> Sens OFF

Figure 118. A qualitative non-timed model of the pallet’s position.

This place indicates the state “Front edge of the pallet is in the interval 1 of the
conveyor”. Another reason to transfer to this state is the presence of the input condition
“Forced”. This condition indicates that the pallet is pushed onto the belt by some external
force that maybe another moving belt positioned backwards to this one. This option is
modelled by transition t;,. In general, the moving in this case is slower than if driven by
the own motor of the belt. The presented model, however, does not cover with enough
precision the case when both forces are present simultaneously. Note that the transition
from p; to p, (either via t; or t;y) is a qualitative one and does not take time (more
precisely has zero delay).

The places p,-p4 correspond to the location of the pallet (again the front edge) in the
intervals 1-3 respectively. A transition from interval i to interval i+1 occurs in either case
“FWD” and “Present” or “Forced” and “Present”.

The latter, however, works only till less than the half of the pallet is on the belt —
beyond this point the friction force would not let the pallet move driven only by the
external force. The moving to the next interval takes 1000 ms if driven by the own motor
of the belt or twice as long under the external force. The backward moving from interval
i+1 to interval i occurs if the combination of input conditions “RETR” and “Present” are
true. It also takes 1000ms under assumption that the speed of the moving belt in both
directions is the same.

Arriving of the pallet to the 3" interval is indicated by the sensor. This is modelled by
two event outputs “Sens ON” and “Sens OFF” associated with firing of transitions tg
and tg or ty;, respectively. The sensor goes off when either the front edge of the pallet
moves backward to the interval 2, or when the back edge of the pallet leaves the belt in
forward direction (and the pallet completely disappears from the belt).

119

Modelling and Verification of Discrete Control Systems

Position

O Sens ON

¢ =X)) | RETR

A \ ’
0 '.
' T

Figure 119. Model of the position of the pallet on the conveyor discretized on 3 intervals.

This model can represent the state of the pallet on the belt with better precision. However,
it has other limitations. In particular, let us consider how the alternative kinds of
movement are modelled. A place indicating a position (e.g. p3 indicating interval 2) has
several outgoing arcs (p3-t4, p3-t5 and p3-t14) marked with non zero time delays
([1000,00], [1000,¢], [2000,00]). Transitions that are targets of these arcs have condition
input signals that represent alternative control signals (RETR, FWD, Forced). Any of the
transitions will fire when it is enabled by marking, conditions and time. It is important
that all these conditions are mutually orthogonal (alternative) and they never change
values within the minimum delay of the place (1000 time units in our case), otherwise the
model will not work as intended.

120

V. Vyatkin © 2007-2011

Linear motion

Status Position

Figure 120. The complete model of the conveyor with sensors

17.4 Boring station

We illustrate the component-based system design and re-design with the help of a simple

Figure 121. Structure of the production cell: a processing unit (drill), a transportation unit (carriage), and a
logistics unit (loader).

121

Modelling and Verification of Discrete Control Systems

Drideg 1500

DRl CARMAGE

ANEAN

Voair WAy Hetatinn Linear Voieg WOk e

Figure 122. Structure of the boring station represented by UML class diagram.

It consists of a boring machine (drill) and a carriage, which delivers work pieces to
the home position of the drill. The loading/unloading of the carriage is performed by the
loader in the loading position that is opposite to the home position. This example allows
illustrate various phenomena arising in component-based industrial systems, e.g.
concurrent operations in different components, or impacts of reconfigurations, such as
substitution of one component by almost functionally equivalent one, having slight
differences in interfaces, dynamic properties, etc.

Structural model of objects can be defined by means of UML class diagrams as
exemplified in Figure 122. The drilling station is represented as an object, composed
from 3 components: drill, carriage and loader. In the drill two processes are outlined:
vertical linear movement and rotation of the spindle. The car is represented by its
horizontal linear movement and by the load status: presence/absence of work piece on it,
status of the work piece (blank, drilled). The loader’s internal structure is not outlined in
this model.

Sample constituent parts of the system are described in the following Table.

Drill: Spin motor M; rotates the bore of the drill.

—— /A F The step motor M, moves the spindle in vertical

n i 3 . &) v direction. The motor is controlled by two Boolean
_]u J| level signals: LIFT and SINK. These signals

b s Ay e connected in parallel to the spin motor: thus the

drill rotates always when the step motor moves the
spindle. Position of the spindle is detected by two

122

V. Vyatkin © 2007-2011

O o O @ 1 home

fwd —

Loader

excrange> T[]

®

load

waded

ready

logic sensors: UP and DOWN.

Carriage: This type of carriage has two actuator
signals moving it in two opposite directions. The
sensor LOADED detects presence of the work
piece on the carriage, and sensors HOME and
LOAD detect the home and load positions.

Loader: The loader is independent and autonomous
unit not controllable within our application. If loader
is in the appropriate state (indicated by the output
signal READY) it accepts only one pulse signal
“EXCHANGE WORKPIECE” that starts the
exchange procedure which consist in approaching of
the loader “grip” to the workpiece, lifting, putting
the workpiece to the storage, taking new blank
workpiece and installing it onto the carriage.

17.4.1 S/E Net model of a Boring Station

Structure of control system of the boring station with centralized control is presented as
in Figure 123. Modules representing plant and controller are interconnected via Boolean

signals.

e e o

N] L
M
o MLJ

123

Modelling and Verification of Discrete Control Systems

Figure 123. Closed-loop centralized control structure of the boring station.

Beyond the interface abstraction of the controller can be a control program, written in
one of languages of IEC61131, or any other way defining outputs as functions of the
inputs and internal states (e.g. state chart model, Boolean functions, etc.).

According to the structural description in Figure 122, where 3 constituent units are
distinguished, internal structure of the model is presented in Figure 124 as a network of
models of the units encapsulated into the module with the same interface as that of the
plant in Figure 123.

e — — — —
S—

Figure 124. Model representing internal structure of the boring station.

This structure may serve as the basis for description of model with distributed control,
as it is shown in Figure 125. The model retains the same structure of signal connections,
changing only content of the constituent modules: instead of models of uncontrolled
behaviour they represent plant/controller closed-loop models. Input/output interfaces are
left to allow manual interaction into process (all control signals are connected to
corresponding parts of plant via switches, controlled by the parameter signal
“AUTO/MANUAL”).

124

V. Vyatkin © 2007-2011

:
ey W i O 5
U =]

werrosd

P et = S
¥ IN
. S 3
r"":
F
3

[
|

Figure 125. Modular model of the drilling station where components correspond to units with local

control.

17.4.2 Controller
The controller of the Boring station is shown in Figure 126.

125

Modelling and Verification of Discrete Control Systems

1
1
1
1
I

L

(S

Ll

Sy B

|

2!

|
I

J

Figure 126. Modular controller of the object Drill/Carriage.

Sequential controllers of Drill and Carriage are presented in Figure 127,

4]
- TITENOT U

[z J-{ii]

NITEUP -'-

- P

>I WAITNG |-< LIFT.»0

LOCK: 0

\
= DR_EV
Y

I DRILL l—*:mu.:w

LOCK: =1

Y
| uFrng f{uFT=t
DRILL =0

NIT & HOME

<

<|<§<|<

E"
e
v 2

NOT STOP & LOADED

HOM

m

\ 4
@
(=}
=
z

G FWQ =0

< i<

CO_IT=1
NOT STOP

=
< |2
E
;

LOAD and READY

UNLOAD UNLOAD =1

X

net LOAD

b)

Figure 127. Controllers of a) Carriage and b) Drill.

126

V. Vyatkin © 2007-2011

17.5 Model of Drill

The next level of description concerns with structural and dynamic models of single
constituent units, in this example CARRIAGE, DRILL and LOADER.

The drill comprises two functionalities: linear movement and rotation.
Correspondingly its model can be decomposed onto two parts as shown in Figure 128:
linear movement and rotation.

DRILL

Linear Moving Rotation

Figure 128. Structure of DRILL.

The two distinct functions are reflected in the structure of the block, representing the
DRILL — it contains two blocks for the two mentioned processes, interconnected by
signals according to the influence which they have to each other. As it was earlier
defined, control signals LIFT and SINK serve also to switch the rotation. This is
correspondingly reflected in the model: both signals are also connected to the switching
input ON of the MOTOR. In turn, the flag “ROTATES” informs the model of linear
movement about rotation status of the spindle. The need for this will be explained below.

Both processes (linear, rotation) are observed through corresponding sensors. This is
represented in Figure 129: the model of linear movement is decomposed onto the
dynamic model producing numeric coordinate, and two sensors, generating the values of
sensors given the coordinate. Note that the FAILURE output of the DRILL is
disconnected from the FAILURE output of the block representing LINEAR model,
according to the description of the DRILL this information is unobservable by controller.

127

Modelling and Verification of Discrete Control Systems

DRILL TYFE 1

LINEAR MODEL WITH SENSORS

A 1%0,110]

SPIN OFF

TTOM
STOP sump—-)—
k TORQIE E
nDt. ETART
FL‘ START =g

QUE

w‘/_/ T

t START ROTATES

no
K=-TORQUE
SLOW DOWN

FAILURE

PRESENT
ROTATES

[Facure |

e [powni_pos] =

Figure 129. Structural model of DRILL encapsulating models of dynamics in form of state charts.

17.6 Variations

Two possible variations of drill’s type are shown below in order to illustrate their

influence on the structure of modelling.

