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Abstract — This review paper discusses the industrial and 

research activities around the IEC 61499 architecture for 

distributed automation systems. IEC 61499 has been developed 

to enable intelligent automation where the intelligence is 

genuinely decentralized and embedded into software 

components, which can be freely distributed across networked 

devices. With the recent emergence of professionally made 

software tools and dozens of hardware platforms, IEC 61499 is 

getting recognition in industry. The paper reviews research 

results related to the design of distributed automation systems 

with IEC 61499, the supporting tools and the aspects related to 

the execution of IEC 61499 on embedded devices. The 

promising application areas of IEC 61499 include flexible 

material handling systems, in particular airport baggage 

handling, flexible reconfigurable manufacturing automation, 

intelligent power distribution networks and SmartGrid, as well 

as the wide range of embedded networked systems.  

 
Index Terms -- IEC 61499, distributed automation, 

distributed embedded networking systems, intelligent 

automation systems 

I.  INTRODUCTION 

he term “distributed automation” has been 

subsequently applied to three generations of 

technology. First, with the emergence of field area 

networks, it has become possible to collect data from 

sensors distributed across geographically dispersed areas, 

while their processing was done centrally in Programmable 

Logic Controllers (PLCs). Second, there were attempts to 

facilitate integration of PLCs into systems communicating 

via networks, by proposing integration component 

architectures, such as Modbus-IDA [1] and PROFInet-CBA 

[2]. Finally, it comes to the genuinely distributed automation 

development, where the intelligence is  designed from the 

very beginning as decentralized and embedded into software 

components, which can be freely distributed across 

networked hardware devices. The design of distributed 

systems, in general, has been identified as a grand challenge 

of computing [3]. The IEC 61499 architecture [4] has been 

conceived to facilitate the use of distributed automation 

intelligence, but for some time the standard could not make 

its way to the industrial practice. Now, with the emergence 

of professionally made software tools and dozens of 

hardware platforms one can expect stronger industrial 

interest to the distributed automation.  

First industrial applications of commercial IEC 61499 

compliant tools and platforms confirm its benefits in terms 

of much improved design performance – i.e. the time and 
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effort needed to develop and commission automation 

software. One such example is the use of ISaGRAF IEC 

61499 implementation to automate an experimental shoe 

manufacturing factory [5, 6] shown in Figure 1. The factory 

was developed to achieve a revolutionary high level of 

manufacturing flexibility, thanks to which individually 

tailored shoes could be produced at cost of a mass 

manufactured product.  

 

 

Figure 1. Experimental shoe manufacturing facility at ITIA-CNR 

automated with IEC 61499. 

New types of material handling devices called “terns” 

were developed for this purpose. The terns form easily 

configurable lines, called “molecular” for their shape. As 

seen from Figure 2(a), this new equipment allows the 

accommodation of multiple product paths through the 

system, where each path corresponds to a particular 

sequence of operations. The IEC 61499 control program of 

the molecular line, presented in Figure 2(b), exhibits a high 

degree of code modularity, and therefore enables reusability 

and re-configurability of the equipment. As seen from 

Figure 2(b), the line controller uses six instances of the 

TernControl function block, each of which is a composite of 

three controller function blocks, representing constituent 

parts of the tern: Table, Manipulator and Island. Each of 

these, in turn, is another composite function block. At the 

lowest level in the hierarchy, basic function blocks are 

programmed using the state machines language (called 

Execution Control Charts, or ECC) and traditional PLC 

languages, such as Ladder Logic Diagrams. 

The function blocks architecture of IEC 61499 has been 

formally voted and published in 2005. Since then, many 

useful practices have been earned by researchers worldwide. 

According to some researchers,  many expectations seem to 

have failed [7] while the others see the situation in a more 

positive way [8].  
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Taking IEC 61499 as a reference architecture of future 

industrial automation information technology (IT), 

researchers have addressed virtually all sides of the IT scope 

and life cycle: from theoretical formal models to the 

business use case scenarios. The corresponding research 

publications can be roughly sorted into three following 

categories: 

First of all, the research works focused on various aspects 

of IEC 61499 implementation. The standard proposes an 

abstract executable model of distributed systems, leaving 

unanswered many questions related to the methods of its 

implementation. These issues needed to be addressed before 

compliant systems could be developed, or were addressed 

during such development efforts. In this survey 20 works 

can be classified as belonging to this group. 

Another large set of research works tried to prove the 

claimed benefits of IEC 61499 as compared to the solutions 

currently used in the field, for example, PLC architecture of 

IEC 61131-3 standard [9], or the general purpose languages 

implemented on industrial personal computers (IPCs) and 

embedded devices. This class also includes works on 

migration from other architectures to IEC 61499 and 

accounts for 40 works in this survey. 

Many research works have been trying to introduce 

various trendy ideas from computer science into the 

industrial automation context using IEC 61499 as a vehicle. 

To mention a few, one can cite object-oriented architectures 

and design patterns [10], in particular UML-based 

engineering [11-15], new execution models inspired by 

different formalisms [16, 17], formal verification, semantic 

Web technologies [18], web services, ontologies [19], and 

automatic program transformations (refactoring) [20]. In 

most cases, these research works demonstrate the potential 

of IEC 61499 to implement those techniques in a much 

more consistent way than any existing IT technology used in 

industrial automation. About 40 related works are cited in 

this survey. 

It is worth mentioning the difference in attitudes to the 

standard by academic and industrial researchers and 

practitioners. Most practitioners take the standard as a 

serious normative document not allowing for any flexibility 

in interpretation of its provisions. On the other hand, some 

researchers (from the more theoretical end of the spectrum), 

easily propose fundamental changes to the nature of the 

standard, using it rather as the inspiration source for further 

enhancement in automation technology. This often creates 

confusion and difficulty in understanding the applicability of 

research results to industrial problems. This paper attempts 

to help by reviewing the state of the art in IEC 61499 related 

research and its impact on the implementation of compliant 

tools, devices and applications. It follows the line of several 

surveys published recently e.g. [21-23], extending them with 

the fresh research results and discussing the older references 

from those particular perspectives. There are some 

introductory books on the topic by Lewis [24], Lastra et al. 

