
IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 1



Abstract — This review paper discusses the industrial and

research activities around the IEC 61499 architecture for

distributed automation systems. IEC 61499 has been developed

to enable intelligent automation where the intelligence is

genuinely decentralized and embedded into software

components, which can be freely distributed across networked

devices. With the recent emergence of professionally made

software tools and dozens of hardware platforms, IEC 61499 is

getting recognition in industry. The paper reviews research

results related to the design of distributed automation systems

with IEC 61499, the supporting tools and the aspects related to

the execution of IEC 61499 on embedded devices. The

promising application areas of IEC 61499 include flexible

material handling systems, in particular airport baggage

handling, flexible reconfigurable manufacturing automation,

intelligent power distribution networks and SmartGrid, as well

as the wide range of embedded networked systems.

Index Terms -- IEC 61499, distributed automation,

distributed embedded networking systems, intelligent

automation systems

I. INTRODUCTION

he term “distributed automation” has been

subsequently applied to three generations of

technology. First, with the emergence of field area

networks, it has become possible to collect data from

sensors distributed across geographically dispersed areas,

while their processing was done centrally in Programmable

Logic Controllers (PLCs). Second, there were attempts to

facilitate integration of PLCs into systems communicating

via networks, by proposing integration component

architectures, such as Modbus-IDA [1] and PROFInet-CBA

[2]. Finally, it comes to the genuinely distributed automation

development, where the intelligence is designed from the

very beginning as decentralized and embedded into software

components, which can be freely distributed across

networked hardware devices. The design of distributed

systems, in general, has been identified as a grand challenge

of computing [3]. The IEC 61499 architecture [4] has been

conceived to facilitate the use of distributed automation

intelligence, but for some time the standard could not make

its way to the industrial practice. Now, with the emergence

of professionally made software tools and dozens of

hardware platforms one can expect stronger industrial

interest to the distributed automation.

First industrial applications of commercial IEC 61499

compliant tools and platforms confirm its benefits in terms

of much improved design performance – i.e. the time and

V. Vyatkin is with the Department of Electrical and Computer Engineering,
University of Auckland, Auckland 1142, New Zealand (e-mail:

v.vyatkin@auckland.ac.nz).

effort needed to develop and commission automation

software. One such example is the use of ISaGRAF IEC

61499 implementation to automate an experimental shoe

manufacturing factory [5, 6] shown in Figure 1. The factory

was developed to achieve a revolutionary high level of

manufacturing flexibility, thanks to which individually

tailored shoes could be produced at cost of a mass

manufactured product.

Figure 1. Experimental shoe manufacturing facility at ITIA-CNR

automated with IEC 61499.

New types of material handling devices called “terns”

were developed for this purpose. The terns form easily

configurable lines, called “molecular” for their shape. As

seen from Figure 2(a), this new equipment allows the

accommodation of multiple product paths through the

system, where each path corresponds to a particular

sequence of operations. The IEC 61499 control program of

the molecular line, presented in Figure 2(b), exhibits a high

degree of code modularity, and therefore enables reusability

and re-configurability of the equipment. As seen from

Figure 2(b), the line controller uses six instances of the

TernControl function block, each of which is a composite of

three controller function blocks, representing constituent

parts of the tern: Table, Manipulator and Island. Each of

these, in turn, is another composite function block. At the

lowest level in the hierarchy, basic function blocks are

programmed using the state machines language (called

Execution Control Charts, or ECC) and traditional PLC

languages, such as Ladder Logic Diagrams.

The function blocks architecture of IEC 61499 has been

formally voted and published in 2005. Since then, many

useful practices have been earned by researchers worldwide.

According to some researchers, many expectations seem to

have failed [7] while the others see the situation in a more

positive way [8].

IEC 61499 as Enabler of Distributed and

Intelligent Automation: State of the Art Review

Valeriy Vyatkin, Senior Member, IEEE

T

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 2

Taking IEC 61499 as a reference architecture of future

industrial automation information technology (IT),

researchers have addressed virtually all sides of the IT scope

and life cycle: from theoretical formal models to the

business use case scenarios. The corresponding research

publications can be roughly sorted into three following

categories:

First of all, the research works focused on various aspects

of IEC 61499 implementation. The standard proposes an

abstract executable model of distributed systems, leaving

unanswered many questions related to the methods of its

implementation. These issues needed to be addressed before

compliant systems could be developed, or were addressed

during such development efforts. In this survey 20 works

can be classified as belonging to this group.

Another large set of research works tried to prove the

claimed benefits of IEC 61499 as compared to the solutions

currently used in the field, for example, PLC architecture of

IEC 61131-3 standard [9], or the general purpose languages

implemented on industrial personal computers (IPCs) and

embedded devices. This class also includes works on

migration from other architectures to IEC 61499 and

accounts for 40 works in this survey.

Many research works have been trying to introduce

various trendy ideas from computer science into the

industrial automation context using IEC 61499 as a vehicle.

To mention a few, one can cite object-oriented architectures

and design patterns [10], in particular UML-based

engineering [11-15], new execution models inspired by

different formalisms [16, 17], formal verification, semantic

Web technologies [18], web services, ontologies [19], and

automatic program transformations (refactoring) [20]. In

most cases, these research works demonstrate the potential

of IEC 61499 to implement those techniques in a much

more consistent way than any existing IT technology used in

industrial automation. About 40 related works are cited in

this survey.

It is worth mentioning the difference in attitudes to the

standard by academic and industrial researchers and

practitioners. Most practitioners take the standard as a

serious normative document not allowing for any flexibility

in interpretation of its provisions. On the other hand, some

researchers (from the more theoretical end of the spectrum),

easily propose fundamental changes to the nature of the

standard, using it rather as the inspiration source for further

enhancement in automation technology. This often creates

confusion and difficulty in understanding the applicability of

research results to industrial problems. This paper attempts

to help by reviewing the state of the art in IEC 61499 related

research and its impact on the implementation of compliant

tools, devices and applications. It follows the line of several

surveys published recently e.g. [21-23], extending them with

the fresh research results and discussing the older references

from those particular perspectives. There are some

introductory books on the topic by Lewis [24], Lastra et al.

[25] and the author [26]. Given the availability of

introductory material on IEC 61499, in this paper no

comprehensive introduction to this architecture is provided.

The rest of the paper is structured as follows. In Section II

the key features of IEC 61499 are presented. Several

concerns on IEC 61499 expressed by researchers and

practitioners are discussed in Section III. One such concern

related to semantic ambiguities of the IEC 61499 execution

is discussed in more detail in Section IV. In Section V, the

design related developments are presented. Section VI

reviews the progress related to execution of function block

applications. Section VII discusses verification and

validation related research and development efforts. In

Section VIII the first industrial installations are mentioned

and the motivation of early adopters is discussed. The paper

is concluded with a summary, outlook and the list of

references.

Molecular Line Control

Tern Control

Table Control

Resources assigned to HW

State machine

Ladder logic

a) b)

Figure 2. a) Product flows through the “molecular line”, and b) function block control enabling the flexibility of the “molecular line”.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 3

II. FEATURES OF IEC 61499

A. Function block: process or code module?

The IEC 61499 architecture exploits the familiarity among

control engineers accustomed to a block-diagram way of

thinking. The main design artefact, function block (FB), has

been extended from the subroutine-like structure in IEC

61131-3, to the process–like abstraction used in the theory

of distributed computing systems. A process represents an

independent computational activity with its own set of

variables (context) and communication with other processes

via messages. The event interface is well suited to modelling

of inter-process message-based communication.

On the other hand, a function block still may represent

just a piece of code executed within another process.

However, the process-like encapsulation mechanism

provides the strength to this architecture, enabling arbitrary

re-allocations of components to distributed execution

domains without affecting their functionality.

This duality of the function block language construct

often creates confusion amongst researchers and

practitioners. However, one should note that the standard

provides a certain redundancy of structures and there are

many ways to model same application configuration using

IEC 61499 artefacts.

B. Model or implementation?

As one could see from the example in Figure 2, the

architecture supports unlimited nesting of composite

function block structures, and combination of several

diagram types: block-diagrams, state charts, and ladder logic

in the same design. The result of the design is an executable

specification of a distributed automation system, which

includes also models of devices and their network

interconnections.

The downside of this duality of being both model and

executable implementation shows itself when it comes to

portability: a particular executable FB configuration needs

to include platform dependent service interface function

blocks, which hinders the portability.

C. Event-driven execution

Function blocks of IEC 61499 are event-driven, i.e. they

remain idle unless an event is sent to one of their event

inputs. The main motivation for event-driven execution is

portability, i.e. the desire to make the code independent of

the sequence of FB invocation in the PLC scan loop. The

event-driven execution is the key mechanism enabling

transparent modelling of distributed systems.