17.6.1 Enhanced Drill

128

V. Vyatkin © 2007-2011

spin

iR up

mid

Sink
% down

home

Figure 130. Enhanced drill has middle position sensor and separate control of the spin.

As opposed to the previously considered DRILL, in the enhanced drill the spin motor has
a separate control signal SPIN independent from the step movement control signals. This
potentially allows early spinning off the bore during the approach. Additional sensor of
middle position is provided in order to optimize timing of the processing: this position
corresponds to the upper edge of the work piece, spindle can approach the work piece
while the carriage is approaching the home position. The sensor is ON whenever the
spindle is below this position. Sensor HOME indicates presence of the carriage in the
home position.

DRILL TYPE 2

[P SIS

J

Figure 131. NCES model of the enhanced drill.

129

Modelling and Verification of Discrete Control Systems

To produce the HOME signal the model needs the numeric coordinate of the carriage
which can be provided by the model of carriage. This input is not used if the block
represents interface to real drill.

17.6.2 Advanced Drill

In addition to the drill of type 2, a couple of extra logic sensors are provided:
ROTATION that goes ON when the bore spins off fast enough to start drilling, and the
light-screen sensor that issues the FAULT signal indicating presence of foreign bodies in
the vicinity of the drill.

These add-ons allow for smarter control of the drill in order to save power, improve
timing and secure better safety.

rotation

! [@ fault
spin — M ‘I |

Y

mid

li

[S B A @ up
-®)
®

dawn

@ home

Figure 132 Advanced drill

Besides, the analog sensor Y provides the integer value in the interval from 0 to 100,
indicating location of the spindle on the vertical axis (value O corresponds to the UP
position, value 100 — to the DOWN position).

130

V. Vyatkin © 2007-2011

DRILL TYFE 3

: »

e

— e —

95,300}

\ J
Figure 133. NCES model of the advanced drill.

Both models share the common model of linearly moving part of the drill with 3
position sensors. The model is presented in the following figure.

LINEAR MODEL WITH SENSORS (TYPE 2.3) !

[45,%00] JLIMIT |

(%0, 300]]

L |PCS

L)

Figure 134. The model of linear movement with sensors.

131

Modelling and Verification of Discrete Control Systems

This model refers to the same model of drill’s dynamic as the one used in the similar
model of the drill of type 1 (Figure 129). To be useful for both simulation and analysis
purposes, the models shall exhibit dynamics of the corresponding object, as well as
definition of states exhibiting erroneous behaviour. Thus, incorrect control signals shall
drive the model to the erroneous states as that would happen with the real object. This
approach will be illustrated below on examples.

17.7 Modelling dynamic and logic of processes

Even primitive dynamic processes such as linear movement of drill’s head cannot be
efficiently described by pure mathematical equations in presence of logic control signals.
The model has to be hybrid, i.e. include both mathematical definition of the coordinate
change, along with the logic model of state switching. For this purpose we develop
Modular Dynamic State Charts (MDSC). These are customized UML State Charts having
an explicit input/output interface of S/E systems and a customized set of state shapes,
corresponding to particular dynamic properties of parameters.

The first part can be represented as the following S/E module:

THEADT

F MCODEL OF DRILL

%

1 Idle_dn? © |dle_up?

: l‘ Vh'l_cw.‘vmﬂ

Figure 135. Parameterized module — model of DRILL.

The module’s interface reflects the fact, that usually the control actions are
transmitted to the plant by level Boolean signals (LIFT, SINK in this model). The model
also needs some information about the external environment: the condition PRESENT
stands for the workpiece status, and ROTATES informs model about the spinning status
of the spindle. Depending on the values of these two conditions, the linear moving may

132

V. Vyatkin © 2007-2011

have different speed in the lower part of the moving interval, e.g.: the drill cannot move
down if the spindle does not rotate, but the workpiece is present. On the other hand, if no
workpiece is present, rotation of the spindle does not influence vertical movement.

The model delivers two output values: numeric output POS represents vertical
coordinate of the drill’s head, and logic value FAILURE is integral condition
representing all sorts of incorrect or failure situations.

POS

Figure 136. Drill's vertical
movement axis.

As shown in Figure 136 the coordinate variation limits are 0
and 100. The higher edge of the workpiece is assumed to
have vertical coordinate 50. The state chart model of the
linear progress of the drill is shown in Figure 137.

The dynamic state chart is built from states (rectangular
shapes) and state transitions (arcs) marked with Boolean
conditions. In the chart in the there are two types of states:
fixed position states UP_POS (POS=0), MID_POS
(POS=50), DOWN_POS (POS=100) and dynamic states with
linear change of parameter POS as POS=POS4+kdt, where
the coefficient k is speed of moving, dt — time increment,
POS,q is previously calculated value of the parameter.

133

Modelling and Verification of Discrete Control Systems

UP_POS
POS<O0

not LIFT & not SINK DESC

LIFT & not SINK

poOS -~ LIFT J POS
[. sTOP ‘

=Vidie un SINK _ k=V,

iale_dn

not LIFT & SINK MOV_DOWN

LIFT POS=50

MID_POS

SINK & not PRESENT

POS=50

SINK &PRESENT &

not ROTATES

SINK &PRESENT & ROTATES

POS=50

MOV IDLE LIFT & not SINK LIFT IDLE LIFT_IN LIFT & not SINK DRg-L
POS LIFT POS LIFT POS
x POS FAILURE i
STOP_IDLE ' STOP_IN
. lk=- 7 =
K=V gn SINK _, k=uV,) K==V o SINK_K=Viaem
not LIFT & SINK not LIFT & SINK:
LIFT &PRESENT & not ROTATES i
ot ETFT & mot STHK not LIFF & not STHR
LIFT & not PRESENT LIFT & PRESENT & ROTATES
POS=100 =
DOWN_POS £05=100

Figure 137. Modular Dynamic State Chart model of the linearly moving part of the drill.

The model describes the uncontrolled behaviour as follows. The spindle moves free in

upwards.

the upper part of the axis, no matter whether the workpiece present or not. When the
middle position is reached and the control signal SINK remains ON, the spindle
continues its moving downwards. Should the workpiece be in the home position, and the
bore spins, then normal drilling goes on. If the drill does not rotate, then it just hits the
blank workpiece and a failure occurs. If no workpiece is present, then the drill moves
down idle, with the speed higher than that of drilling. The same applies to the moving

Note, that the presented model does not assume presence of the MIDDLE position
sensor. It only generates the POS numerical value. Thus the model applies to all types of

drills being in consideration.

134

V. Vyatkin © 2007-2011

17.8 Verification model in NCES

The NCES formalism has been especially tuned for the needs of heterogeneous
modelling of systems combining synchronous and asynchronous behaviours. The
modelling in form of place/transition nets allows efficient handling of distributed state
models with concurrent synchronous/asynchronous behaviour.

The modular S/E interface that provides event and data inputs and outputs to the
model, makes the models semantically equivalent to Condition/Event Automata
introduced by Kowalewski and Chen. It also can be easier converted to the Net
Condition/Event Systems. Thus the application schema is proposed, as illustrated in the
following figure:

Dynamic
StateCharts

Dynamic Discrete Timed Discrete

modelling Finite State Model | |Finite State Model
function block in Net in Timed Net
programmed as Condition/Event Condition/Event

Execution Systems Systems

Control Chart

Figure 138. Development scenarios.

An initial description of the model is given in the intuitively clear form of Modular
Dynamic State Charts. Then the equivalent simulation program can be automatically
generated in the form of IEC61499 Execution Control Chart and algorithms to be
encapsulated into a function block and further into a component definition as it was
shown above.

17.9 Carriage

Model of uncontrolled behaviour of the carriage consists of two relatively
independent models of: 1) linear movement and 2) load status. Placement/removal of
workpieces onto the carriage is indicated by the corresponding events PLACED,
REMOVED and is possible, according to the model, only in the load position of the
carriage.

135

Modelling and Verification of Discrete Control Systems

|
OO O

wdil ©) 1 m

—l M H waded
Back _/_I

Figure 139. Carriage

Similarly to the model of drill, the model of linear movement consists of the hybrid
dynamic model and two blocks representing logic position sensors.

=

| LoAD

BACE

HOME

[mu‘y -
i
ﬁ i
K ros []

Figure 140. NCES model of the carriage

136

V. Vyatkin © 2007-2011

17.10 Loader

Loader

unload O (7
@ reagy

Figure 141 shows the model of overall behaviour of the loader, which provides
mapping between input parameters (control signals) and output parameters. No internal
structure of the loader is outlined, no information about its controller is available.

Note the differences in interfaces between the left figure representing input/output
interface of the loader, and model on the right, which requires also information about
presence of the workpiece. When the interconnected model is formed, this information
can be provided by the model of object formerly possessing the workpiece.

Output event signals REMOVED, PLACED indicate the events when a workpiece
correspondingly is grasped by the loader or released from it.

UNLOAD
' AEPRDACH
REMOVED

[P_F/
05
PRESEN'

=10g
T v
Pos

=T, N~
LIFTING

Aad., ... 4
k=-V,

Figure 141. Uncontrolled behaviour of the loader.

17.11 Lifter

The automated lifter (product of Flexlink Automation Oy., FINLAND) as shown in
Figure 142 is used in production of electronic components. The lifter can be controlled by
two different controllers:

137

Modelling and Verification of Discrete Control Systems

- OMRON PLC programmed in ladder logic and

- Nematron SoftPLC (Lastra, 2000; Nematron, 2001) programmed in Visual Flow
Chart language.