[25] and the author [26]. Given the availability of 

introductory material on IEC 61499, in this paper no 

comprehensive introduction to this architecture is provided. 

The rest of the paper is structured as follows. In Section II 

the key features of IEC 61499 are presented. Several 

concerns on IEC 61499 expressed by researchers and 

practitioners are discussed in Section III. One such concern 

related to semantic ambiguities of the IEC 61499 execution 

is discussed in more detail in Section IV. In Section V, the 

design related developments are presented. Section VI 

reviews the progress related to execution of function block 

applications. Section VII discusses verification and 

validation related research and development efforts. In 

Section VIII the first industrial installations are mentioned 

and the motivation of early adopters is discussed. The paper 

is concluded with a summary, outlook and the list of 

references. 
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Figure 2. a) Product flows through the “molecular line”, and b) function block control enabling the flexibility of the “molecular line”. 
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II.  FEATURES OF IEC 61499  

A.  Function block: process or code module?  

The IEC 61499 architecture exploits the familiarity among 

control engineers accustomed to a block-diagram way of 

thinking. The main design artefact, function block (FB), has 

been extended from the subroutine-like structure in IEC 

61131-3, to the process–like abstraction used in the theory 

of distributed computing systems. A process represents an 

independent computational activity with its own set of 

variables (context) and communication with other processes 

via messages. The event interface is well suited to modelling 

of inter-process message-based communication.  

On the other hand, a function block still may represent 

just a piece of code executed within another process. 

However, the process-like encapsulation mechanism 

provides the strength to this architecture, enabling arbitrary 

re-allocations of components to distributed execution 

domains without affecting their functionality.  

This duality of the function block language construct 

often creates confusion amongst researchers and 

practitioners. However, one should note that the standard 

provides a certain redundancy of structures and there are 

many ways to model same application configuration using 

IEC 61499 artefacts.  

B.  Model or implementation? 

As one could see from the example in Figure 2, the 

architecture supports unlimited nesting of composite 

function block structures, and combination of several 

diagram types: block-diagrams, state charts, and ladder logic 

in the same design. The result of the design is an executable 

specification of a distributed automation system, which 

includes also models of devices and their network 

interconnections.  

The downside of this duality of being both model and 

executable implementation shows itself when it comes to 

portability: a particular executable FB configuration needs 

to include platform dependent service interface function 

blocks, which hinders the portability. 

C.  Event-driven execution 

Function blocks of IEC 61499 are event-driven, i.e. they 

remain idle unless an event is sent to one of their event 

inputs. The main motivation for event-driven execution is 

portability, i.e. the desire to make the code independent of 

the sequence of FB invocation in the PLC scan loop. The 

event-driven execution is the key mechanism enabling 

transparent modelling of distributed systems. 

 After a FB is activated by an input event, it is assumed 

that it cannot be re-entered before the previous activation 

has terminated.  

 The event mechanism is a nice abstraction, but the 

problem is that it has to be applied uniformly. The standard 

does not answer questions related to what to do if events 

arrive too fast one after another. Theoretically, one can 

restrict the minimum time interval between the events 

originated in the process, but it can be different when the 

source of events is purely computational, originated in 

another function block executed in the same device. In this 

case the runtime environment has to implement either 

storage for events, or explicitly lose some. 

D.  Encapsulation 

Another provision for portability is strong data 

encapsulation into components which has been widely 

recognized in the software community as one of the pillars 

of creating safe and re-usable code. It can ensure the 

absence of hidden dependencies between variables of 

several FBs. This model also reflects the fundamental 

property of distributed systems where any data exchange 

can be implemented only via explicit message passing.  

 As indicated in [27], this concept may seem 

inconvenient to many PLC developers who got used to work 

with shared variables. However, smarter design tools can 

make the development process easier. Education effort can 

be directed towards design patterns and examples showing 

how the typical automation problems are solved using 

function blocks without global variables. 

III.  CONCERNS  

With the increasing complexity of information and control 

systems, developers realize the need for distributed design 

languages and architectures. In this regard, the IEC 61499 

architecture would be their first choice. However, there are 

some barriers preventing the practitioners from using IEC 

61499, the main of which are the lack of: mature 

engineering tools, reliable embedded control hardware, 

proven design methodologies and trained engineers.  

Reference industrial projects could be useful, but, again, 

with the increasing requirements to safety and security, it is 

hard to expect that such projects can be implemented with a 

seemingly superior, but still unproven technology like IEC 

61499. In the rest of this section we discuss several concerns 

expressed by research and industrial community.  

A.  Determinism  

Implementation of an event-driven activation of function 

blocks implies the possible need of storing events in queues 

of a variable length and loss of events in case the queue 

capacity is exceeded. Altogether, this may lead to non-

deterministic behaviour of the control device, i.e. different 

computation results in exactly same input conditions (for 

example, if timing of input signals in one run is a bit 

different from another run).  

Attempts to increase the determinism of FB execution 

include propositions of the synchronous model of execution 

[28], cyclic model of execution [29, 30], and ISaGRAF 

model [31], which is close to the cyclic. These models 

“bend” a bit the fundamental concepts of event-driven 

invocation, implemented in the pure event-driven 

implementations, such as FBRT [32] and FORTE [33].  

A possible application-level practical solution to achieve 

the determinism of event-driven applications is to sample 

external inputs periodically, making them available to the 

rest of the application if any change is detected (presented in 

Figure 3). Here one can see a pulse generator B1 

(“E_CYCLE”) which emits events periodically (each 

DT=10ms in this case). The events activate the FB B2 which 

samples the inputs from the corresponding hardware 

modules interfacing the process. In case of any input value 

has changed its value since the previous invocation, this FB 

emits the CHG event and activates the B3 function block 

(CONTROLLER). The latter recalculates the values of 

outputs and passes them to B4 which interfaces the 

hardware output module. 
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Figure 3. Function block application structure with periodic sampling of 

inputs. 