 After a FB is activated by an input event, it is assumed

that it cannot be re-entered before the previous activation

has terminated.

 The event mechanism is a nice abstraction, but the

problem is that it has to be applied uniformly. The standard

does not answer questions related to what to do if events

arrive too fast one after another. Theoretically, one can

restrict the minimum time interval between the events

originated in the process, but it can be different when the

source of events is purely computational, originated in

another function block executed in the same device. In this

case the runtime environment has to implement either

storage for events, or explicitly lose some.

D. Encapsulation

Another provision for portability is strong data

encapsulation into components which has been widely

recognized in the software community as one of the pillars

of creating safe and re-usable code. It can ensure the

absence of hidden dependencies between variables of

several FBs. This model also reflects the fundamental

property of distributed systems where any data exchange

can be implemented only via explicit message passing.

 As indicated in [27], this concept may seem

inconvenient to many PLC developers who got used to work

with shared variables. However, smarter design tools can

make the development process easier. Education effort can

be directed towards design patterns and examples showing

how the typical automation problems are solved using

function blocks without global variables.

III. CONCERNS

With the increasing complexity of information and control

systems, developers realize the need for distributed design

languages and architectures. In this regard, the IEC 61499

architecture would be their first choice. However, there are

some barriers preventing the practitioners from using IEC

61499, the main of which are the lack of: mature

engineering tools, reliable embedded control hardware,

proven design methodologies and trained engineers.

Reference industrial projects could be useful, but, again,

with the increasing requirements to safety and security, it is

hard to expect that such projects can be implemented with a

seemingly superior, but still unproven technology like IEC

61499. In the rest of this section we discuss several concerns

expressed by research and industrial community.

A. Determinism

Implementation of an event-driven activation of function

blocks implies the possible need of storing events in queues

of a variable length and loss of events in case the queue

capacity is exceeded. Altogether, this may lead to non-

deterministic behaviour of the control device, i.e. different

computation results in exactly same input conditions (for

example, if timing of input signals in one run is a bit

different from another run).

Attempts to increase the determinism of FB execution

include propositions of the synchronous model of execution

[28], cyclic model of execution [29, 30], and ISaGRAF

model [31], which is close to the cyclic. These models

“bend” a bit the fundamental concepts of event-driven

invocation, implemented in the pure event-driven

implementations, such as FBRT [32] and FORTE [33].

A possible application-level practical solution to achieve

the determinism of event-driven applications is to sample

external inputs periodically, making them available to the

rest of the application if any change is detected (presented in

Figure 3). Here one can see a pulse generator B1

(“E_CYCLE”) which emits events periodically (each

DT=10ms in this case). The events activate the FB B2 which

samples the inputs from the corresponding hardware

modules interfacing the process. In case of any input value

has changed its value since the previous invocation, this FB

emits the CHG event and activates the B3 function block

(CONTROLLER). The latter recalculates the values of

outputs and passes them to B4 which interfaces the

hardware output module.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 4

Figure 3. Function block application structure with periodic sampling of

inputs.

While this solution does not seem to be as exciting as

compared to the pure interrupt-driven input architecture (in

which case the E_CYCLE FB would not be required), in

fact it preserves the event-driven nature of the application

(the block B3) and all associated benefits. However, the

behaviour in this case is fully deterministic, provided the

sampling period DT is sufficient to complete the execution

of B2, B3 and B4. The choice of the sampling period shall

be based on the “mechatronic capability” of the device [31],

that can be determined empirically or using Nyquist –

Shannon sampling theorem. On the other hand, to ensure

determinism, the worst case execution time of the

application (FB B3 “Controller” in this example) needs to be

predicted in advance. The minimum value of the inputs

sampling period should not be less than the worst case

execution time of the application. This can be done by

software tools through static timing analysis as proposed in

[34].

This solution is different from the PLC scan as the

controller application executes only when a change of any

input is detected. The event-driven execution also can help

in activating only those blocks which are directly dependent

on that event, unlike the PLC case where all program

modules are executed. This may require less time for

execution even in the worst case.

Another benefit of this approach is that service interface

function blocks for input modules can be developed using

the usual polling of their values that is easily supported on

most architectures, rather than requiring special hardware

with interrupt-driven input update.

B. Best case, worst case, average case

It has been argued in [35] that there is no need in industrial

automation to use the benefit of event-driven execution to

improve the average or best case reaction time of the control

device, as only the worst case time does really matter.

Although this statement is true in general, there are some

special cases.

 First, there are many automation applications without

hard-real time constraints, for example, building

management systems, where the control device

accommodates control of many processes. Improvement of

the average reaction time in such systems will mean better

quality of control and a more cost-effective solution. In such

systems a control reaction may involve communication

between several nodes which has unpredictably variable

duration anyways. Thus, in such a networking environment,

improvement of the local processing time of each node will

favourably impact the overall system performance.

 One more reason for improvement of the best and average

execution time is power conservation. Many battery

powered control devices will exhibit much longer battery

life in case of event-driven activation that leads to shorter

and rarer CPU activity periods.

C. Performance

In a traditional PLC, performance is measured in terms of

reaction time, which is bounded by the doubled scan time.

The reaction time of the IEC 61499 compliant controller is

harder to estimate, as it can vary significantly dependent on

the source of input.

Many complaints on the low performance of IEC 61499

originate in incorrect association with Java technology,

which was used in the first IEC 61499 implementations such

as FBRT environment [32]. In fact, there are many other

(more efficient) implementation techniques as it will be

discussed later in Sections III.F, VI.

Another group of performance-related concerns originates

in the wide usage of eXtensible Markup Language (XML) in

IEC 61499. XML is used in IEC 61499 as a storage format

for all design artefacts, and even for implementation of

device management protocol. The use of XML provides

numerous benefits, as the representation becomes self-

explanatory, and standard XML parsing tools can be used to

check syntax. On the other hand, XML tools are quite

performance hungry and therefore not appropriate for many

embedded platforms. One solution was presented by Zoitl et

al. in [36] who suggested using binary XML. This solution,

however, impacts on interoperability, as there are several

different versions of binary XML, supported by different

user groups.

The precise implementation of the event mechanism of

IEC 61499 also adds substantial computational overheads.

To ensure the correct causality of execution, all events

emitted in a function block application need to be

sequentially ordered. A “first in, first out” (FIFO) queue has

been proposed in several implementations, e.g. [37] to store

all events emitted by component function blocks and

dispatch them one by one from the top of the queue as

shown in Figure 4.

Figure 4. Implementation of event passing mechanism using FIFO queue.

It has been shown in [38] that data buffering is required to

correctly handle the situations when event flow does not

coincide with the data flow. Therefore, a buffer needs to be

associated with each data connection. On an output event

(such as FB1.EO2), all associated data are written to the

buffers (for example FB1.DO2 value 3 is written to the

buffer where it overwrites the previous value 2). On an input

event (e.g. FB2.EI2), all associated input data values are

read from the buffers into function blocks (including

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 5

FB2.DI2 which now receives the value 3). However, the

queuing of events implies the possibility to lose events in

case of queue overflow. One should also note that the data

buffers will be overwritten with the freshest value, so it may

happen that an event will activate FB with data completely

different from those which were calculated at the moment

when the event was emitted.

The issue of guaranteeing hard-real time constraints of

IEC 61499 applications has been comprehensively

addressed by Zoitl in [37]. Kuo et al. [34] use formal

modelling to estimate the longest computational path to

predict worst case execution time.

D. IP Protection vs. Openness

Many practitioners raise the issue of intellectual property

protection in IEC 61499 due to the open XML

representation format.

Solutions of this problem are not different from other

programming frameworks. Instead of supplying full source

code of a function block whose content needs to be

protected, the vendor can provide a library of blocks

compiled for a particular platform. This can be supplied

along with a “bridged” XML representation containing only

interface and, possibly, the service sequences describing the

overall behaviour of the FB without revealing sensitive

implementation details. Using the “compilation to

hardware” technique, discussed later in Section VI, D, one

can achieve even more protection of intellectual property.

An illustration of the service sequences mechanism of

IEC 61499 is provided in Figure 5. The function block

IN_EVENT (whose source code is hidden) implements a

“button” on screen which can be used to interact with FB

applications. The FB implements four operation sequences:

normal establishment, normal termination, normal

operation, and operation inhibited. The illustrated “normal

operation” sequence describes the scenario which starts with

a click or key pressing on the button. After some short

delay, the output qualifier is set to 1 and event at the output

IND is emitted.

Figure 5. Description of function block functionality using service
sequences [26].

 Given the service sequences, one can partially reconstruct

the execution logic of the function block and of the entire

system without knowing sensitive details of the

implementation.

E. Expressive power of design

The use of communicating state machines (ECCs of basic

FBs) for programming distributed systems has been quickly

identified by many researches and practitioners as a very

convenient feature of IEC 61499.