Though both controllers achieve similar control goals, the internal logic of control
algorithms and even the logic of program execution are completely different (cyclically
scanned vs. sequential). However, both controllers eventually deal with the same object.

When the closed-loop plant-controller systems are validated, the model of the lifter
can be reused over and over again in connection with models of controllers of different

types.

The lifter consists of three transporters, one of which is mounted on a vertically
moving platform driven by a step motor as schematically represented in Figure 142. The
figure also shows sensors (B/S) and actuators (M) of the lifter described as follows.

Palette Out

Palette In

Figure 142. The lifter, its structure and operation sequence.

The lifter is composed of three conveyor elements. The pallet is received from the
previous module at the lifter lower terminal, which is driven by motor M3 and is
equipped with B1 sensor that may detect the presence of the pallet. The pallet may be
conveyed from the lower terminal to the sledge conveyor that can move vertically
between lower and upper terminal (or otherwise it is restricted with the two safety
switches S7 and S8). The sledge has B3 sensor that detects a pallet and its belt is driven
by motor M1. The upper terminal sensor is B2 and the motor denoted by M2. Besides the
conveyors and their sensors and actuators, there is also an operator interface with
switches (S1 - S5), B5 sensor, which is a safety sensor to detect an obstacle between
sledge and terminals. The step motor and the rotary encoder that is used for vertically

138

V. Vyatkin © 2007-2011

position the sledge are omitted in Figure 142. The figure does also not show the interface
signals (SMEMA) that are used between the lifter and the previous/next module.

Each sensor and actuator has a unique name in mechanical/electrical blueprints and
software code. The mechanical and electrical drawings with the general description of
functionality form the logical point to start plant modelling.

The structure of the model type “Lifter” can be represented by means of UML class
diagrams as shown in Figure 143.

The definition literally says that the object “Lifter” consists of 4 elements. The
loading and unloading one-directional conveyors are identical but turned in opposite
directions. The corresponding models are of type Conveyor. The vertically moving
platform (an object of type StepMotor) has a moving belt that moves pallets in both
directions (modelled as an object of type Conveyor2D).

Lifter

LoadingConv: LiftingConv: Vertical: UnloadConv:
Conveyor Conveyor2D StepMotor Conveyor

Figure 143. Definition of the model type (class) “Lifter” by means of UML class diagrams.

Note that the model in Figure 143 does not define an interface of the lifter, nor
dependencies between its constituent parts. These dependencies can be reflected in
modular models by event and condition connections between the corresponding modules
as exemplified in Figure 144,

139

Modelling and Verification of Discrete Control Systems

E tepMotor
[- i O FATLUFE Y ’
E Qealse oD o rEzIME SENEEY : -
s 3¢ NiD_BEpD A;;:m_« or 10 ‘ LINE
i nio ey o rwr LEFT Oyt EETURN 7 [—
: " (] roncal FUSER vplagr an trsreep
" LoadCony y UNLOAD
vo Conveyor ’
ofwn 8l ¢ | FATIURE I¥
olns 2h O RESUME SENSD)
; h PRESENT U0 '
ol v 2 t] =0 LEFTE -
rrrl [FORCED US| -
EFY| Se— .

-

Figure 144. A model of Lifter represented as a network of NCES modules.

17.12 Examples of specifications of Lifter’s behaviour?

Specifications are the formally expressed properties of system’s behaviour. Table 2
provides some examples of the formalization of specification of system requirements for
the Lifter object, whose description is provided in Chapter 15 (sections 15.3 and 15.11).

The first column in the table gives a logical proposition formula and expresses the
mapping of the local labels in the NCES modules to the global S/E Net label (given in
parenthesises). The second column provides a description of formula arguments given in
the first column. The last column contains the case description in a natural language. The
long names of arguments in the formulae are due to the hierarchy of the modules and the
places coming at the lowest level. For instance, “Controller. MIDIVIDECW.p4” is
interpreted as place p4 at M1DIVIDECW module (represents the motor of the sledge run
clockwise) in the controller module.

2 This Section uses the material developed by Andrei Lobov from Tampere University
of Technology. It was published in our common paper (Hanisch et al, 2006),

140

V. Vyatkin © 2007-2011

Table 2. Examples of specifications

#
Formula

Description of

arguments

Case description

1. | Controller._M1DIVIDEC
W.p4 (p213) AND
Controller.
_M1DIVIDECCW.p4
(p249)

P4in _M1DIVIDECW
—sledge motor running
to download the pallet
p4in
_MI1DIVIDECCW -
sledge motor running to
unload the pallet

The processes of sledge loading and
unloading should never happen at the
same time that in terms of the models
means that both places should never
hold tokens simultaneously

TOSAFETY

2| Plant.Vertical.Vertical.Posi
tion.p2 (p472) AND
(Controller._M1DIVIDEC
W.p4 OR Controller.
_M1DIVIDECCW.p4)

Plant.Vertical.Vertical.
Position.p2 — liftis in
the middle of its
journey.

It never should happen that a lifter is
in the middle of its vertical move
while sledge is loading or unloading.

Plant.Vertical.Vertical.Posi
tion.p3 (p473) AND
Controller.
_MI1DIVIDECW.p4

LEAD
w

Plant.Vertical.Vertical.
Position.p3— liftis in
the upper position

It never should happen that the lift is
in the upper position while the sledge
is loading

4. Plant.Vertical.Vertical.Posi
tion.pl (p471) AND
Controller.
_MIDIVIDECCW.p4

MAY

Plant.Vertical.Vertical.
Position.p1- lift is in
the lower terminal
position

It never should happen that the lift is
in the lower terminal position and the
sledge is unloading

5. | Plant.Low_Conv.Sensor.p
2 (p503)
Plant.Sledge_Conv.Sensor.
p2 (p515)
Plant.Up_Conv.Sensor.p2
(p486)

CHECKPOINTS

Plant.Low_Conv.Senso
r.p2 — Low lifter
terminal sensor detects
a pallet

Plant.Sledge_Conv.Sen
sor.p2 — Sledge sensor
detects a pallet

Plant.Up_Conv.Sensor.
p2 — Upper lifter
terminal sensor detects
a pallet

All three states have to be found in
the model. The pallet has visited all
the conveyors.

The requirements specifications given in

Table 2 were simplified from the real ones for illustrative purposes. Let’s consider
verification of each formula in more details:

1. ‘p213 AND p249’ when evaluated in Visual Verifier fulfils in no states. That means
the controller never turns the motor of the sledge to run into both directions, which
could have lead to the physical damage of the motor.

141

Modelling and Verification of Discrete Control Systems

Checking of the second formula “p472 AND (p213 OR p249)” gives a set of states
for which it is true. Thus there are states where the lifter is in the middle of its
vertical move and the sledge motor is running in either one direction or another.
The next step in analysis is to identify the reason. The first step is to define in what
direction the motor is running (loading — p213, unloading — p249) or both. This is
can be identified by two separate formulae: “p472 AND p213” and “p472 AND
p249”. Checking both formulae has given the result that only “p472 AND p213” is
TRUE and has a number of states in the reachability graph. Furthermore, the
direction of motion may be defined by “p205 AND p472 AND p213”, where p205
represents upward motion. The formula is false if there is p221 (downward motion)
instead of p205. The direction of the vertical and conveyor belt motion is therefore
identified. Now, we know that the motor of the sledge runs at the lower terminal
level to retrieve the pallet from the terminal. The next step is to find out where the
pallet is located. There are several possibilities:

a. Plant.Sledge_Conv.Sensor.p2 (p515) — on the sledge;

b. Plant.Sledge_Conv.Position.p10 (p529) — the pallet is not on the
sledge;

c. Plant.Low_Conv.Sensor.p2 (p503) — the pallet is at the lower terminal,

We checked the formula “p472 AND p213 AND p205 AND p515” and it is
fulfilled in no states. This means that the sensor does not detect the pallet. Checking
the “p205 AND p472 AND p213 AND p529” formula finds the same states in the
reachability graph as the initial formula “p205 AND p472 AND p213”, which
means there is no pallet on the sledge at all. Formula “p205 AND p472 AND p213
AND p529 AND p503” again fulfils in the same states.

This situation may be interpreted as follows: The pallet is stuck at the lower
terminal and has not been transmitted to the sledge. After some timeout for
receiving the pallet and without getting it, the lifter starts upward motion while the
sledge conveyor continues running.

Further investigation shows that the low terminal motor is running as well
(Plant.Low_Conv.Status.pl (p499)), but the pallet remains at the lower terminal
(the formula “p205 AND p472 AND p213 AND p499 AND p510 AND p503~
gives the same states in the reachability graph). Furthermore, this situation is not
found for the sledge in the upper terminal position (Plant.Vertical.Vertical.p3

142

V. Vyatkin © 2007-2011

(p473): checking of the following formula “p205 AND p473 AND p213” gives no
states found).

This error reveals an uncontrollable object’s property when nothing can be done by
controller to resolve it. If this situation were to occur with the real lifter the
operating personnel would be required to resolve it and reset the lifter.

However, the reason why the controller commands to move up while the loading
operation of the sledge is not complete is interesting, but not the primary goal. The
primary goal is the conclusion that there were no states found in which the pallet
has been successfully loaded onto the sledge (p515), the lifter is half way (p472)
driving up (p205) and the sledge motor is running (p213) (“p515 AND p472 AND
p205 AND p213” checking gives no states found).