While this solution does not seem to be as exciting as 

compared to the pure interrupt-driven input architecture (in 

which case the E_CYCLE FB would not be required), in 

fact it preserves the event-driven nature of the application 

(the block B3) and all associated benefits. However, the 

behaviour in this case is fully deterministic, provided the 

sampling period DT is sufficient to complete the execution 

of B2, B3 and B4. The choice of the sampling period shall 

be based on the “mechatronic capability” of the device [31], 

that can be determined empirically or using Nyquist – 

Shannon sampling theorem. On the other hand, to ensure 

determinism, the worst case execution time of the 

application (FB B3 “Controller” in this example) needs to be 

predicted in advance. The minimum value of the inputs 

sampling period should not be less than the worst case 

execution time of the application. This can be done by 

software tools through static timing analysis as proposed in 

[34]. 

This solution is different from the PLC scan as the 

controller application executes only when a change of any 

input is detected. The event-driven execution also can help 

in activating only those blocks which are directly dependent 

on that event, unlike the PLC case where all program 

modules are executed. This may require less time for 

execution even in the worst case. 

Another benefit of this approach is that service interface 

function blocks for input modules can be developed using 

the usual polling of their values that is easily supported on 

most architectures, rather than requiring special hardware 

with interrupt-driven input update. 

B.  Best case, worst case, average case 

It has been argued in [35] that there is no need in industrial 

automation to use the benefit of event-driven execution to 

improve the average or best case reaction time of the control 

device, as only the worst case time does really matter. 

Although this statement is true in general, there are some 

special cases.  

 First, there are many automation applications without 

hard-real time constraints, for example, building 

management systems, where the control device 

accommodates control of many processes. Improvement of 

the average reaction time in such systems will mean better 

quality of control and a more cost-effective solution. In such 

systems a control reaction may involve communication 

between several nodes which has unpredictably variable 

duration anyways. Thus, in such a networking environment, 

improvement of the local processing time of each node will 

favourably impact the overall system performance. 

 One more reason for improvement of the best and average 

execution time is power conservation. Many battery 

powered control devices will exhibit much longer battery 

life in case of event-driven activation that leads to shorter 

and rarer CPU activity periods.  

C.  Performance 

In a traditional PLC, performance is measured in terms of 

reaction time, which is bounded by the doubled scan time. 

The reaction time of the IEC 61499 compliant controller is 

harder to estimate, as it can vary significantly dependent on 

the source of input. 

Many complaints on the low performance of IEC 61499 

originate in incorrect association with Java technology, 

which was used in the first IEC 61499 implementations such 

as FBRT environment [32]. In fact, there are many other 

(more efficient) implementation techniques as it will be 

discussed later in Sections III.F, VI. 

Another group of performance-related concerns originates 

in the wide usage of eXtensible Markup Language (XML) in 

IEC 61499. XML is used in IEC 61499 as a storage format 

for all design artefacts, and even for implementation of 

device management protocol. The use of XML provides 

numerous benefits, as the representation becomes self-

explanatory, and standard XML parsing tools can be used to 

check syntax. On the other hand, XML tools are quite 

performance hungry and therefore not appropriate for many 

embedded platforms. One solution was presented by Zoitl et 

al. in [36] who suggested using binary XML. This solution, 

however, impacts on interoperability, as there are several 

different versions of binary XML, supported by different 

user groups.  

The precise implementation of the event mechanism of 

IEC 61499 also adds substantial computational overheads. 

To ensure the correct causality of execution, all events 

emitted in a function block application need to be 

sequentially ordered. A “first in, first out” (FIFO) queue has 

been proposed in several implementations, e.g. [37] to store 

all events emitted by component function blocks and 

dispatch them one by one from the top of the queue as 

shown in Figure 4.  

 

 

Figure 4. Implementation of event passing mechanism using FIFO queue. 

It has been shown in [38] that data buffering is required to 

correctly handle the situations when event flow does not 

coincide with the data flow. Therefore, a buffer needs to be 

associated with each data connection. On an output event 

(such as FB1.EO2), all associated data are written to the 

buffers (for example FB1.DO2 value 3 is written to the 

buffer where it overwrites the previous value 2). On an input 

event (e.g. FB2.EI2), all associated input data values are 

read from the buffers into function blocks (including 
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FB2.DI2 which now receives the value 3). However, the 

queuing of events implies the possibility to lose events in 

case of  queue overflow. One should also note that the data 

buffers will be overwritten with the freshest value, so it may 

happen that an event will activate FB with data completely 

different from those which were calculated at the moment 

when the event was emitted.   

The issue of guaranteeing hard-real time constraints of 

IEC 61499 applications has been comprehensively 

addressed by Zoitl in [37]. Kuo et al. [34] use formal 

modelling to estimate the longest computational path to 

predict worst case execution time. 

 

D.  IP Protection vs. Openness 

Many practitioners raise the issue of intellectual property 

protection in IEC 61499 due to the open XML 

representation format.  

Solutions of this problem are not different from other 

programming frameworks. Instead of supplying full source 

code of a function block whose content needs to be 

protected, the vendor can provide a library of blocks 

compiled for a particular platform. This can be supplied 

along with a “bridged” XML representation containing only 

interface and, possibly, the service sequences describing the 

overall behaviour of the FB without revealing sensitive 

implementation details. Using the “compilation to 

hardware” technique, discussed later in Section VI, D, one 

can achieve even more protection of intellectual property. 

An illustration of the service sequences mechanism of 

IEC 61499 is provided in Figure 5. The function block 

IN_EVENT (whose source code is hidden) implements a 

“button” on screen which can be used to interact with FB 

applications. The FB implements four operation sequences: 

normal establishment, normal termination, normal 

operation, and operation inhibited. The illustrated “normal 

operation” sequence describes the scenario which starts with 

a click or key pressing on the button. After some short 

delay, the output qualifier is set to 1 and event at the output 

IND is emitted.  

 

 

Figure 5. Description of function block functionality using service 
sequences  [26]. 

 Given the service sequences, one can partially reconstruct 

the execution logic of the function block and of the entire 

system without knowing sensitive details of the 

implementation.  

E.  Expressive power of design 

The use of communicating state machines (ECCs of basic 

FBs) for programming distributed systems has been quickly 

identified by many researches and practitioners as a very 

convenient feature of IEC 61499. 