However, one necessary part of programming badly

supported in IEC 61499 is exceptions handling, that is the

reaction of a program to some erroneous situations that can

happen in any state. Defining these leads to the ECC

cluttered with many connections to the “Exception” state

and back (for the recovery).

The standard model of dealing with this problem is

exemplified in Harel’s State Charts [39], where hierarchical

states are allowed. One can combine all states of the control

algorithm to such a composite state and describe a single

“exception transition” for the whole group.

Shaw et al. [40] proposed the use of hierarchical state

machines in place of ECC in basic function blocks. This

representation, called HCECC, however, requires non-

compliant syntax thus affecting the portability. HCECC can

be compiled to the standard “flat” ECC, but reverse

engineering is not possible. In general, this solution seems to

be overkill for solving the exception handling problem only.

There is no doubt in the usefulness of hierarchical state

machines as a design artefact, but, in the IEC 61499 context

a similar effect is achieved using composite function blocks.

Future software tools could support a “hierarchical state

machine” front-end with dual conversion to/from nested

composite FB types.

F. The “chicken and egg” problem of tools

The standard has inspired many researchers to create

supporting software tools. The usual implementation tool set

includes a workbench for editing function block designs and

translating them into executable form, and some kind of

run-time environment, that supports the execution of the

executable code.

The most developed examples of such research-oriented

workbenches are FBDK [32] and 4DIAC-IDE [33]. These

have been supported with a consistent development effort

until now, with 4DIAC-IDE being an open source project.

Substantial development effort has been invested to

CORFU/Archimedes [41] and another open source project

FBench [42], but at the moment these tools do not seem to

be continuously supported. There are a few others, less

developed ones, like FBLab [43].

Runtime environments include FBRT [32], FORTE [33],

FUBER [44] and Cyclic RT [29]. Some of the solutions,

such as synchronous compiler [28], claim not to require any

run-time support as they generate the complete executable

file to be placed to the desired embedded target platform.

These tools have been successfully applied in many

automation projects but mostly in academic and research

labs. However, there is a barrier of using them in industry.

The commercial PLC tools provide a high level of design

and remote debugging support that is hard to compete with.

Achieving this level of maturity, acceptable for industry,

requires years of development and improvements.

First attempts to overcome this barrier are commercial

developments ISaGRAF [45] and NxtStudio [46].

ISaGRAF (since 2008, a Rockwell Automation company)

combines the support of both standards IEC 61131-3 and

IEC 61499, so it is possible to develop distributed control

applications together with the use of PLC languages. This

tool supports a very seamless way of code distribution to the

networking devices. The workbench automatically inserts

communication code where it is required, while the user

sees only the global picture of the entire distributed

application.

NxtStudio (developed by an Austrian company

nxtControl) integrates distributed control approach based on

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 6

IEC 61499 with SCADA1. It is an industrial grade

engineering environment which supports the design of

control applications and visualization together in one tool.

This approach has great advantages in productivity and

reuse of both control and visualization components. Several

features of NxtStudio have long been expected from IEC

61499, for example, the debugging and online-monitoring

infrastructure, allowing to remotely debug single FBs as

well as fully distributed applications. Another feature is the

automatic generation of the communication during the

distribution process of the application. This greatly reduces

the engineering effort when distributed control applications

are designed.

With these two powerful tools already on the market, the

developers have sufficient choice in trying out the benefits

of IEC 61499.

G. High educational threshold

Many practitioners are afraid that IEC 61499 requires a

steep learning curve. This is partially true, as it introduces a

lot of new concepts compared to PLC technology. On the

other hand, it is the author’s personal experience that IEC

61499 is very easy to learn and use by the current generation

of students. When young control engineers learn IEC 61499,

many of them get a feeling of some déjà vu of something

very intuitive and familiar they have been looking for but

could not find among the available PLC programming

technologies.

IV. SEMANTICS IMPROVEMENT EFFORT

A. Improvement of the standard

Some semantic ambiguities of the standard were spotted for

the first time during the period of standard’s industrial and

academic evaluation. In [47] it was illustrated that definition

of input event variable lifetime in basic function block can

result in different behaviour of control system. In [48]

different scheduling policies of function blocks in composite

structures were demonstrated.

The standard was voted in 2005, and its final text was

modified based on some of the findings. For example, an

early draft of the standard was prescribing to store a copy of

event input variable value (so called latch) in a basic

function block implementation. Because it was shown in

[47] that the latches still can lead to a loss of input events,

they were completely removed from the text.

In subsequent works, e.g. [44, 49-51], the ambiguities of

the IEC 61499 semantics were classified and analysed in

detail, showing possible impact of different interpretations

on the correctness of control applications. Strasser et al. [52]

and Doukas et al. [53] investigate the semantics of device,

resource and of a distributed system. In more detail the

semantics improvement is covered in [54].

As a result of this semantics improvement effort, the

second edition of the standard voted in 2010 included a

number of corrections which eliminated the ambiguities.

B. Execution differences

However, the original semantic ambiguities of the standard

gave rise to a number of execution models such as the cyclic

and synchronous execution models which attempt to

“combine” the event-driven execution of IEC 61499 with

1 Supervisory Control and Automation Development Architecture

the determinism of the cyclic scan semantics of PLCs. These

have been implemented in several run-time environments,

including ISaGRAF. However in such models the following

problematic situations can occur:

- Several events can arrive to the inputs of the same FB

simultaneously;

- The syntax of IEC 61499 does not allow to detect the

simultaneity of events inside the FB;

As a result, a FB, written for such models may run

differently in other execution environments and vice versa.

We will illustrate the impact of semantic differences on the

following simple example of a baggage handling system

(BHS).

Example. As illustrated in Figure 6, two conveyors C1 and

C2 merge bag flows to conveyor C3. The bag tracking

function of this BHS is implemented in a distributed way, so

that one function block is responsible for knowing the bags’

location within its respective conveyor section as shown in

Figure 7,a (more on distributed BHS control in [55] and

[56]). When a bag leaves the conveyor to the downstream

conveyor, its record is passed to the corresponding

downstream function block.

Figure 6. Sample merging conveyor structure.

A bag record is implemented using a user defined structured

data type. For example, to model the bag passage from C1 to

C3, the C1 FB will assign the bagRO variable to the value of

the bag record leaving the conveyor. On the event that S1

sensor goes high, C1 will emit event EO, connected to the

event input EI1 of C3. Having received the event at its EI1

input, the FB C3 will get activated and will add the bag

record to its internal data base. Similarly the bag is passed

from C2 to C3. The internal logic of the mrg_conv

function block implements the processing of the arriving

bags in the state machine shown in Figure 7, b. Here the

algorithms ADD1 and ADD2 add to the internal database of

this conveyor the ID of the bag arrived from C1 or C2

respectively.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 7

Figure 7. Distributed control of the merging conveyors in IEC 61499

function blocks.

In the “pure” event-driven implementation platforms, such

as FORTE, NxtForte and FBRT, in a rare, but possible case

of simultaneous detection of bags by sensors S1 and S2, two

events will appear at the input interface of C3. The function

block C3 will be invoked twice, and, as a result, no bag

record will be lost.

In the cyclic or synchronous semantics both events arrive

simultaneously and the C3 block gets activated only once.

The priority of input event processing will determine which

record will be added to the database and which one will be

potentially discarded and lost.

 To be able to resolve this situation within mrg_conv FB,

it is required to detect the situation of simultaneous arrival

of events to the FB inputs. It could be done as shown in

Figure 8. Here the transition WAIT -> S12 has condition

that includes both input events: EI1 and EI2. However, the

IEC 61499 syntax fundamentally prohibits the use of two

event names in the condition transition.

Figure 8. “Impossible ECC” which could detect the simultaneity
of input events.

V. DESIGN

The natural expectation from the system-level architecture

like IEC 61499 is that it improves considerably the designer

performance, which is expected to result from increasing the

level of design, i.e. using design artefacts of higher

abstraction level.

A. Redefining model-driven design

Model-driven engineering is the major trend in software

engineering. For example, UML technologies and tools are

widely used in all sectors of industry to support the design

of complex software systems. Matlab/Simulink is used in

embedded systems design for the same purpose.

 The function blocks architecture of IEC 61499 is clearly

following these trends, providing the developer a mix of

models that include distributed system model composed of

devices, device model composed of independent resources,

application model as a block diagram composed of function

block instances, basic function block model specified as a

state machine, and algorithm model that can be specified in

any programming language, including those of PLC world.