This situation is one of such type which would not be detected by the common
testing.

4. The next formula represents the situation when the sledge motor is running to
download the pallet while the lifter is at the upper terminal level where the pallet
should be unloaded “p473 AND p213”. Checking this simple request gives no
states found in reachability graph. It is therefore possible to conclude that the sledge
conveyor belt will not run to the wrong direction at the upper terminal level.

5. Next formula describes a situation opposite to the previous one: ‘p471 AND p249°.
The sledge conveyor is running to unload the pallet at the lower terminal level.
Checking of the formula also returns a false result meaning that no such states exist
in the reachability graph.

Places p503, p515 and p486 model TRUE value of the pallet sensors of the low conveyor,
sledge conveyor and upper conveyor respectively. Checking if any of these places ever
holds a token gives an affirmative answer. In this example, we may highlight one of the
advantages in applying CTL. The CTL formula ‘E[E[EF m(p503)=1 U EF m(p515)=1]
U EF m(p486)=1] represents the case when a path exists in the reachability graph where
first the low terminal sensor detects a pallet, then the sledge terminal sensor detects a
pallet and finally the upper terminal sensor detects a pallet. This is an example of a
checkpoint rule, proving which we may conclude that the lifter is able to transfer a pallet
through it.

143

Modelling and Verification of Discrete Control Systems

18 Multi-level model design pattern

18.1 Hierarchies in models

Hierarchical representation of behavior has been addressed in Harel Statecharts and in
hierarchical Petri nets.

Macro-place

Figure 145 Petri net with hierarchical states and equivalent semantics

In NCES similar behavior can be modeled as follows:

Macro-place

Figure 146 Implementation of the 'hierarchy' in NCES.

18.2 Motivation

A piece of equipment with complex internal dynamic behavior can be seen from the
outside as a simple one with respect to the material flow on the factory shop level.
However properties and conditions of its primitive material-flow relevant functionality
(take one pallet — give it away) may strongly depend on the internal behavior.

144

V. Vyatkin © 2007-2011

The modeling of such units asks to take in account this particular feature and
represent the multiple facets of the behavior as necessary.

The general idea of the suggested modeling approach is schematically illustrated in
Figure 147. Both internal and external models of an equipment unit are represented by
NCES modules.

Figure 147. The idea of the two-level pattern of modelling.

Mutual influence between internal and external levels of modeling is defined by
means of event and condition arcs that may connect places and transitions of both
modules in both directions, i.e. from level 1 to level 2 and from level 2 to level 1. The
inputs and outputs of the internal model may be connected in closed-loop with the model
of controller, while inputs and outputs of the external model serve for connection with
external models of other objects.

Thus, this chapter suggests a specific application-oriented pattern of using NCES.

18.3 Notation of the two-level modules

In the following we are introducing notation which is intended to simplify
representation of the hierarchically built multi-domain models. The notation however
does not imply any new semantics as compared with NCES, as the mapping from it to the
NCES will be introduced.

The two-level modules are structures that destined to encapsulate models of both
internal dynamic behavior of an object along with its externally observed behavior of
interest.

Figure 148 shows the corresponding graphical notation of a module for the two-level
formalism. The module consists of the head containing the external model, the body,

145

Modelling and Verification of Discrete Control Systems

containing the internal module, and event and data interconnections between them. Both
external and internal sections may have event and data inputs and outputs, and can be
further specified as networks of modules.

External
(a
ke &
Internal
O ul
< O

Figure 148. A two-level module.

A two-level module with an empty EXTERNAL part makes a usual NCES module
(single level). The EXTERNAL part of a double-level module can be specified via a
network of single-level modules. The INTERNAL part can be specified by a network of
two-level NCES modules. This is illustrated in Figure 149.

Figure 149. Composition of two-level models into a composite model.

146

V. Vyatkin © 2007-2011

This example shows that the suggested encapsulation pattern can be used for defining
of hierarchical models of an arbitrary complexity.

The multi-domain model is a network of interconnected modules whose inputs and
outputs are divided on two groups: one for interconnection with other facets (“internal”
I0s) and the other for interfacing their domain counterparts in other models (interface
10s).

Inl

o0
9
-y

oo S

q..-

Figure 150. A two-level model of a conveyor belt.

We illustrate the application of the two-level modeling pattern when the Lifter is a
part of a more complex automated machinery system that consists of several storage
buffers and transportation units, as shown in the example in Figure 151.

Goals of the modeling are:

- simulation and observation of the material flow relevant properties, e.g. average
loading of buffers, absence of deadlocks, etc.
- checking correctness of the distributed control

147

Modelling and Verification of Discrete Control Systems

0 <8
e P Sl
\ i \\ \
Lifting ™~ ~
P
O] l s
Buffer 1 Feead Conveyor Ldfter Buffer 2

Figure 151. An automated storage and transportation system built from modular machines.

The process going on in the object can be seen from several perspectives:

Level 1: 4 pallets in the shop
Level 2: 2 pallets in buffer 1, 1 pallet in the lifter, 1 pallet in buffer 2

Level 3: In lifter: the pallet is being transferred from the entry conveyor to the lifting
conveyor

Level 4: position of the pallet is 4/5 on the lifting conveyor

148

V. Vyatkin © 2007-2011

19 Specifications using Timing Diagrams

Control engineers are not familiar with the languages commonly used for formal
specification, such as temporal logic. Therefore the engineers would benefit from user-
friendlier means of specifying the desired or forbidden behaviour of a model.

Inspired by the timing diagram specification languages developed in the domain of
digital systems design (e.g. by K. Fisler [45], N. Amla et al., [46], R. Schlor [47]), a
graphical language for describing the dependency of interface signal changes was
proposed in [49].

In this Chapter we proceed with the issues that are specific for application of timing
diagrams for specification and verification purposes of some classes of industrial
automation systems. Visualising the behaviour of discrete-state models using diagrams is
quite helpful. In Figure 152 one sees the waveform diagram representing values of some
model parameters along a certain path in the reachability graph (the model was
introduced earlier in Figure 19).

S,
ol /‘?-, = havior alone the]
L & g A
Moo fd] | b
: ? RS S e
S . {t‘\} S». I - - - T e
S. L @h

Figure 152. Reachability graph describing the complete behaviour of the model from Figure 19 and
timing diagram in one of the trajectories.

This Chapter suggests two procedures for translation of visual specifications that
differ slightly depending on whether the verified module has inputs.

149

Modelling and Verification of Discrete Control Systems

19.1 Timing Diagrams for specification

The idea of using timing diagrams for specification is to draw a specification graphically
and then ask the model checker the question: If the inputs behave like it is shown in the
input diagram, would the outputs behave like in the output diagram?

However, a single timing diagram describes only a single scenario. Sometimes it is
desirable to define a class of input scenarios with certain properties and then check if
certain output patterns are observed among all or any trajectories in the reachability
graph. The idea is illustrated in Figure 153. The diagram consists of two parts: the upper
(if) part presents the “input” part of guaranteed signals and the lower part is the
“conjecture” to prove. In this example there is a conditional restriction added between the
rising edge of M;.co; (event e;) and the falling edge of My.co; (event ez). The restriction
says that e; occurs after e,. Note that the signal M;.co; belongs to both parts. In the
“input” part it is specified by a single waveform change that is simultaneous with the
event Mj.eo;. The waveform of the same signal in the “output” diagram is more
complicated.

Specification
M eo, ‘
. e | _restis rio?
lf M .co ' importdnt
\! 0O, l e X X I_"
then ‘

| | \

$ -»
el e, e ‘

Figure 153. Timing diagram specification

Comparing the “then” part of the specification with the timing diagram of real behaviour
in Figure 152 one can see that the specification holds in the given path. The problem is to
implement such a check automatically using model checkers.

19.1.1 Definitions

The use of Timing Diagrams (TD) as a method of formal specification requires
formal definition of its graphical notation and its semantics.

150

V. Vyatkin © 2007-2011

Diagrams are represented by sequences of signals’ value changes. Given the subsets
EcE"UE™ and ccc"uc*, a specification for a signal set A=euc is described as a
tuple s—(a f,g), Where f = f_u f_defines sequences of specification values. The mapping
f:E-z. (=, ={noevent,maybe,always}) specifies sequences for event inputs and
outputs, while f :c -z~ with = _={zero,any,stable,one} defines values for condition signals.

The partial function g: f(A)xNx f(A)xN—(>,==) assigns an ordering operator
(precedence, simultaneity or non-simultaneity) between signal changes from different
signals in such a way that g(a;,m,a;,n) indicates an ordering restriction between the m-th
signal change of a; and the n-th signal change of a;. We assume the signals value changes
at the beginning of the diagram to be simultaneous across all signals. If the ordering
operator for a pair of changes of different signals is not defined, the horizontal position of
the changes won’t imply any implicit ordering.

Consider the example in Figure 154,

AL vay'S
FAILURE “g?f; A_
P :T

ALV YS
RESUME |2YEE

SENS

Figure 154. Specification including two event inputs, one condition output and a simultaneity operator.

The semantics of the diagram is as follows: when the set of levels specified at the
beginning of the diagram is achieved, it is required that the sequence of changes of the
signals does not violate the partial ordering specified in the diagram, until a final state is
reached.