However, one necessary part of programming badly 

supported in IEC 61499 is exceptions handling, that is the 

reaction of a program to some erroneous situations that can 

happen in any state. Defining these leads to the ECC 

cluttered with many connections to the “Exception” state 

and back (for the recovery).  

The standard model of dealing with this problem is 

exemplified in Harel’s State Charts [39], where hierarchical 

states are allowed. One can combine all states of the control 

algorithm to such a composite state and describe a single 

“exception transition” for the whole group.  

Shaw et al. [40] proposed the use of hierarchical state 

machines in place of ECC in basic function blocks. This 

representation, called HCECC, however, requires non-

compliant syntax thus affecting the portability. HCECC can 

be compiled to the standard “flat” ECC, but reverse 

engineering is not possible. In general, this solution seems to 

be overkill for solving the exception handling problem only. 

There is no doubt in the usefulness of hierarchical state 

machines as a design artefact, but, in the IEC 61499 context 

a similar effect is achieved using composite function blocks. 

Future software tools could support a “hierarchical state 

machine” front-end with dual conversion to/from nested 

composite FB types. 

F.  The “chicken and egg” problem of tools 

The standard has inspired many researchers to create 

supporting software tools. The usual implementation tool set 

includes a workbench for editing function block designs and 

translating them into executable form, and some kind of 

run-time environment, that supports the execution of the 

executable code.  

The most developed examples of such research-oriented 

workbenches are FBDK [32] and 4DIAC-IDE [33]. These 

have been supported with a consistent development effort 

until now, with 4DIAC-IDE being an open source project. 

Substantial development effort has been invested to 

CORFU/Archimedes [41] and another open source project 

FBench [42], but at the moment these tools do not seem to 

be continuously supported. There are a few others, less 

developed ones, like FBLab [43]. 

Runtime environments include FBRT [32], FORTE [33], 

FUBER [44] and Cyclic RT [29]. Some of the solutions, 

such as synchronous compiler [28], claim not to require any 

run-time support as they generate the complete executable 

file to be placed to the desired embedded target platform.  

These tools have been successfully applied in many 

automation projects but mostly in academic and research 

labs. However, there is a barrier of using them in industry. 

The commercial PLC tools provide a high level of design 

and remote debugging support that is hard to compete with. 

Achieving this level of maturity, acceptable for industry, 

requires years of development and improvements. 

First attempts to overcome this barrier are commercial 

developments ISaGRAF [45] and NxtStudio [46].  

ISaGRAF (since 2008, a Rockwell Automation company) 

combines the support of both standards IEC 61131-3 and 

IEC 61499, so it is possible to develop distributed control 

applications together with the use of PLC languages. This 

tool supports a very seamless way of code distribution to the 

networking devices. The workbench automatically inserts 

communication code where it is required, while the user 

sees only the global picture of the entire distributed 

application. 

NxtStudio (developed by an Austrian company 

nxtControl) integrates distributed control approach based on 
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IEC 61499 with SCADA1. It is an industrial grade 

engineering environment which supports the design of 

control applications and visualization together in one tool. 

This approach has great advantages in productivity and 

reuse of both control and visualization components.  Several 

features of NxtStudio have long been expected from IEC 

61499, for example, the debugging and online-monitoring 

infrastructure, allowing to remotely debug single FBs as 

well as fully distributed applications. Another feature is the 

automatic generation of the communication during the 

distribution process of the application. This greatly reduces 

the engineering effort when distributed control applications 

are designed.  

With these two powerful tools already on the market, the 

developers have sufficient choice in trying out the benefits 

of IEC 61499. 

G.  High educational threshold  

Many practitioners are afraid that IEC 61499 requires a 

steep learning curve. This is partially true, as it introduces a 

lot of new concepts compared to PLC technology. On the 

other hand, it is the author’s personal experience that IEC 

61499 is very easy to learn and use by the current generation 

of students. When young control engineers learn IEC 61499, 

many of them get a feeling of some déjà vu of something 

very intuitive and familiar they have been looking for but 

could not find among the available PLC programming 

technologies.  

IV.  SEMANTICS IMPROVEMENT EFFORT 

A.  Improvement of the standard 

Some semantic ambiguities of the standard were spotted for 

the first time during the period of standard’s industrial and 

academic evaluation. In [47] it was illustrated that definition 

of input event variable lifetime in basic function block can 

result in different behaviour of control system. In [48] 

different scheduling policies of function blocks in composite 

structures were demonstrated.  

The standard was voted in 2005, and its final text was 

modified based on some of the findings. For example, an 

early draft of the standard was prescribing to store a copy of 

event input variable value (so called latch) in a basic 

function block implementation. Because it was shown in 

[47] that the latches still can lead to a loss of input events, 

they were completely removed from the text.  

In subsequent works, e.g. [44, 49-51], the ambiguities of 

the IEC 61499 semantics were classified and analysed in 

detail, showing possible impact of different interpretations 

on the correctness of control applications. Strasser et al. [52] 

and Doukas et al. [53] investigate the semantics of device, 

resource and of a distributed system. In more detail the 

semantics improvement is covered in [54]. 

As a result of this semantics improvement effort, the 

second edition of the standard voted in 2010 included a 

number of corrections which eliminated the ambiguities. 

 

B.  Execution differences  

However, the original semantic ambiguities of the standard 

gave rise to a number of execution models such as the cyclic 

and synchronous execution models which attempt to 

“combine” the event-driven execution of IEC 61499 with 
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the determinism of the cyclic scan semantics of PLCs. These 

have been implemented in several run-time environments, 

including ISaGRAF. However in such models the following 

problematic situations can occur: 

- Several events can arrive to the inputs of the same FB 

simultaneously; 

- The syntax of IEC 61499 does not allow to detect the 

simultaneity of events inside the FB; 

As a result, a FB, written for such models may run 

differently in other execution environments and vice versa. 

We will illustrate the impact of semantic differences on the 

following simple example of a baggage handling system 

(BHS). 