An early survey of related modelling techniques can be

found in [57]. Bonfé and Fantuzzi [58] and Thramboulidis

[12] have introduced the use of UML in automation and in

particular in IEC 61499 context. The latter work proposed

generation of function blocks from UML diagrams, while

Dubinin proposed the UML-FB architecture with both ways

of generation of UML diagrams from function block designs

and vice versa in [59]. In [60] Thramboulidis proposed IEC

61499-based concept of model-integrated mechatronic

architecture for automation systems design. Panjaitan in

[61] demonstrated the use of UML for addressing a number

of practical issues related to automation systems design with

IEC 61499. An interesting comparison of the IEC 61499

modelling artefacts with state-charts and Petri nets was done

by Barji et al. in [62].

SysML is a UML derivative for engineering applications

that is getting increasingly popular. In particular, SysML is

well supporting such design phases as requirements

capturing and formalization of specifications. Hirsch et al.

[63, 64] provide a pathway for linking function block

technology with SysML.

One can summarize the rationale of combining

UML/SysML and IEC 61499 as shown in Figure 9. The

graph represents developer performance through system

engineering steps with both types of technologies.

UML/SysML better support the top-down design and

requirements engineering. However, they are less efficient

when it comes to the deployment to distributed embedded

targets. Also legacy PLC programming (such as ladder

logic) is not supported there. As illustrated in Figure

9Error! Reference source not found., the efficiency of

SysML development is high in the early design stages and

lower in the deployment and maintenance.

On the other hand, the IEC 61499 distributed architecture,

copes well with the problems of code generation,

deployment and reconfiguration, but offers less support at

the initial design steps. Their combination intends to bring

best of both worlds as it is conceptually illustrated in Error!

Reference source not found.. One should note that

quantification of software methodologies impact is a very

hard to achieve.

Figure 9. Desired properties of the UML/SysML + IEC 61499 combination.

However, there is one more reason to call the design in

the IEC 61499 framework model-driven. Christensen has

proposed in [10] a number of design patterns, among which

the adaptation of Model-View-Control to IEC 61499 and

industrial automation. In this context the Model is

understood as a precise behavioural model of the plant. An

example of MVC use can be found in [65], Ch. 13-16. The

concept of Automation Object (AO) [18, 66, 67] is an

attempt to generalize the FB concept to represent a machine

or a mechatronic part thereof. The Intelligent Mechatronic

Component (IMC) [68] concept is an AO implemented

using the MVC pattern, thus enabling simulation and

visualization along with deployment of controls.

B. NxtControl concept of CAT

The MVC design pattern has motivated NxtControl to

invent the composite automation type (CAT) concept.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 8

 As illustrated in Figure 10, a CAT is a function block that

combines functions of machines or their parts, with their

simulation and visualization. Here the “Pick and place”

manipulator is built of two identical pneumatic cylinders,

each represented by a CAT in the FB application.

Figure 10. The concept of composite automation type in NxtStudio is based

on the MVC architecture.

Once the application is assembled from instances of such

CATs, NxtStudio can automatically deploy the control parts

of all CATs to the designated embedded targets, while the

View parts will be sent to the device displaying SCADA

screens. In the figure, a CAT of a pneumatic cylinder is

exemplified. The CAT also includes the (behaviour) model

of cylinder’s dynamics. Once executed, the application built

of these CATs immediately delivers a complete interactive

simulation model of the manipulator.

The CAT concept has proven its benefits in a number of

industrial projects, where NxtControl tools were used, for

example in building management systems automation.

C. Migration from PLCs to IEC 61499

The huge legacy of industrial automation raises the issue of

software migration from the existing PLC platforms to IEC

61499. The practitioners, for example, Woll [69], are

concerned with the prospect of complete paradigm change

in automation software design and want to secure their

investments in automation hardware and software.

Therefore, investing into the migration pathways becomes

crucial for the industrial uptake of IEC 61499.

The migration case studies were presented by Hussain

[70] and Gerber [71] with some recommendations for

manual migration provided. Wenger [72] presents an

attempt of converting the entire PLC application to an

equivalent IEC 61499 one. The result of this approach may

run correctly , but would not be very usable in the entire

project’s life cycle due to poor structure and readability of

the generated code.

Dai in [73] presents an example of domain-specific

migration related to baggage handling systems (BHS). Here

the emphasis is made on generating well designed modular

code which can be directly identified with the equipment it

controls. Shaw [74] also investigates migration of the PLC

based BHS automation software to IEC 61499 with

subsequent compilation to C.

In addition to the migration research, the work [75]

discusses harmonization of IEC 61499 and IEC 61131-3 – in

terms of execution semantics and data types, aiming at

seamless use of PLC languages inside IEC 61499 function

blocks.

D. Integration with domain specific standards

The strong benefit of the system level design language like

IEC 61499 is its capability to implement provisions of

domain specific design practices standardized in a plethora

of international standards. According to [76], the open

nature of IEC 61499 can help to create an open knowledge

economy in industrial automation. There are numerous

examples of ongoing research works proving this

assumption.

In the process automation domain, Peltola et al. [77] and

Dimitrova et al. in [78] explored the concept of integration

with ISA88 standard. Lepuschitz and Zoitl [79] consider

integration with the IEC 61512 standard, providing models

and terminology for batch control.

Pang [80] explored application of CAEX and IEC 62424

for using physical layout of automation systems for

automatic code generation.

Higgins et al. in [81] proposed a way to combine IEC

61850 standard from power distribution automation domain

with function blocks of IEC 61499. As demonstrated in

subsequent works, this solution can help achieving many of

SmartGrid functions.

Hagge and Wagner [82] studied implementation of

OMAC state machines defining standard controller modes in

manufacturing applications.

Colla et al. [83] report on domain-specific modelling in

the shoe manufacturing sector.

E. Flexibility, reconfigurability and agent-based-design

Increasing of flexibility and re-configurability of industrial

systems has been one of the major drivers of IEC 61499.

Many motivations have been derived from the Holonic

manufacturing systems international program [84]

promoting multi-agent control.

It has been discovered by researchers that requirements to

flexibility of manufacturing systems often can be

implemented by reconfiguration of automation hardware

and software. Correspondingly, several works address

various aspects of such reconfiguration using IEC 61499

and addressing problems “under the hood” of the compliant

programmable controllers. One of the first works in this

direction was by Fletcher and Norrie [85], followed by a

number of works from Technical University of Vienna, in

particular addressing provisions of IEC 61499 architecture

by Strasser et al. [86], real-time implementations by Zoitl et

al. [87] and on down-timeless evolution by Rooker et al.

[88].

Another group of works focuses on end-user aspects of

manufacturing facility re-configuration with IEC 61499.

These include, for example, works on agent-based

reconfiguration by Brennan et al [89], intelligent ontology-

based infrastructure supporting reconfiguration by Alsafi

and Vyatkin [90], reconfiguration protocol by Khalgui and

Hanisch [91], CNC reconfiguration by Huang [92] and even

intelligent energy supply environment for flexible

manufacturing by Budhia et al. [93].

A number of laboratory and pilot industrial installations

explored the combination of IEC 61499 distributed

architecture with multi-agent control. The fully distributed

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 9

approach to baggage handling systems automation was

developed by Black in [55]. Lepuschitz et al. [94] proposes

a hierarchical multi-agent architecture based on IEC 61499

which enable elements of self-configuration in

manufacturing systems, and Hegny [95] investigates the use

of IEC 61499 to implement multi-agent control in material

handling systems. Huang [96] discusses the architectural

solutions for joining IEC 61499 lower-level agents into

upper multi agent manufacturing platform.

Despite the number of works in this direction, still there

are many open questions on the link between IEC 61499 and

the agent-based automation. In particular, the mechanisms

of creating dynamic emergent structures in IEC 61499 need

to be better addressed.

On the other hand, the model of IEC 61499 can be

understood as a snapshot of distributed system software

state at any moment of time. Evolutions between such states

can be implemented on top of the IEC 61499 architecture, or

even by its own means.

VI. EXECUTION

By definition, IEC 61499 is executable specification of

distributed automation systems. Naturally, to enjoy the

benefits of being directly executable (as opposed to more

abstract design languages), one needs a tool chain which

generates executable machine code from the IEC 61499

design artefacts. The tool chain needs to include the

following component software tools:

- Compiler from the source FB format to an intermediate

code executed with a virtual machine, or directly to

machine code;

- Run-time environment – usually a set of libraries of

function blocks implementing service functions akin to

device drivers, responsible for scheduling of FB

invocation, data and control flow and interfacing the

peripherals;

- Support of device management protocol – the function

implementing the load of FB application to a device,

creation of new FB instances, or their modification.

The following hardware implementation platforms deserve

mentioning:

A. On embedded controllers and PCs

The first attempts to execute IEC 6199 on commercially

available hardware platforms date back to 2001-2002.

Netmaster was a popular Java enabled controller used in

several research labs, e.g. as reported in [97]. FBRT was

used as software run-time environment.