19.1.2 Specified Signals

In order to describe specifications of NCES models, TDs must provide different
representations for event and condition signals. Thus, we define the following
possibilities of specification:

e in the case of a condition signal, the specification might assume four possible
levels: zero, corresponding to a logical zero; any, representing the situation
where the signal may take any logical value; stable, which also means
undefined, however assuming that the signal remains at a single level; or one,
corresponding to the logical one;

151

Modelling and Verification of Discrete Control Systems

e cvent signals are specified in two possible levels: no event, in the case where
the occurrence of the event is forbidden, and maybe, meaning that the event
might occur. It is also possible to specify an obligatory occurrence of the
event signal (always), but in this case only as a single impulse, because of the
instantaneous nature of an event signal.

We define a diagram event as: any level change specified at a condition signal; a level
change from no event to maybe or vice-versa, at an event-signal; or a specification of an
obligatory occurrence of an event (always peak at an event signal).

19.1.3 Event Ordering in Different Signals

If a partial ordering semantics is assumed, no prior ordering of events on different
signals is implicit. In other words, although each signal presents an ordering of its events,
two events of different signals may occur at any sequence, except when special operators
explicitly define their sequence. On the other hand, it is also possible to assume that the
ordering of all events is defined through their position at the visual description. In this
case, we are talking about a strict or sequential ordering.

Although more intuitive, adopting a sequential ordering would limit the
representational capabilities of a diagram. Therefore, we adopt a partial ordering
semantics for the TD language. In this case, the same TD represents a set of possible
behaviours of the system, each one represented by a different event chain on the modelled
system. Each chain is called scenario, and the set of scenarios defined by the diagram is
named diagram language.

In Figure 155 (a) we observe the specification of two signals s; and s,. If we have
adopted as our convention a sequential ordering semantics, only one scenario would
compose the diagram language: s,'s:’s,. As the temporal dependence among events from
different signals is not predefined (assumed partial ordering semantics) the same figure
represents a TD with the following scenarios: (s;",517)s2"; S2'(S1,52); S1°S2'S2” and Sp'S,7S1 .
Figure 155(b) indicates the timing diagram that, based on the adopted semantics, accepts
as its only scenario s,"s;’sy’, by introducing operators that indicate the obligatory ordering
among events from different signals. The meaning of these operators will be stated in the
next section.

152

V. Vyatkin © 2007-2011

Figure 155. Temporally independent signals (a) and event ordering (b).

In order to constrain the ordering of two events from different signals, we define the
following precedence operators:

#: events are not allowed to occur simultaneously;
= events must be simultaneous;
> event from the first signal must occur prior to the event from the second signal.

19.1.4 Specification of Finite Behaviour

The TD represents a finite behaviour that must be satisfied by the model. The
satisfaction of a TD is evaluated from the moment when all specified signals are in their
initial levels and some of them execute an initial transition, as indicated at the beginning
of the diagram. The verification process ends when all signals achieve their final state,
indicated in the end of the diagram. The initial part of the diagram, denominated
precondition, corresponds to a condition, whose satisfaction by the model indicates that
we must start comparing the model’s behaviour with the remaining part of the TD. The
comparison ends up when the final part of the diagram, called postcondition, is reached.
Both pre- and postcondition are highlighted at the diagram (Figure 156).

When a TD specifies a finite behaviour, different interpretations are possible:

Existence of a scenario (from the diagram language): here we require that at least one
of the specified scenarios will occur at the model. In other words, there is a path at the
state tree of the model, where the precondition is satisfied and the behaviour of the model
does not contradict the specification.

Existence of all scenarios: the existence of each scenario must be tested inside the
state space of the model.

153

Modelling and Verification of Discrete Control Systems

Generality of a single scenario: here a single scenario from the set of scenarios
specified at the diagram, must be present in every path, indicating a situation that has to
occur in the future, regardless of which path is taken by the model.

Generality of the diagram’s language: the behaviour specified by the diagram will
eventually occur, no matter which scenario, in each path from the reachability graph of
the model. Note that, in this case, the existence of a path with no occurrence of the
precondition would already be a counter-example.

Satisfaction of a single scenario: every satisfaction of the precondition must be
followed by the satisfaction of the same scenario, among those that are possible
according to the specification. This corresponds to an assume-guarantee clause, where the
precondition plays the role of an assumption that, when fulfilled, guarantees the
occurrence of a given sequence of events.

Satisfaction of the diagram: the specified behavior must not be contradicted, which
means that every occurrence of the precondition at the model leads to a behaviour that is
accepted by the diagram language. As a particular case, a model that presents no
occurrence of a given precondition satisfies every specification starting with this
precondition. The following topics will be based on this interpretation of the TD.

19.1.5 Specification of infinite behaviour

The timing diagram could also correspond to a specification to be satisfied from the
time when the precondition occurs, without the need to specify a postcondition. In this
case, the final state specified at the diagram would correspond to a restriction that must

not be violated.
:"(l T ._-uvu(s o A2 tu datw K
ZERQ 2

LRSI Sy Drecondlion ‘O—,——-‘T—

Figure 156. Pre- and postcondition.

The absence of a specification for the precondition could indicate that the initial state
of the model should comply with the levels specified at the beginning of the diagram.
Although these two approaches also present a practical appeal, the absence of
postcondition or precondition will not be issued in the work, as a matter of simplicity.

154

V. Vyatkin © 2007-2011

In order to allow the translation of the timing diagram into a formal model, some
requirements have to be done in respect to the events presented in each signal. Diagrams
satisfying the requirements are said to be feasible.

19.2 NCES Model of Timing Diagrams

When verifying autonomous NCES models without inputs, each signal specification
is translated into a NCES supervisor module comprising two basic submodules: an event
generator creates sequences of transitions, one for each change of level specified for the
signal. Each transition stimulates, through an event arc, the corresponding event input of
a signal generator, which causes the output of the signal generator to recreate the signal
according to the input stimulated. Ordering operators are translated into special places
and transitions that create interdependency of event generators.

The verified module is then connected through event arcs to the event generators of
the corresponding signals, in such a way that every change of signal in the first is
reported to the latter. Along with the translation of the specification into NCES modules,
a set of automatically generated temporal-logic statements is created. The composite
module is then model-checked against these statements to verify if each transition at the
supervisor always fires whenever the corresponding transition at the verified module is
fired.

The graphical specification also provides automatic test possibilities for input/output
behaviour or non-autonomous NCES modules. In this case, the NCES supervisor
modules that describe input signals are used for generating the specified sequences of
input signal changes, while the output signals are again verified as described before. The
components of the NCES model of the timing diagram are detailed in the following
sections.

19.2.1 Event Generator

The main part of the NCES model for the specification is called event generator and
consists of a set of parallel processes (sequences of transitions and places), started
simultaneously by the firing of a transition denoted ts.rt. Each process is responsible for
reproducing the behavior specified for one signal. Events on the signals are translated
into transitions at the processes.

For each signal i, there is a place pnotstart.i Which is a preplace of tsart and postplace of
the last transition of the corresponding process. The transition tsar indicates the
beginning of the timing diagram. The situation where the diagram language is not being
executed corresponds to the marking pnotstarti=1 for every signal i.

155

Modelling and Verification of Discrete Control Systems

In the case that at least a signal j has the marking protstartj=0, the marking protstarti=1
for a signal i indicates that this signal has already achieved the last level specified at the
diagram.

The precedence relationships among events of different signals are mapped to special

interconnections among the corresponding processes, as shall be detailed in the following
section.

19.2.2 Signal Generation Module

For each specified signal, we create a signal generator module which reproduces, at
its output, the possible values for the signal, according to the level specification
stimulated at its input. Each event on the timing diagram (modelled by the firing of a
transition at the event generator) stimulates, by an event arc, the corresponding change at
the signal generator, which guarantees that the NCES module, resulting from the
combination of the event generator with the signal generators, will reproduce at its output
the diagram language. The idea is illustrated in Figure 157. A signal generator module is
assigned to each condition signal included in the specification. The module hasfour event
inputs, corresponding to the four possible specification levels, and two condition outputs,

indicating the two possible values assumed by the condition signal (zero or one).

Figure 157. Translation of a single specification for a condition output, and linking to the verified model.

Figure 158 shows the structure of a signal generator for a condition signal.

156

V. Vyatkin © 2007-2011

Condition Signal Generator

Figure 158. Generator of condition signals.

The transitions tozero, toone, tostable and toany receive event arcs, respectively,
from the zero, one, stable and any event inputs.

Firing one of these transition means that the corresponding signal has changed its
specification level to, respectively, zero, any, stable or one — in other words, a diagram
event has occurred. The condition outputs not_signal and signal are linked to the internal
places zero_p and one_p. The remaining transitions and places implement the desired
non-deterministic behaviour - after the firing of tostable and toany, the marking of
places zero_p and one_p should be non-deterministic, and may change randomly in the
latter case, until another input event is stimulated.

Figure 159 presents the internal structure of a signal generator for an event signal.

[Event Signal Generato
~ maybe I . N gt
A e ™
no_event "
10_8ven 4 .‘I Mo Toev! y
mayoes
)y 1 'Y' retaull N over
. » \ X
oy | [1ayte 1 e
mayoe 1. | —s 0_meaybel ¥ | 1o mbevarysd
| %
v] synch
v
(o o T pnee B sy
awwys ’ tj HU_always

Figure 159. Generator of event signals.