Example. As illustrated in Figure 6, two conveyors C1 and 

C2 merge bag flows to conveyor C3. The bag tracking 

function of this BHS is implemented in a distributed way, so 

that one function block is responsible for knowing the bags’ 

location within its respective conveyor section as shown in 

Figure 7,a (more on distributed BHS control in [55] and 

[56]). When a bag leaves the conveyor to the downstream 

conveyor, its record is passed to the corresponding 

downstream function block.  

 

 

Figure 6. Sample merging conveyor structure.  

A bag record is implemented using a user defined structured 

data type. For example, to model the bag passage from C1 to 

C3, the C1 FB will assign the bagRO variable to the value of 

the bag record leaving the conveyor. On the event that S1 

sensor goes high, C1 will emit event EO, connected to the 

event input EI1 of C3. Having received the event at its EI1 

input, the FB C3 will get activated and will add the bag 

record to its internal data base. Similarly the bag is passed 

from C2 to C3. The internal logic of the mrg_conv 

function block implements the processing of the arriving 

bags in the state machine shown in Figure 7, b. Here the 

algorithms ADD1 and ADD2 add to the internal database of 

this conveyor the ID of the bag arrived from C1 or C2 

respectively. 
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Figure 7. Distributed control of the merging conveyors in IEC 61499 

function blocks. 

 

In the “pure” event-driven implementation platforms, such 

as FORTE, NxtForte and FBRT, in a rare, but possible case 

of simultaneous detection of bags by sensors S1 and S2, two 

events will appear at the input interface of C3. The function 

block C3 will be invoked twice, and, as a result, no bag 

record will be lost. 

In the cyclic or synchronous semantics both events arrive 

simultaneously and the C3 block gets activated only once. 

The priority of input event processing will determine which 

record will be added to the database and which one will be 

potentially discarded and lost.  

 To be able to resolve this situation within mrg_conv FB, 

it is required to detect the situation of simultaneous arrival 

of events to the FB inputs. It could be done as shown in 

Figure 8. Here the transition WAIT -> S12 has condition 

that includes both input events: EI1 and EI2. However, the 

IEC 61499 syntax fundamentally prohibits the use of two 

event names in the condition transition.  

 

 

Figure 8. “Impossible ECC” which could detect the simultaneity  
of input events. 

V.  DESIGN 

The natural expectation from the system-level architecture 

like IEC 61499 is that it improves considerably the designer 

performance, which is expected to result from increasing the 

level of design, i.e. using design artefacts of higher 

abstraction level.  

A.  Redefining model-driven design 

Model-driven engineering is the major trend in software 

engineering. For example, UML technologies and tools are 

widely used in all sectors of industry to support the design 

of complex software systems. Matlab/Simulink is used in 

embedded systems design for the same purpose.  

 The function blocks architecture of IEC 61499 is clearly 

following these trends, providing the developer a mix of 

models that include distributed system model composed of 

devices, device model composed of independent resources, 

application model as a block diagram composed of function 

block instances, basic function block model specified as a 

state machine, and algorithm model that can be specified in 

any programming language, including those of PLC world. 

An early survey of related modelling techniques can be 

found in [57]. Bonfé and Fantuzzi [58] and Thramboulidis 

[12] have introduced the use of UML in automation and in 

particular in IEC 61499 context.  The latter work proposed 

generation of function blocks from UML diagrams, while  

Dubinin proposed the UML-FB architecture with both ways 

of generation of UML diagrams from function block designs 

and vice versa in [59]. In [60] Thramboulidis proposed IEC 

61499-based concept of model-integrated mechatronic 

architecture for automation systems design.  Panjaitan in 

[61] demonstrated the use of UML for addressing a number 

of practical issues related to automation systems design with 

IEC 61499. An interesting comparison of the IEC 61499 

modelling artefacts with state-charts and Petri nets was done 

by Barji et al. in [62].  

SysML is a UML derivative for engineering applications 

that is getting increasingly popular. In particular, SysML is 

well supporting such design phases as requirements 

capturing and formalization of specifications. Hirsch et al. 

[63, 64] provide a pathway for linking function block 

technology with SysML. 

One can summarize the rationale of combining 

UML/SysML and IEC 61499 as shown in Figure 9.  The 

graph represents developer performance through system 

engineering steps with both types of technologies.  

UML/SysML better support the top-down design and 

requirements engineering. However, they are less efficient 

when it comes to the deployment to distributed embedded 

targets. Also legacy PLC programming (such as ladder 

logic) is not supported there. As illustrated in Figure 

9Error! Reference source not found., the efficiency of 

SysML development is high in the early design stages and 

lower in the deployment and maintenance.  

On the other hand, the IEC 61499 distributed architecture, 

copes well with the problems of code generation, 

deployment and reconfiguration, but offers less support at 

the initial design steps. Their combination intends to bring 

best of both worlds as it is conceptually illustrated in Error! 

Reference source not found.. One should note that 

quantification of software methodologies impact is a very 

hard to achieve. 

 

 

Figure 9. Desired properties of the UML/SysML + IEC 61499 combination. 

However, there is one more reason to call the design in 

the IEC 61499 framework model-driven. Christensen has 

proposed in [10] a number of design patterns, among which 

the adaptation of Model-View-Control to IEC 61499 and 

industrial automation. In this context the Model is 

understood as a precise behavioural model of the plant. An 

example of MVC use can be found in [65], Ch. 13-16. The 

concept of Automation Object (AO) [18, 66, 67] is an 

attempt to generalize the FB concept to represent a machine 

or a mechatronic part thereof. The Intelligent Mechatronic 

Component (IMC) [68] concept is an AO implemented 

using the MVC pattern, thus enabling simulation and 

visualization along with deployment of controls.  

B.  NxtControl concept of CAT 

The MVC design pattern has motivated NxtControl to 

invent the composite automation type (CAT) concept. 
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 As illustrated in Figure 10, a CAT is a function block that 

combines functions of machines or their parts, with their 

simulation and visualization. Here the “Pick and place” 

manipulator is built of two identical pneumatic cylinders, 

each represented by a CAT in the FB application. 

 

 

Figure 10. The concept of composite automation type in NxtStudio is based 

on the MVC architecture. 