Lastra et al. [30, 98] presented a run-time environment

that executes IEC 61499 systems on the Java enabled

controller of Nematron. The execution model can be

classified as the cyclic, and the source code is compatible

with FBDK format. The wide range of Nematron I/O

modules is supported by libraries of service interface

function blocks.

The 4DIAC-IDE workbench and FORTE runtime

environment have been successfully used to deploy code to

a number of embedded devices, e.g. Digi and PC/104

embedded controller [99].

Recently, execution of IEC 61499 has been demonstrated

on a range of commercially available platforms, for example

from Beckhoff, WAGO, SIEMENS and Advantech with

commercial tools by ISaGRAF and NxtControl.

B. On standard PLCs

Ferrarini et al. [100] reported on the possibility to generate

code for SIEMENS PLCs which can be further maintained

with proprietary PLC tools. The approach is limited as it

does not support the full set of IEC 61499 artefacts.

Shaw et al. [74] demonstrated that FB code can be

executed on an Allen-Bradley controller programmable in

ladder logic.

C. In specific proprietary environments

Polakow [101] presented LabView based execution of IEC

61499. The LabView tool chain can take care of further

code deployment to CompactRio embedded controllers.

Obviously, such implementations can only partially fulfil

the compliance requirements of IEC 61499, but allow one to

take advantage of the available and proven hardware and

software platforms.

D. Direct hardware synthesis

Sullivan et al. [102] investigated implementation of IEC

61499 which leads to hardware synthesis in the form of a

system on chip. The tool chain translates XML descriptions

of function blocks and structures built thereof in VHDL,

from which hardware is directly synthesizable. Possible

benefits of this solution are as follows.

 One can imagine the top-down design process for a

distributed automation system, where for some devices a

system on chip will be synthesized instead of deploying

code to an existing microprocessor-based platform.

E. Performance and scalability

Chouinard et al. [35] report on implementation of a

distributed system of 70 controllers demonstrating hard real-

time operation when communicating over Ethernet.

Yan [56] presented a baggage handling system

implementation with a few hundreds of composite function

blocks deployed across 50 controller nodes communicating

via Ethernet. Each function block was containing an

intelligent controller of one conveyor section, which can

achieve the BHS functions collaboratively, without any

central supervisor. The measurements show less 0.1% load

of the network used, which confirms the feasibility of fully

distributed approach to control design.

F. Networking

A very important part of distributed systems design is

related to network communications. By definition, IEC

61499 is compatible with any communication protocol,

which is achieved by libraries of the corresponding

communication interface function blocks (CIFB). There are

two abstract communication patterns suggested in the

standard already: CLIENT – SERVER and PUBLISH-

SUBSCRIBE, which can be implemented by means of a

particular protocol. For example, the first reference

implementations were providing communication FBs based

on the TCP/IP protocol stack.

In [103] Weehuizen et al. discuss the details of an

implementation of the CIP protocol interface FBs.

NxtControl has implemented various CIFB libraries to

support communication over popular fieldbuses, such as

EtherCAT and Profibus.

A comprehensive insight into the networking side of the

IEC 61499 applications is presented in [104], in particular

discussing CIP and MODBUS protocols implemented in

IEC 61499 framework.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 10

Work on integration of IEC 61499 with CAN in

Automation protocol has started in 2011 and is in progress

[105].

VII. VERIFICATION AND VALIDATION

Verification and validation of automation software is a

challenging task in general, but it is especially hard for

distributed systems and event-driven function blocks.

The MVC architecture and its derivatives have been

helpful in bringing together simulation and control design

with IEC 61499. Yang [106] investigated the ways to use

MATLAB/Simulink models together with controls written

in IEC 61499. The use of such co-simulation environment

has been reported in [107] for modelling distributed

intelligent control of SmartGrid.

Formal methods of verification have been seen by many

researchers as an efficient alternative to manual debugging

and simulation based verification. The idea of formal

verification is to prove rigorously (with the help of software

tools) that certain properties hold in the execution of a

control system. The survey [108] presents the landscape of

works on formal modelling and verification of IEC 61499 in

the past decade.

New works include [109] by Čengić et al., who presented

an attempt to model various execution models of IEC

61499. Khalgui et al. [91] use IEC 61499 as a platform for

multi-agent control and formal verification. Allen [110]

uses IEC 61499 to achieve flexibility of manufacturing

control and explores its robustness by means of formal

verification.

The work [68] develops the concept of Intelligent

Mechatronic Components to enable systematic design of

formal models used in the process of formal verification and

paves the way to integration of simulation and formal

verification.

One hard problem for formal verification is modelling

data-rich computations. Pang [111] and Gerber [112]

demonstrate the methods of extending the traditional

discrete state formal languages with ability to model

computations over data. This allows automatic model

generation from arbitrary function block programs.

Suender et al. demonstrate in [113] the use of formal

modelling and verification of IEC 61499 compliant devices

to prove properties of reconfiguration, when a function

block program is modified “on the fly” while it is

performing control of the plant. That work is notable for

proposing a framework for modelling not only a controller

program but multiple layers of embedded device, including

hardware, operating system, runtime and application. On top

of that, reconfiguration scenarios are applied.

 The recent progress of formal verification research gives

hope to see tools of commercial strength in the near future.

VIII. PROVING BENEFITS: CASE STUDIES AND INDUSTRIAL

ADOPTION

A. Industrial installations

The first industrial deployment of IEC 61499 compliant

device was reported by Tait in [114] in 2005 at the meat

processing plant at Rangitikei, New Zealand. The device

was developed by TCS-NZ and based on ARM CPU,

running Java based FBRT run-time environment. Since then,

a number of pilot and commercial installations have been

completed using IEC 61499 and the interest is growing.

NxtControl [46] reports on a number of commissioned

building management systems where distributed control and

visualization of the entire building was implemented using

IEC 61499. The largest project has been a training center

building with 19 control devices controlling about 2500 I/Os

(heating, ventilation, air-condition, lighting, etc.) with IEC

61499.

Experience of system integrators has fully proven the

design benefits of IEC 61499 compared to other automation

technologies. In addition to the earlier mentioned shoe

manufacturing line at ITIA-CNR, Colla et al. [115]

investigated the application and implementation

methodologies of IEC 61499 as enabler of flexibility in that

sector.

There are close to one million of ISaGRAF compatible

controllers deployed worldwide most of which have the

IEC61499 capability (from version 5). Very few of the

current ISaGRAF users are aware of this fact, though, which

constitutes great opportunity to improve their design

performance without extra investment.

Investigations on the use of IEC 61499 in the process

control area are presented in [77, 79, 116].

 There have been attempts to use IEC 61499 as a system

level design and implementation architecture in the pure

embedded control domains. For example, Insauralde [117]

presented a case study in the area of avionics.

 The vendors of the IEC 61499 technology are rapidly

moving to various manufacturing sectors. Thus, NxtControl

has demonstrated in 2010 the Delta robot prototype (Figure

11) fully controlled with the IEC 61499 technology using

distributed control hardware of Siemens, Beckhoff and

Wago, communication via Ethernet and EtherCAT and

including servo motion control. This solution proves

applicability of IEC 61499 for control of high speed

manufacturing machinery.

 Ttime-synchronisation technology, based on the IEEE

1588 standard can be very helpful in advancing distributed

control to this sector and the first solutions have been

demonstrated in [118].

Figure 11. Delta robot demonstrating fitness of the NxtControl’s

implementation of IEC 61499 to control manufacturing machinery.

B. Motivations for adoption

The sectors where IEC 61499 have been applied include

building management systems, process control, assembly,

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 11

food processing and material handling. The main

motivations for the IEC 61499 adoption currently spotted in

industrial projects are as follows:

 Some system integrators have developed new in-house

hardware platforms for distributed automation and are

looking for appropriate software. IEC 61499 is the only

option if the applications are genuinely distributed,

therefore, portable IEC 61131-3 solutions are not

sufficient.

 Many system integrators have found standard PLCs

overpriced as compared to industrial PC and embedded

controllers. Therefore, the existing commercial tools

combined with off-the shelf available hardware create a

feasible alternative to the use of PLCs in many sectors of

applications. However, there are sectors of automation,

where the use of PLCs is de-facto standard,

recommended to end users by the engineering

consultancies. The situation is rapidly changing,

however, with the arrival of new generation of industrial

PCs or PACs (programmable Automation Controllers)

which in many respects are as good as PLCs (e.g. in

terms of supported I/O and communication interfaces

and reliability), the same time having higher

performance, lower costs and ability to be programmed

with the new generation software technology.

C. Compliance: how strict it should be?

The IEC 61499 standard combines several technologies,

targeting portability, configurability and interoperability of

automation systems (see [26] for more detailed discussion).