Event signals are represented by modules with three event inputs, corresponding to
the three possible specification values, and an event output, whose firing corresponds to
the generation of the event. Internally, this generation corresponds to the firing of the
result transition.

157

Modelling and Verification of Discrete Control Systems

The transitions to_noev# (1 and 2), to_maybe# (1 and 2) and to_always# (1 and 2)
are fired by stimulating the no_event, maybe and always inputs respectively. Every
diagram event leads to the firing of at least one of these transitions — actually, an always
peak at the specification, followed by the specification of a new level, implies that both
the result and the transition that leads to the new level specification (to_noev# or
to_maybe#) will be enforced to fire.

Model to be verified S e Composite model
(XML) j—te B (XML)
=
=

¥
131 I
"B Seabe e Composite model

= f: ol e |::> (verifed model +

Jt(> - | s | specification model)

] i
| |
=] -
Specification ——— - =
(XML)

e il o Model under SESA format
.pnt file (SNS model)
.in (script/ eCTL formulas)

e

I

i

i}

[

Figure 160. User interface of the TDE tool and file formats adopted for data storage.

19.3 Program Implementation

The Timing Diagram Editor (TDE) is an application developed with the aims of
providing the following functionalities:

create, edit, save and load specifications of function blocks whose internal
logic is specified by means of a NCES. These specifications are generated and
visualized graphically as timing diagrams, while each signal at the timing
diagram may be of one of the following types: event signals and condition
signals; the signal levels allowed for each type of signals that were presented
above.

translate the combination of a function block and the behaviour specified for it
into a composite finite state model (NCES) and temporal propositions written
in the eCTL [51] format, in such a way that the composite model, and
consequently the original function block, can be verified formally with the aid
of the SESA tool [52]. If all the generated eCTL propositions evaluate to true

158

V. Vyatkin © 2007-2011

with regard to the composite model, we conclude that the behaviour of the
original model satisfies the specification.

e The TDE tool uses XML as a storage format for both timing diagrams and
NCES models and converts them to the input formats of the SESA model
checker as illustrated in Figure 160.

159

Modelling and Verification of Discrete Control Systems

Annex 1: XML format of Condition/Event Nets

Example of a basic module made in TNCES editor

XML

<IDOCTYPE NetConditionEventSystem>
<?TNCES-Editor Version="1.06.06 (eps)"?>
<FBType X="65" Y="251" Num="0" LocNum="0" Name="spont_eo" Comment="" Width="30.0" Height="35.0" >
<InterfaceList>
<EventOutputs>
<Event X="193" Y="140" Num="1" LocNum="1" Name="eo1" Comment="_"/>
</EventOutputs>
</InterfaceList>
<SNS LeftPageBorder="70.0" RightPageBorder="770.0">
<place X="52" Y="157" Diameter="6" Num="1" LocNum="1" Name="p1" Mark="1" Clock="0" Capacity="1" Comment="_"/>
<place X="51" Y="123" Diameter="6" Num="2" LocNum="2" Name="p2" Mark="0" Clock="0" Capacity="1" Comment="_"/>
<trans X="39" Y="140" Width="6" Height="6" Num="1" LocNum="1" Name="t1" Type="AND" TransInscription="_" SwitchMode="s"
Comment="_"/>
<trans X="64" Y="140" Width="6" Height="6" Num="2" LocNum="2" Name="t2" Type="AND" TransInscription="_" SwitchMode="s"
Comment="_"/>
<arc StartPoint="p1" EndPoint="t1" ArcWeight="1" TimeValue="" Comment="_">
<Point Num="1" X="52" Y="157"/>
<Point Num="2" X="39" Y="140"/>

</arc>

<arc StartPoint="t1" EndPoint="p2" ArcWeight="1" TimeValue="" Comment="_">
<Point Num="1" X="39" Y="140"/>
<Point Num="2" X="51" Y="123"/>

<[arc>

<arc StartPoint="p2" EndPoint="t2" ArcWeight="1" TimeValue="" Comment="_">
<Point Num="1" X="51" Y="123"/>
<Point Num="2" X="64" Y="140"/>

</arc>

<arc StartPoint="t2" EndPoint="p1" ArcWeight="1" TimeValue="" Comment="_">
<Point Num="1" X="64" Y="140"/>
<Point Num="2" X="52" Y="157"/>

</arc>

<evarc StartPoint="t2" EndPoint="eo1" Comment="_" EventPos="1">
<Point Num="1" X="64" Y="140"/>
<Point Num="2" X="193" Y="140"/>

</evarc>
</SNS>
</FBType>

160

V. Vyatkin © 2007-2011

XML of a ""composite’ NCES block

Interface Content
. STATUS POS
drive - \ - \
movingstatus movingposition
not_BACK not_BACK{not BACK STAND STOP
BACK BACK-|BACK MV_BACK MOVES_BACK
not_ FWD not_FWD-|not_FWD MV_FWD MOVES_FWD
FWD FWD-|FwD “ '

<FBType Name="drive" Comment="Composite Function Block" >
<InterfaceList>
<InputVars>
<VarDeclaration Name="not_BACK" Type="BOOL" />
<VarDeclaration Name="BACK" Type="BOOL" />
<VarDeclaration Name="not_FWD" Type="BOOL" />
<VarDeclaration Name="FWD" Type="BOOL" />
</InputVars>
</InterfaceList>
<FBNetwork >
<FB Name="STATUS" Type="movingstatus" x="447.0588" y="241.1765" />
<FB Name="POS" Type="movingposition" x="1294.1177" y="241.1765" />
<DataConnections>
<Connection Source="BACK" Destination="STATUS.BACK" dx1="317.6471" />
<Connection Source="FWD" Destination="STATUS.FWD" dx1="335.2941" />
<Connection Source="not_BACK" Destination="STATUS.not_BACK" dx1="252.9412" />
<Connection Source="not_FWD" Destination="STATUS.not_FWD" dx1="270.5882" />
<Connection Source="STATUS.STAND" Destination="POS.STOP" dx1="129.4118" />

<Connection Source="STATUS.MV_BACK" Destination="POS.MOVES_BACK" dx1="205.8824" />
<Connection Source="STATUS.MV_FWD" Destination="POS.MOVES_FWD" dx1="158.8235" />

</DataConnections>
</FBNetwork>
</FBType>

161

Modelling and Verification of Discrete Control Systems

Annex 2: More formal definition of
Condition/Event Nets

19.4 NCES definition

NCES is a place-transition net formally represented by a tuple:
NCES = (P,T,F,CN,EN,C",E",C**, E*",B_,B,,C,,D,,m,)

Where:
P is a non-empty finite set of places,

T is a non-empty finite set of transitions, disjoint with P,
F is a subset of (PxT)U (T x P) - the set of flow arcs.

CN is the set of condition arcs CN < (PxT).
EN is the set of event arcs EN < (T xT).

C™ is the set of condition inputs.
E™ are the event inputs set,

C® and E®" are conditions and events outputs.
B. is the set of NCES module condition inputs arcs B, < (C™ xT),

B. is the set of event input arcs B, < (E" xT).

Cs is the set of condition output arcs Cs (P X E"“‘),
Dt is the set of event output arcs Dt (T X E°“t), and
mo: P —{0,1} is the initial marking.

19.5 C/E Net definition
19.5.1 Set theoretical definition
Timed C/E Net = (P,T,F,V,B,W,S,M,m0,eft,Ift)

where
P is a non-empty finite set of places;

T is a non-empty finite set of transitions disjoint with P;

162

V. Vyatkin © 2007-2011
F is the set of flow arcs, where F < (P x T) U (T x P);
V maps a weight to every flow arcand V: F — N;
B is the set of condition arcs, which carry condition signalsand BS P x T;
W maps a weight to every condition arcand W: B — N;
S is the set of irreflexive event arcs, which convey event signalsand SS T x T;

M maps a event-processing mode (AND or OR) to every transition, M : T — {{ A |,

v

mo: P — Ny is the initial marking of SNS, where for each place p € P, there are n, €

Nj tokens;

eft maps the earliest firing time to every pre-arc [p, t] € £ eft: F N (P x T) — Np; and,
Ift maps the latest firing time to every pre-arc [p,t] € F Ift: FN (P xT) - No U {0},
where ® € N and 0 < eft(p, t) < Ift(p, t) < 0. The interval [eft(p, t), Ift(p, t)] is called
the permeability interval.

19.5.2 State of C/EN model
C/EN places bear integer clocks whose values are denoted as u: P — Ny, where for

each place p € P, the clock reading in the place is denoted as up € Ng;

P P3

Figure 161. C/E Net

163

Modelling and Verification of Discrete Control Systems

All clocks have zero value at the initial state of the model. The clock of a place resets
to zero anytime marking of the place changes.

A state in timed C/EN is defined as a pair z=[m, u], where m is a marking of P and u
is the P-vector of the clock positions and u(p) > 0—m(p) > 0.

A state of C/E net model is determined by a) m — vector of marking of its places, i.e.
allocation of tokens across the places; and b) u — vector of clock values:

Evolution of a C/E net consists in changing its states. A state change (also called state
transition) can consist in changing net’s marking, or changing values of clocks (elapsing
of time).