Once the application is assembled from instances of such 

CATs, NxtStudio can automatically deploy the control parts 

of all CATs to the designated embedded targets, while the 

View parts will be sent to the device displaying SCADA 

screens. In the figure, a CAT of a pneumatic cylinder is 

exemplified. The CAT also includes the (behaviour) model 

of cylinder’s dynamics. Once executed, the application built 

of these CATs immediately delivers a complete interactive 

simulation model of the manipulator. 

The CAT concept has proven its benefits in a number of 

industrial projects, where NxtControl tools were used, for 

example in building management systems automation. 

C.  Migration from PLCs to IEC 61499 

The huge legacy of industrial automation raises the issue of 

software migration from the existing PLC platforms to IEC 

61499. The practitioners, for example, Woll [69], are 

concerned with the prospect of complete paradigm change 

in automation software design and want to secure their 

investments in automation hardware and software. 

Therefore, investing into the migration pathways becomes 

crucial for the industrial uptake of IEC 61499. 

The migration case studies were presented by Hussain 

[70] and Gerber [71] with some recommendations for 

manual migration provided. Wenger [72] presents an 

attempt of converting the entire PLC application to an 

equivalent IEC 61499 one. The result of this approach may  

run correctly , but would not be very usable in the entire 

project’s life cycle due to poor structure and readability of 

the generated code.  

Dai in [73] presents an example of domain-specific 

migration related to baggage handling systems (BHS). Here 

the emphasis is made on generating well designed modular 

code which can be directly identified with the equipment it 

controls. Shaw [74] also investigates migration of the PLC 

based BHS automation software to IEC 61499 with 

subsequent compilation to C.  

In addition to the migration research, the work [75] 

discusses harmonization of IEC 61499 and IEC 61131-3 – in 

terms of execution semantics and data types, aiming at 

seamless use of PLC languages inside IEC 61499 function 

blocks. 

D.  Integration with domain specific standards 

The strong benefit of the system level design language like 

IEC 61499 is its capability to implement provisions of 

domain specific design practices standardized in a plethora 

of international standards. According to [76], the open 

nature of IEC 61499 can help to create an open knowledge 

economy in industrial automation. There are numerous 

examples of ongoing research works proving this 

assumption. 

In the process automation domain, Peltola et al. [77] and 

Dimitrova et al. in [78] explored the concept of integration 

with ISA88 standard. Lepuschitz and Zoitl [79] consider 

integration with the IEC 61512 standard, providing models 

and terminology for batch control.  

Pang  [80]  explored application of CAEX and IEC 62424 

for using physical layout of automation systems for 

automatic code generation.  

Higgins et al. in [81] proposed a way to combine IEC 

61850 standard from power distribution automation domain 

with function blocks of IEC 61499. As demonstrated in 

subsequent works, this solution can help achieving many of 

SmartGrid functions. 

Hagge and Wagner [82]  studied implementation of 

OMAC state machines defining standard controller modes in 

manufacturing applications.  

Colla et al. [83] report on domain-specific modelling in 

the shoe manufacturing sector. 

E.  Flexibility, reconfigurability and agent-based-design 

Increasing of flexibility and re-configurability of industrial 

systems has been one of the major drivers of IEC 61499. 

Many motivations have been derived from the Holonic 

manufacturing systems international program [84] 

promoting multi-agent control. 

It has been discovered by researchers that requirements to 

flexibility of manufacturing systems often can be 

implemented by reconfiguration of automation hardware 

and software. Correspondingly, several works address 

various aspects of such reconfiguration using IEC 61499 

and addressing problems “under the hood” of the compliant 

programmable controllers. One of the first works in this 

direction was by Fletcher and Norrie [85], followed by a 

number of works  from Technical University of Vienna, in 

particular addressing provisions of IEC 61499 architecture 

by Strasser et al. [86], real-time implementations by Zoitl et 

al. [87] and on down-timeless evolution by Rooker et al. 

[88].  

Another group of works focuses on end-user aspects of 

manufacturing facility re-configuration with IEC 61499.  

These include, for example, works on agent-based 

reconfiguration by Brennan et al [89], intelligent ontology-

based infrastructure supporting reconfiguration by Alsafi 

and Vyatkin [90], reconfiguration protocol by Khalgui and 

Hanisch [91], CNC reconfiguration by Huang [92] and even 

intelligent energy supply environment for flexible 

manufacturing by Budhia et al. [93].  

A number of laboratory and pilot industrial installations 

explored the combination of IEC 61499 distributed 

architecture with multi-agent control. The fully distributed 
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approach to baggage handling systems automation was 

developed by Black in [55]. Lepuschitz et al. [94] proposes 

a hierarchical multi-agent architecture based on IEC 61499 

which enable elements of self-configuration in 

manufacturing systems, and Hegny [95] investigates the use 

of  IEC 61499 to implement multi-agent control in material 

handling systems. Huang [96] discusses the architectural 

solutions for joining IEC 61499 lower-level agents into 

upper multi agent manufacturing platform.  

Despite the number of works in this direction, still there 

are many open questions on the link between IEC 61499 and 

the agent-based automation. In particular, the mechanisms 

of creating dynamic emergent structures in IEC 61499 need 

to be better addressed. 

On the other hand, the model of IEC 61499 can be 

understood as a snapshot of distributed system software 

state at any moment of time. Evolutions between such states 

can be implemented on top of the IEC 61499 architecture, or 

even by its own means. 

VI.  EXECUTION 

By definition, IEC 61499 is executable specification of 

distributed automation systems. Naturally, to enjoy the 

benefits of being directly executable (as opposed to more 

abstract design languages), one needs a tool chain which 

generates executable machine code from the IEC 61499 

design artefacts. The tool chain needs to include the 

following component software tools:  

- Compiler from the source FB format to an intermediate 

code executed with a virtual machine, or directly to 

machine code; 

- Run-time environment – usually a set of libraries of 

function blocks implementing service functions akin to 

device drivers, responsible for scheduling of FB 

invocation, data and control flow and interfacing the 

peripherals; 

- Support of device management protocol – the function 

implementing the load of FB application to a device, 

creation of new FB instances, or their modification. 

The following hardware implementation platforms deserve 

mentioning: 

A.  On embedded controllers and PCs 

The first attempts to execute IEC 6199 on commercially 

available hardware platforms date back to 2001-2002. 