The first industrial implementations have already shown that

industry is not ready to follow all these provisions

simultaneously. Driven by market reasons, implementers

select priorities in addressing different target features of the

IEC 61499 technology. Thus, ISaGRAF has been more

concerned in extending the system-level engineering

capabilities of their tool chain, rather than achieving lower

level code portability through the use of XML as program

representation. Therefore, this tool chain has phenomenal

capabilities in distributed deployment of large complex

applications, but syntax and representation are proprietary

and not compatible with other IEC 61499 tools at this stage.

Compatibility with the legacy IEC 61131-3 run-time

environment influenced ISaGRAF’s decision to use the

cyclic execution model, which differs from the execution

model prescribed in the standard. However, one should note

that these incompatibilities can be overcome in the future by

developing software tools for automatic conversion.

On the other hand, NxtControl is more diligently

following the syntax and representation prescriptions, but

also had to extend these to implement a more powerful and

user friendly visual editor and the CAT concept, combining

control and visualization in one function block.

 IEC61499 includes the mechanism to handle and

implement extensions, called compliance profiles [119]. By

publishing such a profile, a vendor will explain the standard

extensions introduced in a particular implementation. This

mechanism helps in establishing self-management of the

standard and related development activities. There are

already a number of profiles published [120-122].

IX. CONCLUSIONS

The uptake of IEC 61499 has been rather long due to the

fact this technology is new unlike the previous IEC 61131-3

standard which has the recognition of past practices.

However, the extensive research effort in the past decade

produced a very solid collection of results to be taken and

used by industry. Now first results can be observed in the

market.

With the first commercial compliant tools and devices,

users can already enjoy the numerous “design time benefits”

of the IEC 61499 tool chains for system-level design and

implementation of automation systems. Other benefits of

IEC 61499, such as portability and interoperability have not

been the major concern of the vendors yet. However, these

features are “embedded” and hopefully will be recognized in

a short time span.

The wider adoption of IEC61499 will help the industry to

benefit from the promise of holonic and intelligent

automation research results, providing the platform for

deploying distributed applications with dozens, or even

thousands of communicating autonomous control nodes.

The very promising development related to IEC 61499 is

integration with domain specific design standards, such as

IEC 61850 and IEC 62424, which may lead to integrated

design methodologies where the control system can be

automatically generated from the design documentation of

other physical system parts.

Last but not least, the IEC 61499 standard has

substantially contributed to the knowledge of distributed

systems design in the industrial automation domain by

providing the adequate notation and architecture that is

complementary to the PLC programming architecture of

IEC 61131-3.

X. BIOGRAPHY

Valeriy Vyatkin (SM’04) is Associate Professor
and Director of the InfoMechatronics and

Industrial Automation lab (MITRA) at the

Department of Electrical and Computer
Engineering, The University of Auckland, New

Zealand. He graduated with the Engineer degree in

applied mathematics in 1988 from Taganrog State
University of Radio Engineering (TSURE),

Taganrog, Russia. Later he received the Ph.D.

(1992) and Dr Sci degree (1998) from the same
university, and the Dr Eng. Degree from the Nagoya Institute of

Technology, Nagoya, Japan, in 1999. His previous faculty positions were
with Martin Luther University of Halle-Wittenberg in Germany (Senior

researcher and lecturer, 1999–2004), and with TSURE (Senior Lecturer,

Professor, 1991–2002).
His research interests are in the area of dependable distributed automation

and industrial informatics, including software engineering for industrial

automation systems, distributed architectures and multi-agent systems
applied in various industry sectors: SmartGrid, material handling, building

management systems, reconfigurable manufacturing, etc. Dr Vyatkin is also

active in research on dependability provisions for industrial automation
systems, such as methods of formal verification and validation, and

theoretical algorithms for improving their performance.

XI. REFERENCES

[1] J. Camerini, A. Chauvet, and M. Brill, "Interface

for distributed automation: IDA," in Emerging

Technologies and Factory Automation, 2001.

Proceedings. 2001 8th IEEE International

Conference on, 2001, pp. 515-518 vol.2.

[2] K. Trkaj, "Users introduce component based

automation solutions," Computing & Control

Engineering Journal, vol. 15, pp. 32-37, 2004.

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 12

[3] T. Hoare and Milner, "Grand challenges for

computing research," The Computer Journal, vol.

48, p. 49, 2005.

[4] IEC61499-1, "Function Blocks - Part 1

Architecture," International Electrotechnical

Commission, Geneva, International standard2005.

[5] A. Brusaferri, A. Ballarino, and E. Carpanzano,

"Reconfigurable Knowledge-based Control

Solutions for Responsive Manufacturing Systems,"

Studies in Informatics and Control (SIC), vol. 20,

pp. 31-42., 2011.

[6] E. Carpanzano and F. Jovane, "Advanced

Automation Solutions for Future Adaptive

Factories," Annals of the CIRP, pp. 435-438, 2007.

[7] K. Thramboulidis, "IEC 61499 Function Block

Model: Facts and Fallacies," IEEE Industrial

Electronics Magazine, vol. 3, pp. 7-23, Dec 2009.

[8] A. Zoitl and V. Vyatkin, "IEC 61499 Architecture

for Distributed Automation: The "Glass Half Full''

View," IEEE Industrial Electronics Magazine, vol.

3, pp. 7-22, Dec 2009.

[9] International Electrotechnical Commission,

Programmable Controller - Part 3: Programming

Languages, IEC 61131-3 Standard. Geneva:

International Electrotechnical Commission, 1993.

[10] J. H. Christensen, "Design patterns for systems

engineering with IEC 61499," in Verteilte

Automatisierung - Modelle und Methoden für

Entwurf, Verifikation, Engineering und

Instrumentierung, Magdeburg, Germany, 2000.

[11] W. Zhang, W. A. Halang, and C. Diedrich,

"Specification of Function Block Applications with

UML," in Robotics and Automation, Proceedings

of the IEEE International Conference on, 2005, pp.

4002-4007.

[12] K. C. Thramboulidis, "Using UML in control and

automation: a model driven approach," in

Industrial Informatics, 2nd IEEE International

Conference on, 2004, pp. 587-593.

[13] S. Panjaitan and G. Frey, "Combination of UML

Modeling and the IEC 61499 Function Block

Concept for the Development of Distributed

Automation Systems," in 11th IEEE Conference on

Emerging Technologies and Factory Automation

(ETFA 2006), 2006, pp. 766-773.

[14] T. Hussain and G. Frey, "UML-based Development

Process for IEC 61499 with Automatic Test-case

Generation," in Emerging Technologies and

Factory Automation, 2006. ETFA '06. IEEE

Conference on, 2006, pp. 1277-1284.

[15] V. Dubinin and V. Vyatkin, "UML-FB a Language

for Modeling and Implementation of Industrial-

Process Measurement and Control Systems on the

Basis of IEC 61499 Standard," in 6th International

Conference on New Information Technology and

Systems (NITiS' 04), Penza, Russia, 2004, pp. 77-

83.

[16] N. Hagge and B. Wagner, "Applying the handler-

based execution model to IEC 61499 basic and

composite function blocks," in 4th IEEE

International Conference on Industrial Informatics

(INDIN'06), Singapore, 2006, pp. 18-24.

[17] V. Vyatkin, "Execution Semantic of Function

Blocks based on the Model of Net Condition/Event

Systems," in IEEE International Conference on

Industrial Informatics, 2006, pp. 874-879.

[18] O. J. Lopez Orozco and J. L. M. Lastra, "Adding

function blocks of IEC 61499 semantic description

to automation objects," IEEE Conference on

Emerging Technologies & Factory Automation, pp.

809-816, 2006.

[19] Y. Al-Safi and V. Vyatkin, "An Ontology-based

Reconfiguration Agent for Intelligent Mechatronic

Systems," in 4th International Conference on

Holonic and Multi-agent systems in

Manufacturing, Regensburg, Germany, 2007.

[20] V. Vyatkin and V. Dubinin, "Refactoring of

Execution Control Charts in Basic Function Blocks

of the IEC 61499 Standard," IEEE Transactions on

Industrial Informatics, vol. 6, pp. 155-165, May

2010.

[21] K. H. Hall, R. J. Staron, and A. Zoitl, "Challenges

to Industry Adoption of the IEC 61499 Standard on

Event-based Function Blocks," in Industrial

Informatics, 2007 5th IEEE International

Conference on, 2007, pp. 823-828.

[22] K. Thramboulidis, "IEC 61499 in Factory

Automation," in IEEE International Conference on

Industrial Electronics, Technology and Automation

(CISSE-IETA'05), Bridgeport, USA, 2005.

[23] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sunder,

and B. Favre-Bulle, "The past, present, and future

of IEC 61499," in Holonic and Multi-Agent

Systems for Manufacturing, Proceedings. vol.

4659, ed, 2007, pp. 1-14.