In every state there could be some enabled net transitions. If there are no enabled
transitions then the clocks count (increment they value by 1) in all marked places and the
C/E net transitions to a new state. Otherwise, i.e. if there are some enabled transitions,
then it is said that one or several enabled transitions fire that leads to the change of
marking as explained by the firing rules. The set of simultaneously firing transitions is
called step. In a given state there could be several different steps ready to fire, meaning
that a state of C/E net can have several successor states.

19.5.3 Firing rules

Let St denote the set of incoming event arcs of transition t: St :== {¢][¢, § € S}. If Stis
empty, which indicates that no incoming event arc is associated with transition t, then t is
spontaneous, otherwise it is forced. Firing of a forced transition is caused by firing of
some other transition connected to it by an event arc. Both are included in the same step,
i.e. fire simultaneously. Enabled spontaneous transitions can fire regardless of other
transitions.

For example, the transition t4 in Figure 161 is forced and other transitions are
spontaneous. Accordingly, the transition set T in can be subdivided on two disjoint sets:

T = Spont U Forc, where

e Spont is the set of all spontaneous transitions of the C/EN, and

e Forc denotes the set of all forced transitions of the C/EN.
For any transition t, there can be three kinds of markings: the marking on incoming

flow arc t', the marking on outgoing flow arc t*, and the marking on incoming condition
arc £, defined as follows:

164

V. Vyatkin © 2007-2011

£ (p) = {g(p,t], if [p.t] € F

B else
Vit.pl, if [t EF
) = {u(? lels[ep]

2(p) = {W[p, t), if[ptl€B

0, else

For any subset s € T, the marking s™ and s* denote the sum of markings t and t*
respectively, and & represents the union of markings £ fort C s.

The firing of a spontaneous transition is determined by the three factors listed below:

1.

Token concession: A transition is said to have a foken concession or is token-
enabled when all the flow arcs from its pre-places are enabled. More specifically,
a flow arc is enabled when the token number in its source place is not less than its
weight, i.e. m(p) = V(p, t). For example, given the marking m, transition ¢ is
token-enabled if © < m. Transitions which have no pre-places are always
marking-enabled.

Permeability interval: The permeability interval defines the time constraints
applied to the input flow arcs of transitions. A transition #: 3 (p, t)€F is time-
enabled only when clocks of all its pre-places have a time u(p) within
permeability interval of the corresponding place-transition arc: eft(p, {) < u(p) <
Ifi(p, 0.

Incoming condition signals: A spontaneous transition may have incoming

condition arcs. It is considered condition-enabled when all the condition signals

on its incoming condition arcs are true, i.e. £ < m,

A spontaneous transition is eligible to fire only when it is token-enabled, time-enabled,

and condition-enabled.

19.5.4 Step and state transitions

C/EN models are executed in steps, meaning that for each state transition there is a

unique set of concurrently firing transitions s & T. A state is dead if no further step is

165

Modelling and Verification of Discrete Control Systems

enabled or will be enabled by elapsing time. For non-dead states, the delay D(m,u)
denotes the minimum amount of elapsed time before a step is enabled.

A step is referred as executable at the state [m, u] if all of its constituent transitions
fire after D(m,u). The execution of an executable step s at state [m, u] is accomplished by
first elapsing D(m,u) amount of time and then firing s.

The new state [m', u'] led by the execution of step s is determined by:

m =m—s"+s7, and

u'(p) = [ulp) + Dim.w), ifmp) > 0Am™ > 0Ap e (Fs U sF),
0, elze

Subsequent step executions from the initial state construct the reachability graph of
the C/EN model, which illustrates the relationship of all realizable states within the state
space. The reachability graph of a timed C/EN can be represented as a 3-tuple:

RG = (Z,R,zy),

where Z is a finite set of reachable states, R is a finite set of state transitions, and z; is the
initial state [mo, Ug].

For any subsequent states [m;, uj] and [Mi+1, Ui+1] € Z, there is a state transition T € R,
such that [mj.1, Ui+1] is reachable from [m;, u;] via state transition t. This state transition is

also denoted as [m, u] = [m’, u'].

The step s causing a state transition z is defined by the mapping o: R — T~ i.e.

s =a(t).

166

V. Vyatkin © 2007-2011

Annex 3. CTL syntax of SESA

CHARACTERS

digit = "0123456789"

letter = "abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ "

TOKENS

number = digit {digit}

name = '"' {letter | digit} '"' win
add = "+'

less = ">>"

equal = '='

unequal = "#' | "" | "l="
less _equal = ">>="

not = "NOT" | '=-'" | '"!I!

and = "AND" | '&' | '"~'
or = "OR™ | V' | '|' | 'v!
impl = "IMPL"™ | "->"

equiv = "EQUIV" | ""
infinity = "oo" | "o"

true = "TRUE" | 'T'

false = "FALSE" | 'F'
PRODUCTIONS

ctl

= formula EOF
formula

{letter

digit}

wrn

167

Modelling and Verification of Discrete Control Systems

impl expr

impl expr

(equiv_expr

[impl equiv_expr
]

)

equiv_expr
(or expr
{ equiv or_ expr
}
)

or expr

and_ expr
or and expr

—_—]

and expr
(factor
{ and factor
}
)

factor

(true
| false
| predicate
| not factor
| '"('" formula ")'
(B
| lAl
) [transition formula]
('"[" formula
('U"'" [interval]
| 'R
) formula ']'
| '"X'" [interval] factor

168

V. Vyatkin © 2007-2011

| '"F' [interval] factor
| 'G' factor

)

transition formula

transition impl expr

transition impl expr

(transition equiv_expr

[impl transition equiv_expr
]

)

transition equiv_expr

(transition or expr

{ equiv transition or expr
}

)

transition or expr
(transition and expr
{ or transition and expr
}
)

transition and expr

(transition factor

{ and transition factor
}

)

transition factor

(true

| false

| ['"t"] node

| not transition factor

| '"(' transition formula ')'
)

169

Modelling and Verification of Discrete Control Systems

interval

= '[' number

L} L}
14

(number
infinity

|
) "1t

predicate

(atomic_ pred
| def pred
)

def pred

(lPl
(number
name

|
)

atomic pred

(atomic_ term
{ condition atomic term

}
)

atomic_ term
(atomic_ factor
{ add atomic_ factor

}
)

atomic_ factor

(variable

| constant

)

condition
less

| greater
| equal

170

V. Vyatkin © 2007-2011

| unequal
| less _equal
| greater equal

constant

(number
infinity

|
)

variable

(marking
clock

|
)

marking >

node >
= (number
| name
)
["'
number
| name

)]

END ctl.
PRODUCTIONS

171

Modelling and Verification of Discrete Control Systems

Annex 4: Command line SESA parameters

Command line options start with "-". Some options can have different names for the same
purpose most of them can abbreviated (characters in [] can be omitted). If the <filename>
argument to "-command" and "-options™ is "-", then the default names (COMMAND.sha
and OPTIONS.sna) are used.

If the last argument has no leading "-", then it is interpreted as a name of a .pnt or .cnt
file (please include the extension of the file).

Ordering of "-reset"”, "-command", and "-options™ is relevant and resets the influence
of previous command line options.

-help show option summary

-b[lack] use only black tokens:
-pnt
-ptn
-toktyp=Db[lack]

-c[olour] use coloured tokens:
-cnt
-cpn
-toktyp=c[olour]

-notim[es] use arctimes or not:
-time=no

-arctim[ed]
-time=yes
-time=arcs
-tim[ed]/[es]

-noprliorities] Use priorities or not:
-prliorities]

172

V. Vyatkin © 2007-2011

-nogr[eedy] Use greedy transitions or not:
-gr[eedy]

-nosy[nc] Use synchronisation sets or not:
-sy[nc]

-max[imal] Determine the firing mode:

-fmod=m[aximal]
-fmod=n[ormal]

-s[ingle]
-fmod=s[ingle]

-red[uced]
-fmod=r[educed]

-stubborn Apply different reduction techniques:
-symmetric

-diamond

-names Write place/transition names in the output or
-named not:

-nonames

-pre[fix] <prefix>

Prefix for file names for options, commands
and session results

(set before file name options):

-deflault]
-reset

Reset to default options (same as starting
with -nooptions):

-noopt[ions]
-opt[ions] <filename>

Ignore OPTIONS.sna or load options from
file:

-nocom[mand]
-nocmd
-com[mand] <filename>

Ignore COMMAND.sna or load commands
from file:

173

Modelling and Verification of Discrete Control Systems

-cmd <filename>

-se[ssion] <filename>

Save session results in file:

174

V. Vyatkin © 2007-2011

References

1.

~

10.

11.

12.

13.

14.

15.

Clarke, E., E.A. Emerson and A.P. Sista.: Automatic verification of finite state
concurrent systems using temporal logic, ACM Trans. on Programming
Languages and Systems, vol. 8, 1986, pp. 244-263

J.S. Ostroff. Temporal Logic for real-time systems, Wiley, London, 1989.

R.S. Sreenivas and B.H. Krogh: On condition/event systems with discrete state
realizations. Discrete Event Dynamic Systems: Theory and Applications, 2(1):
209--236, 1991.