Netmaster was a popular Java enabled controller used in 

several research labs, e.g. as reported in [97]. FBRT was 

used as software run-time environment. 

Lastra et al. [30, 98] presented a run-time environment 

that executes IEC 61499 systems on the Java enabled 

controller of Nematron. The execution model can be 

classified as the cyclic, and the source code is compatible 

with FBDK format. The wide range of Nematron I/O 

modules is supported by libraries of service interface 

function blocks. 

The 4DIAC-IDE workbench and FORTE runtime 

environment have been successfully used to deploy code to 

a number of embedded devices, e.g. Digi and PC/104 

embedded controller [99]. 

Recently, execution of IEC 61499 has been demonstrated 

on a range of commercially available platforms, for example 

from Beckhoff, WAGO, SIEMENS and Advantech with 

commercial tools by ISaGRAF and NxtControl.  

B.  On standard PLCs 

Ferrarini et al. [100] reported on the possibility to generate 

code for SIEMENS PLCs which can be further maintained 

with  proprietary PLC tools. The approach is limited as it 

does not support the full set of IEC 61499 artefacts. 

Shaw et al. [74] demonstrated that FB code can be 

executed on an Allen-Bradley controller programmable in 

ladder logic.   

C.  In specific proprietary environments 

Polakow [101] presented LabView based execution of IEC 

61499. The LabView tool chain can take care of further 

code deployment to CompactRio embedded controllers. 

Obviously, such implementations can only partially fulfil 

the compliance requirements of IEC 61499, but allow one to 

take advantage of the available and proven hardware and 

software platforms. 

D.  Direct hardware synthesis 

Sullivan et al. [102] investigated implementation of IEC 

61499 which leads to hardware synthesis in the form of a 

system on chip. The tool chain translates XML descriptions 

of function blocks and structures built thereof in VHDL, 

from which hardware is directly synthesizable. Possible 

benefits of this solution are as follows. 

 One can imagine the top-down design process for a 

distributed automation system, where for some devices a 

system on chip will be synthesized instead of deploying 

code to an existing microprocessor-based platform. 

E.  Performance and scalability 

Chouinard et al. [35] report on implementation of a 

distributed system of 70 controllers demonstrating hard real-

time operation when communicating over Ethernet.  

Yan [56] presented a baggage handling system 

implementation with a few hundreds of composite function 

blocks deployed across 50 controller nodes communicating 

via Ethernet. Each function block was containing an 

intelligent controller of one conveyor section, which can 

achieve the BHS functions collaboratively, without any 

central supervisor. The measurements show less 0.1% load 

of the network used, which confirms the feasibility of fully 

distributed approach to control design. 

F.  Networking 

A very important part of distributed systems design is 

related to network communications. By definition, IEC 

61499 is compatible with any communication protocol, 

which is achieved by libraries of the corresponding 

communication interface function blocks (CIFB). There are 

two abstract communication patterns suggested in the 

standard already: CLIENT – SERVER and PUBLISH-

SUBSCRIBE, which can be implemented by means of a 

particular protocol. For example, the first reference 

implementations were providing communication FBs based 

on the TCP/IP protocol stack.  

In [103] Weehuizen et al. discuss the details of an 

implementation of the CIP protocol interface FBs. 

NxtControl has implemented various CIFB libraries to 

support communication over popular fieldbuses, such as 

EtherCAT and Profibus.  

A comprehensive insight into the networking side of the 

IEC 61499 applications is presented in [104], in particular 

discussing CIP and MODBUS protocols implemented in 

IEC 61499 framework.  
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Work on integration of IEC 61499 with CAN in 

Automation protocol has started in 2011 and is in progress 

[105]. 

VII.  VERIFICATION AND VALIDATION 

Verification and validation of automation software is a 

challenging task in general, but it is especially hard for 

distributed systems and event-driven function blocks.  

The MVC architecture and its derivatives have been 

helpful in bringing together simulation and control design 

with IEC 61499. Yang [106] investigated the ways to use 

MATLAB/Simulink models together with controls written 

in IEC 61499. The use of such co-simulation environment 

has been reported in [107] for modelling distributed 

intelligent control of SmartGrid. 

Formal methods of verification have been seen by many 

researchers as an efficient alternative to manual debugging 

and simulation based verification. The idea of formal 

verification is to prove rigorously (with the help of software 

tools) that certain properties hold in the execution of a 

control system. The survey [108] presents the landscape of 

works on formal modelling and verification of IEC 61499 in 

the past decade.  

New works include [109] by Čengić et al., who presented 

an attempt to model various execution models of IEC 

61499. Khalgui et al. [91] use IEC 61499 as a platform for 

multi-agent control and formal verification.  Allen [110] 

uses IEC 61499 to achieve flexibility of manufacturing 

control and explores its robustness by means of formal 

verification.  

The work [68] develops the concept of Intelligent 

Mechatronic Components to enable systematic design of 

formal models used in the process of formal verification and 

paves the way to integration of simulation and formal 

verification. 

One hard problem for formal verification is modelling 

data-rich computations. Pang [111] and Gerber [112] 

demonstrate the methods of extending the traditional 

discrete state formal languages with ability to model 

computations over data. This allows automatic model 

generation from arbitrary function block programs. 

Suender et al. demonstrate in [113] the use of formal 

modelling and verification of IEC 61499 compliant devices 

to prove properties of reconfiguration, when a function 

block program is modified “on the fly” while it is 

performing control of the plant. That work is notable for 

proposing a framework for modelling not only a controller 

program but multiple layers of embedded device, including 

hardware, operating system, runtime and application. On top 

of that, reconfiguration scenarios are applied. 

 The recent progress of formal verification research gives 

hope to see tools of commercial strength in the near future. 

VIII.  PROVING BENEFITS: CASE STUDIES AND INDUSTRIAL 

ADOPTION 

A.  Industrial installations 

The first industrial deployment of IEC 61499 compliant 

device was reported by Tait in [114] in 2005 at the meat 

processing plant at Rangitikei, New Zealand. The device 

was developed by TCS-NZ and based on ARM CPU, 

running Java based FBRT run-time environment. Since then, 

a number of pilot and commercial installations have been 

completed using IEC 61499 and the interest is growing.  