[24] R. W. Lewis, Modelling control systems using IEC

61499: Applying function blocks to distributed

systems: Iet, 2001.

[25] J. L. M. Lastra, A. Lobov, L. Godinho, and A.

Nunes, Function Blocks for Industrial-Process

Measurement and Control Systems: IEC-61499

Introduction and Run-time Platforms: Tampere

University of Technology, 2004.

[26] V. Vyatkin, IEC 61499 function blocks for

embedded and distributed control systems design:

Instrumentation Society of America, 2007.

[27] W. Dai and V. Vyatkin, "Efficient Data Handling

Model in IEC 61499 Function Block Approach,"

presented at the 8th International IEEE Conference

on Industrial Informatics, (INDIN’10), Osaka,

Japan, 2010.

[28] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z.

Salcic, "A Synchronous Approach for IEC 61499

Function Block Implementation," IEEE

Transactions on Computers, pp. 1599-1614, 2009.

[29] P. Tata and V. Vyatkin, "Proposing a novel

IEC61499 Runtime Framework implementing the

Cyclic Execution Semantics," in 7th IEEE

International Conference on Industrial Informatics,

2009, pp. 416-421.

[30] J. L. M. Lastra, A. Lobov, and L. Godinho, "Closed

loop control using an IEC 61499 application

generator for scan-based controllers," in 10th IEEE

International Conference on Emerging

Technologies and Factory Automation (ETFA'05),

2005, pp. 323-330.

[31] V. Vyatkin and J. Chouinard, "On Comparisons of

the ISaGRAF implementation of IEC 61499 with

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 13

FBDK and other implementations," in 6th IEEE

International Conference on Industrial Informatics,

2008, pp. 264-269.

[32] Holobloc Inc. (2008). Function Block Development

Kit (FBDK). Available: http://www.holobloc.org/

[33] 4DIAC. (2010). Framework for Distributed

Industrial Automation (4DIAC) Available:

http://www.fordiac.org

[34] M. Kuo, L. H. Yoong, S. Andalam, and P. S. Roop,

"Determining the worst-case reaction time of IEC

61499 function blocks," in 8th IEEE International

Conference on Industrial Informatics (INDIN'10),

2010, pp. 1104-1109.

[35] J. Chouinard, J. Lavallée, J.-F. Laliberté, N.

Landreaud, K. Thramboulidis, P. Bettez-Poirier, F.

Desy, F. Darveau, N. Gendron, and C.-D. Trang,

"An IEC 61499 configuration with 70 controllers;

challenges, benefits and a discussion on technical

decisions," in IEEE Conference on Emerging

Technologies and Factory Automation, Patras,

Greece, 2007.

[36] A. Zoitl, I. Hegny, and A. Schimmel, "Utilizing

Binary XML Representations for Improving the

Performance of the IEC 61499 Configuration

Interface," 7th IEEE International Conference on

Industrial Informatics (INDIN'09), pp. 66-71, 2009.

[37] A. Zoitl, Real-Time Execution for IEC 61499: ISA,

2009.

[38] V. Dubinin and V. Vyatkin, "Towards a Formal

Semantic Model of IEC 61499 Function Blocks,"

in IEEE International Conference on Industrial

Informatics, 2006, pp. 6-11.

[39] D. Harel, "Statecharts: A visual formalism for

complex systems," Science of Computer

Programming, vol. 8, pp. 231-274, 1987.

[40] G. D. Shaw, P. S. Roop, and Z. Salcic, "A

hierarchical and concurrent approach for IEC

61499 function blocks," in Emerging Technologies

& Factory Automation, IEEE Conference on,

2009, pp. 1-8.

[41] K. Thramboulidis, "Development of Distributed

Industrial Control Applications: The CORFU

Framework," in 4th IEEE International Workshop

on Factory Communication Systems, Sweden,

2002.

[42] FBench. (2008, 10/11/2008). Open Source

Function Block Engineering Tool. Available:

http://oooneida-fbench.sourceforge.net/

[43] A. A. Jamshidifar, A. Afshar, and A. Salari,

"FBLab, an IEC61499 based software tool for

modeling of distributed control systems," IEEE

Conference on Control Applications, pp. 1345-

1349, 2003.

[44] G. Čengić, O. Ljungkrant, and K. Akesson,

"Formal modeling of function block applications

running in IEC 61499 execution runtime," 2006

IEEE Conference on Emerging Technologies &

Factory Automation, Vols 1 -3, pp. 918-925, 2006.

[45] ICSTriplex. (2009, 1/04). ISaGRAF v. 5.0.

Available: www.isagraf.com

[46] nxtControl. (2010, 10/05). nxtStudio. Available:

www.nxtcontrol.com

[47] V. Vyatkin, H.-M. Hanisch, P. H. Starke, and S.

Roch, "Formalisms for verification of discrete

control applications on example of IEC1499

function blocks," in Verteilte Automatisierung

(Distributed Automation), Magdeburg, Germany,

2000.

[48] L. Ferrarini and C. Veber, "Implementation

approaches for the execution modle of IEC 61499

applications," in 2nd IEEE International

Conference on Industrial Informatics (INDIN'04),

Berlin, Germany, 2004, pp. 612-617.

[49] V. Vyatkin and V. Dubinin, "Sequential axiomatic

model for execution of basic function blocks in

IEC61499," 5th IEEE International Conference on

Industrial Informatics, pp. 1183-1188, 2007.

[50] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini,

"Alternatives for execution semantics of

IEC61499," 5th IEEE International Conference on

Industrial Informatics, pp. 1151-1156, 2007.

[51] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin,

R. W. Brennan, A. Valentini, L. Ferrarini, T.

Strasser, J. L. Martinez-Lastra, and F. Auinger,

"Usability and Interoperability of IEC 61499 based

distributed automation systems," in IEEE

International Conference on Industrial Informatics,

2006, pp. 31-37.

[52] T. Strasser, A. Zoitl, J. H. Christensen, and C.

Sunder, "Design and Execution Issues in IEC

61499 Distributed Automation and Control

Systems," IEEE Transactions on Systems Man and

Cybernetics, Part C-Applications and Reviews, vol.

41, pp. 41-51, Jan 2011.

[53] G. Doukas and K. Thramboulidis, "Implementation

Model Alternatives for IEC 61499 Function Block

Networks," in 6th IEEE International Conference

on Industrial Informatics, 2008, pp. 270-275.

[54] V. Vyatkin, "The IEC 61499 Standard and Its

Semantics," IEEE Industrial Electronics Magazine,

vol. 3, pp. 40-48, Dec 2009.

[55] G. Black and V. Vyatkin, "Intelligent Component-

Based Automation of Baggage Handling Systems

With IEC 61499," IEEE Transactions on

Automation Science and Engineering, vol. 7, pp.

337-351, Apr 2010.

[56] J. Yan and Vyatkin V., "Distributed Execution and

Cyber-Physical Design of Baggage Handling

Automation with IEC 61499," in 9th International

IEEE Conference on Industrial Informatics

(INDIN’11), Lisbon, Portugal, 2011.

[57] G. Frey and T. Hussain, "Modeling techniques for

distributed control systems based on the IEC 61499

standard - current approaches and open problems,"

in Discrete Event Systems, 8th International

Workshop on, 2006, pp. 176-181.

[58] M. Bonfe and C. Fantuzzi, "Design and verification

of mechatronic object-oriented models for

industrial control systems," in Emerging

Technologies and Factory Automation, 2003.

Proceedings. ETFA '03. IEEE Conference, 2003,

pp. 253-260 vol.2.

[59] V. Dubinin, V. Vyatkin, and T. Pfeiffer,

"Engineering of validatable automation systems

based on an extension of UML combined with

function blocks of IEC 61499," IEEE International

Conference on Robotics and Automation

(ICRA'06), pp. 3996-4001, 2005.

http://www.holobloc.org/
http://www.fordiac.org/
http://oooneida-fbench.sourceforge.net/
http://www.isagraf.com/
http://www.nxtcontrol.com/

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 14

[60] K. Thramboulidis, "Model-integrated

mechatronics-toward a new paradigm in the

development of manufacturing systems," Industrial

Informatics, IEEE Transactions on, vol. 1, pp. 54-

61, 2005.

[61] S. Panjaitan and G. Frey, "Combination of UML

modeling and the IEC 61499 function block

concept for the development of distributed

automation systems," IEEE Conference on

Emerging Technologies & Factory Automation, pp.

449-456, 2006.

[62] A. Barji, N. Hagge, and B. Wagner, "Comparative

study of using CNet, IEC 61499, and statecharts for

behavioral models of real-time control

applications," IEEE Conference on Emerging

Technologies & Factory Automation, pp. 304-311,

2006.