C.A. Petri: ,,Kommunikation mit Automaten*, 1962: Dissertation, University of
Bonn

Harald Storrle: Models of Software Architecture - Design and Analysis with UML
and Petri-Nets, Books on Demand GmbH, ISBN 3-8311-1330-0
Robert-Christoph Riemann: Modelling of Concurrent Systems: Structural and
Semantical Methods in the High Level Petri Net Calculus, Herbert Utz Verlag,
ISBN 3-89675-629-X

Kurt Jensen: Coloured Petri Nets, Springer Verlag, ISBN 3-540-62867-3

James Lyle Peterson: Petri Net Theory and the Modeling of Systems, Prentice
Hall, ISBN 0136619835

Wolfgang Reisig: A Primer in Petri Net Design, Springer-Verlag, ISBN 3-540-
52044-9

Mengchu Zhou, Frank Dicesare: Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, Kluwer Academic Publishers, ISBN 0792392892
Mengchu Zhou: Modeling, Simulation, & Control of Flexible Manufacturing
Systems: A Petri Net Approach, World Scientific Publishing Company, ISBN
981023029X

Jorg Desel and Gabriel Juhas, "What is a Petri Net? -- Informal Answers for the
Informed Reader”, Hartmut Ehrig et al. (Eds.): Unifying Petri Nets, LNCS 2128,
pp. 1-25, 2001.

Alur, R., C. Courcoubeitis and D.L. Dill, Model checking for real-times. In Proc
5th Annual IEEE Symposium on Logics in Computer Science, Philadephia, 1990.

Aygalinc, P. and J.P. Denat, Validation of functional Grafcet models and
performance evaluation of the associated systems using Petri Nets., Automatic
Control Production Systems A.P.1.1.,1993, 27,81-93

De Loor, P.J. Zaytoon and G. Villerman-Lecolier.: Abstraction and heuristics for
the validation Grafcet controlled systems, European Journal of Automation, 1997,
31, 561-580

175

http://wikipedia.org/wiki/Harald_St%F6rrle

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Modelling and Verification of Discrete Control Systems

Hanisch, H.-M., Thieme, J., et al (1997). Modelling of PLC Behaviour by Means
of Timed Net Condition/Event Systems, 6th International Conference on Emerging
Technologies and Factory Automation, Los Angeles, USA

Heiner M. and Menzel T., Instruction list verification using a Petri net semantics,
IEEE International Conference on Systems, Man, and Cybernetics, vol.1, October
1998, pp. 716 -721

Bani Younis, M., Frey, G. (2003). Formalization of Existing PLC programs: A
Survey, In Proc. Of Computing Engineering in Systems Applications, Lille,
France

Rausch M. and Hanisch H.-M.: Net condition/event systems with multiple
condition outputs. Symposium on Emerging Technologies and Factory
Automation, Paris, France, October 1995, Proc., Vol.1, pp. 592-600, INRA/IEEE
H.-M. Hanisch, T. Pannier, D. Peter, S. Roch, and P. Starke: Modelling and
verification of a modular lever crossing controller design,
Automatisierungstechnik, 48, 2000.

Analysing Signal-Nets with SESA: http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/sesa/, 2004

V. Vyatkin, H.-M. Hanisch: A modelling approach for verification of IEC1499
function blocks using Net Condition/Event Systems, IEEE conference on
Emerging Technologies in Factory Automation (ETFA'99), Proc., pp. 261-270,
Barcelona, Spain, September, 1999

IEC61499 - Function Blocks for Industrial Process Measurement and Control
Systems, International Standard, International Electrotechnical Commission, Tech.
Comm. 65, Working group 6, Geneva, 2005

Vyatkin V., Hanisch H.-M. Verification of Distributed Control Systems in
Intelligent Manufacturing, Journal of Intelligent Manufacturing, special issue on
Internet Based Modelling in Intelligent Manufacturing, vol.14, N.1, 2003, pp.123-
136

J. Thieme: Symbolische Erreichbarskeitanalyse und automatische
Implementierung struktuirter, zeitbewerter Steuerungsmodelle, Dissertation zur
Erlagung des Grades Dr.-Ing., Berlin: Logos Verl., 2002

A. Lobov, J. LM Lastra, R. Tuokko, V. Vyatkin: Modelling and Verification of

PLC-based Systems Programmed with Ladder Diagrams, INCOM’2004, Proc.,
Salvador, Brazil, April, 2004

176

http://www.informatik.hu-berlin.de/lehrstuehle/automaten/sesa/
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/sesa/

V. Vyatkin © 2007-2011

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Lobov, J. L. Martinez Lastra, R. Tuokko, V. Vyatkin: Methodology for
Moldelling Visual Flowchart Control Programs using Net Condition/Event
Systems Formalism in Distributed Environments, IEEE Conference on Emerging
Technologies in Factory Automation (ETFA'03), Proc., Lisbon, September, 2003

Vyatkin V., Hanisch H.-M., Pfeiffer T., “Modular typed formalism for systematic
modelling of automation systems”, 1** IEEE Conference on Industrial Informatics
(INDIN’03), Proc., Banff, Canada, August 2003

V. Vyatkin, H.-M Hanisch, G. Bouzon: Open Object-oriented validation
framework for modular industrial automation systems, INCOM’2004, Proc.,
Salvador, Brazil, April, 2004

H.-M. Hanisch and A. Lider: Modular Modelling of Closed-Loop Systems,
Colloquium on Petri Net Technologies for Modelling Communication Based
Systems, Berlin, Germany, October 21-22, 1999, Proc., pp. 103-126

Starke P.H., Hanisch H.-M., Analysing of Signal/Event Nets, In Proc. 6th IEEE
International Conference on Emerging Technologies and Factory Automation
ETFA-97, Los Angeles, USA, pages 253-257, September 1997.

P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, A. Luder: Analysing signal-event
systems, Technical report, Humboldt Universitat zu Berlin, Institut fir Informatik,
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/, July, 2004

V. Vyatkin, H.-M. Hanisch, P. Starke, and S. Roch: Formalisms for verification of
discrete control applications on example of IEC1499 function blocks, Conference
"Verteilte Automatisierung” (Distributed Automation), Proc., pp. 72-79,
Magdeburg, Germany, March 2000

M. Bonfe and C. Fantuzzi: Design and Verification of Industrial Logic
Controllers with UML and Statecharts, submitted to the IEEE Conference on
Control Application 2003, June 23-35, Istanbul, Turkey

K. Thramboulidis: Using UML for the Development of Distributed Industrial
Process Measurement and Control Systems, IEEE Conference on Control
Applications (CCA), September 2001, Mexico.

Hanisch H.-M., Luder A., Thieme J., A Modular Plant Modelling Technique and
Related Controller Synthesis Problems. IEEE International Conference on
Systems, Man, and Cybernetics, October 1998, vol.1, pp. 686 —691

Hanisch, H.-M. and A. Luder: Modular modelling of closed-loop systems,
Colloquium on Petri Net Technologies for Modelling Communication Based
Systems. Proc., pp.103—126, Berlin, Germany, 2000

177

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Modelling and Verification of Discrete Control Systems

International Standard IEC 1131-3, Programmable Controllers - Part 3,
International Electrotechnical Commission, 1993, Geneva, Switzerland

Nematron Corp., OpenControl: About open architecture,
http://www.nematron.com/OpenControl/oc_architecture.shtml, September 2001

Lastra, Jose L.M., Evaluation of New Open Control Systems for Light Assembly
Applications. M.Sc. Thesis. Tampere University of Technology, 2000

FBDK - Function Block Development Kit at www.holobloc.org, visited in June,
2005

Lobov, A., An Approach to the Formal Verification of Automated Manufacturing
Systems with Programmable Control, M.Sc. Thesis, Tampere University of
Technology, April 2004, thesis related material:
http://www.pe.tut.fi/movida/L obovThesis/

K. Thramboulidis: Development of Distributed Industrial Control Applications:
The CORFU Framework, 4™ IEEE International Workshop on Factory
Communication Systems, August 2002, Vasteras, Sweden

K. Takatsuka and S. Tomita: On modelling and an algorithm for verifying
behaviour of discrete parallel production system, PSE2002ASIA

S.Kowalewski, P.Herrmann, S.Engell, R.Huuk, H.Krumm, Y.Lakhnech,
B.Lukoschus, and H.Treseler: Approaches to the formal verification of hybrid
systems. Automatisierungstechnik, 2:66--73, 2001.

Fisler, K.: Timing diagrams: Formalization and algorithmic verification. Journal
of Logic, Language, and Information, 8(7), July 1999.

Amla, N., Emerson, E., Kurshan, R., and Namjoshi, K: Model checking of
synchronous timing diagram,. Conference on Formal Methods in Computer Aided
Design, Proc., Nov. 2000

Schlér, R., Allara, A. and Comai, S.: System Verification using User-Friendly
Interfaces. In Design, Automation and Test in Europe, pp. 167-172. IEEE
Computer Soc. Press, 1999

Vyatkin, V. and Hanisch, H.-M.: Application of Visual Specifications for
Verification of Distributed Controllers, Proc. of IEEE Systems, Man, and
Cybernetic Conf, pp. 646-651, Tucson, 2001

G. Bouzon, V. Vyatkin, H.-M. Hanisch: Timing Diagram Specifications in
Modular Modelling of Industrial Automation Systems, IFAC World Congress,
Prague, 2005

178

http://www.holobloc.org/
http://www.pe.tut.fi/movida/LobovThesis/

V. Vyatkin © 2007-2011

51.

52.

Roch, S.: Extended Computation Tree Logic, in Proc. of Workshop on
Concurrency, Specification and Programming, Berlin, 2000

P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, and A. Lider, Analysing Signal-
Event Systems, Technical report,
Humbold,[Online]:http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.ht
ml

179