NxtControl [46] reports on a number of commissioned 

building management systems where distributed control and 

visualization of the entire building was implemented using 

IEC 61499. The largest project has been a training center 

building with 19 control devices controlling about 2500 I/Os 

(heating, ventilation, air-condition, lighting, etc.) with IEC 

61499. 

Experience of system integrators has fully proven the 

design benefits of IEC 61499 compared to other automation 

technologies. In addition to the earlier mentioned shoe 

manufacturing line at ITIA-CNR, Colla et al. [115] 

investigated the application and implementation 

methodologies of IEC 61499 as enabler of flexibility in that 

sector.   

There are close to one million of ISaGRAF compatible 

controllers deployed worldwide most of which have the 

IEC61499 capability (from version 5). Very few of the 

current ISaGRAF users are aware of this fact, though, which 

constitutes great opportunity to improve their design 

performance without extra investment.  

Investigations on the use of IEC 61499 in the process 

control area are presented in [77, 79, 116].  

 There have been attempts to use IEC 61499 as a system 

level design and implementation architecture in the pure 

embedded control domains. For example, Insauralde [117] 

presented a case study in the area of avionics.  

 The vendors of the IEC 61499 technology are rapidly 

moving to various manufacturing sectors. Thus, NxtControl 

has demonstrated in 2010 the Delta robot prototype (Figure 

11) fully controlled with the IEC 61499 technology using 

distributed control hardware of Siemens, Beckhoff and 

Wago, communication via Ethernet and EtherCAT and 

including servo motion control. This solution proves 

applicability of IEC 61499 for control of high speed 

manufacturing machinery. 

 Ttime-synchronisation technology, based on the IEEE 

1588 standard can be very helpful in advancing distributed 

control to this sector and the first solutions have been 

demonstrated in [118]. 

 

 

Figure 11. Delta robot demonstrating fitness of the NxtControl’s 

implementation of IEC 61499  to control manufacturing machinery. 

B.  Motivations for adoption 

The sectors where IEC 61499 have been applied include 

building management systems, process control, assembly, 
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food processing and material handling. The main 

motivations for the IEC 61499 adoption currently spotted in 

industrial projects are as follows: 

 Some system integrators have developed new in-house 

hardware platforms for distributed automation and are 

looking for appropriate software. IEC 61499 is the only 

option if the applications are genuinely distributed, 

therefore, portable IEC 61131-3 solutions are not 

sufficient. 

 Many system integrators have found standard PLCs 

overpriced as compared to industrial PC and embedded 

controllers. Therefore, the existing commercial tools 

combined with off-the shelf available hardware create a 

feasible alternative to the use of PLCs in many sectors of 

applications. However, there are sectors of automation, 

where the use of PLCs is de-facto standard, 

recommended to end users by the engineering 

consultancies. The situation is rapidly changing, 

however, with the arrival of new generation of industrial 

PCs or PACs (programmable Automation Controllers) 

which in many respects are as good as PLCs (e.g. in 

terms of supported I/O and communication interfaces 

and reliability), the same time having higher 

performance, lower costs and ability to be programmed 

with the new generation software technology. 

C.  Compliance: how strict it should be? 

The IEC 61499 standard combines several technologies, 

targeting portability, configurability and interoperability of 

automation systems (see [26] for more detailed discussion). 

The first industrial implementations have already shown that 

industry is not ready to follow all these provisions 

simultaneously. Driven by market reasons, implementers 

select priorities in addressing different target features of the 

IEC 61499 technology. Thus, ISaGRAF has been more 

concerned in extending the system-level engineering 

capabilities of their tool chain, rather than achieving lower 

level code portability through the use of XML as program 

representation. Therefore, this tool chain has phenomenal 

capabilities in distributed deployment of large complex 

applications, but syntax and representation are proprietary 

and not compatible with other IEC 61499 tools at this stage. 

Compatibility with the legacy IEC 61131-3 run-time 

environment influenced ISaGRAF’s decision to use the 

cyclic execution model, which differs from the execution 

model prescribed in the standard. However, one should note 

that these incompatibilities can be overcome in the future by 

developing software tools for automatic conversion.  

On the other hand, NxtControl is more diligently 

following the syntax and representation prescriptions, but 

also had to extend these to implement a more powerful and 

user friendly visual editor and the CAT concept, combining 

control and visualization in one function block. 

 IEC61499 includes the mechanism to handle and 

implement extensions, called compliance profiles [119]. By 

publishing such a profile, a vendor will explain the standard 

extensions introduced in a particular implementation. This 

mechanism helps in establishing self-management of the 

standard and related development activities. There are 

already a number of profiles published [120-122]. 

IX.  CONCLUSIONS 

The uptake of IEC 61499 has been rather long due to the 

fact this technology is new unlike the previous IEC 61131-3 

standard which has the recognition of past practices. 

However, the extensive research effort in the past decade 

produced a very solid collection of results to be taken and 

used by industry. Now first results can be observed in the 

market.  

With the first commercial compliant tools and devices, 

users can already enjoy the numerous “design time benefits” 

of the IEC 61499 tool chains for system-level design and 

implementation of automation systems. Other benefits of 

IEC 61499, such as portability and interoperability have not 

been the major concern of the vendors yet. However, these 

features are “embedded” and hopefully will be recognized in 

a short time span.  

The wider adoption of IEC61499 will help the industry to 

benefit from the promise of holonic and intelligent 

automation research results, providing the platform for 

deploying distributed applications with dozens, or even 

thousands of communicating autonomous control nodes.  

The very promising development related to IEC 61499 is 

integration with domain specific design standards, such as 

IEC 61850 and IEC 62424, which may lead to integrated 

design methodologies where the control system can be 

automatically generated from the design documentation of 

other physical system parts.  

Last but not least, the IEC 61499 standard has 

substantially contributed to the knowledge of distributed 

systems design in the industrial automation domain by 

providing the adequate notation and architecture that is 

complementary to the PLC programming architecture of 

IEC 61131-3.  
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