[63] M. Hirsch and H.-M. Hanisch,

"Systemspezifikation mit SysML für eine

Fertigungstechnische Laboranlage," in Fachtagung

zum Entwurf komplexer Automatisierungssysteme

(EKA 08), Magdeburg, Germany 2008, pp. 23-34.

[64] M. Hirsch, Systematic Design of Distributed

Industrial Manufacturing Conrol Systems. Berlin:

Logos Verlag 2010.

[65] V. Vyatkin, H. M. Hanisch, C. Pang, and C.-H.

Yang, "Application of Closed-Loop Modelling in

Integrated Component Design and Validation of

Manufacturing Automation," IEEE Transactions

on Systems, Machine and Cybernetics - Part C, vol.

39, pp. 17-28, 2009.

[66] J. L. Martinez Lastra and O. J. Lopez Orozco,

"Semantic Extension for Automation Objects," in

IEEE International Conference on Industrial

Informatics, 2006, pp. 892-897.

[67] R. W. Brennan, L. Ferrarini, J. L. M. Lastra, and D.

V. Vyatkin, "Automation objects: enabling

embedded intelligence in real-time mechatronic

systems," International Journal of Manufacturing

Research, vol. 1, pp. 379-381, 2006.

[68] V. Vyatkin, H. M. Hanisch, P. Cheng, and Y. Chia-

Han, "Closed-Loop Modeling in Future

Automation System Engineering and Validation,"

Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on,

vol. 39, pp. 17-28, 2009.

[69] D. Woll, "Will IEC 61499 trigger another

automation system migration crisis?,"

Hydrocarbon Processing, vol. 86, pp. 15-15, Mar

2007.

[70] T. Hussain and G. Frey, "Migration of a PLC

controller to an IEC 61499 compliant distributed

control system: Hands-on experiences," in IEEE

International Conference on Robotics and

Automation (ICRA), 2005, pp. 3984-3989.

[71] C. Gerber, H. M. Hanisch, and S. Ebbinghaus,

"From IEC 61131 to IEC 61499 for distributed

systems: a case study," EURASIP J. Embedded

Syst., pp. 1-8, 2008.

[72] M. Wenger, A. Zoitl, C. Sunder, and H. Steininger,

"Transformation of IEC 61131-3 to IEC 61499

based on a model driven development approach,"

2009 7th Ieee International Conference on

Industrial Informatics, Vols 1 and 2, pp. 715-720,

2009.

[73] W. Dai and V. Vyatkin, "A Case Study on

Migration from IEC 61131 PLC to IEC 61499

Function Block Control," 7th IEEE International

Conference on Industrial Informatics, pp. 79-84,

2009.

[74] G. Shaw, P. Roop, and Z. Salcic, "Reengineering of

IEC 61131 into IEC 61499 Function Blocks," in

8th IEEE International Conference on Industrial

Informatics, 2010.

[75] A. Zoitl, T. Strasser, C. Sunder, and T. Baier, "Is

IEC 61499 in Harmony with IEC 61131-3?," IEEE

Industrial Electronics Magazine, vol. 3, pp. 49-55,

Dec 2009.

[76] V. Vyatkin, J. H. Christensen, and J. L. M. Lastra,

"OOONEIDA: an open, object-oriented knowledge

economy for intelligent industrial automation,"

Industrial Informatics, IEEE Transactions on, vol.

1, pp. 4-17, 2005.

[77] J. Peltola, J. Christensen, S. Sierla, and K.

Koskinen, "A migration path to IEC 61499 for the

batch process industry," in 5th IEEE International

Conference on Industrial Informatics, 2007, pp.

811-816.

[78] D. Ivanova, I. Batchkova, S. Panjaitan, F. Wagner,

and G. Frey, "Combining IEC 61499 and ISA S88

for Batch Control," in 13th IFAC Symposium on

Information Control Problems in Manufacturing

(INCOM'09), Moscow, 2009.

[79] W. Lepuschitz and A. Zoitl, "Integration of a DCS

based on IEC 61499 with Industrial Batch

Management Systems," in 13th IFAC Symposium

on Information Control Problems in

Manufacturing, Moscow, 2009.

[80] C. Pang and V. Vyatkin, "IEC 61499 function

block implementation of Intelligent Mechatronic

Component," in 8th IEEE Conference on Industrial

Informatics (INDIN'10), Osaka, Japan, 2010, pp.

1124-1129.

[81] N. Higgins, V. Vyatkin, N. K. C. Nair, and K.

Schwarz, "Distributed Power System Automation

With IEC 61850, IEC 61499, and Intelligent

Control," IEEE Transactions on Systems Man and

Cybernetics Part C-Applications and Reviews, vol.

41, pp. 81-92, Jan 2011.

[82] N. Hagge and B. Wagner, "Implementation

Alternatives for the OMAC State Machines Using

IEC 61499," 2008 Ieee International Conference

on Emerging Technologies and Factory

Automation, Proceedings, pp. 215-220, 2008.

[83] M. Colla, T. Leidi, M. Kunt, and J. P. Thiran,

"CEC Designer: Domain Specific Modelling for

the Industrial Automation Based on the IEC 61499

Standard," 2008 IEEE International Conference on

Emerging Technologies and Factory Automation,

Proceedings, pp. 192-199, 2008.

[84] S. Deen, Agent-Based Manufacturing - Advances in

the Holonic Approach, Springer 2003: Springer,

2003.

[85] M. Fletcher and D. H. Norrie, "Realtime

reconfiguration using an IEC 61499 operating

system," in Parallel and Distributed Processing

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 15

Symposium., Proceedings 15th International, 2001,

pp. 985-991.

[86] T. Strasser, I. Muller, C. Sunder, O. Hummer, and

H. Uhrmann, "Modeling of reconfiguration control

applications based on the IEC 61499 reference

model for Industrial Process Measurement and

Control Systems," in IEEE Workshop on

Distributed Intelligent Systems: Collective

Intelligence and Its Applications (DIS 2006), 2006,

pp. 127-132.

[87] A. Zoitl, G. Grabmair, F. Auinger, and C. Sunder,

"Executing real-time constrained control

applications modelled in IEC 61499 with respect to

dynamic reconfiguration," in Industrial

Informatics, 2005. INDIN '05. 2005 3rd IEEE

International Conference on, 2005, pp. 62-67.

[88] M. N. Rooker, C. Sünder, T. Strasser, A. Zoitl, O.

Hummer, and G. Ebenhofer, "Zero Downtime

Reconfiguration of Distributed Automation

Systems: The εCEDAC Approach," in 3rd Int.

Conf. on Industrial Applications of Holonic and

Multi-Agent Systems, Regensburg, 2007, pp. 326-

337.

[89] R. W. Brennan, M. Fletcher, and D. H. Norrie, "An

agent-based approach to reconfiguration of real-

time distributed control systems," Robotics and

Automation, IEEE Transactions on, vol. 18, pp.

444-451, 2002.

[90] Y. Alsafi and V. Vyatkin, "Ontology-based

reconfiguration agent for intelligent mechatronic

systems in flexible manufacturing," Robotics and

Computer-Integrated Manufacturing, vol. 26, pp.

381-391, 2010.

[91] M. Khalgui and H. M. Hanisch, "Reconfiguration

Protocol for Multi-Agent Control Software

Architectures," IEEE Transactions on Systems Man

and Cybernetics Part C-Applications and Reviews,

vol. 41, pp. 70-80, Jan 2011.

[92] X. Huang, "Distributed and reconfigurable control

of lower level machines in automatic production

line," in Intelligent Control and Automation

(WCICA), 2010 8th World Congress on, 2010, pp.

2339-2344.

[93] M. Budhia, V. Vyatkin, and G. A. Covic,

"Powering flexible manufacturing systems with

intelligent contact-less power transfer," in

Industrial Informatics, 2008. INDIN 2008. 6th

IEEE International Conference on Daejeon, 2008.

[94] W. Lepuschitz, A. Zoitl, M. Valle, and M. Merdan,

"Toward Self-Reconfiguration of Manufacturing

Systems Using Automation Agents," Systems, Man,

and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, vol. 41, pp. 52-69,

2011.

[95] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner,

and M. Merdan, "Integrating Software Agents and

IEC 61499 Realtime Control for Reconfigurable

Distributed Manufacturing Systems," 2008

International Symposium on Industrial Embedded

Systems, pp. 249-252, 2008.

[96] X. M. Huang, "Intelligent and Reconfigurable

Control of Automatic Production Line by Applying

IEC61499 Function Blocks and Software Agent,"

in IEEE International Conference on Mechatronics

and Automation, 2009, pp. 1481-1486.

[97] V. Vyatkin, H.-M. Hanisch, S. Karras, and X. Cai,

"IEC61499 as an architectural framework to

integrate formal models and methods in practical

control engineering," in Congress Electric

Automation SPS/IPC/Drives, K. Bender, Ed., ed

Heidelberg, German, 2002, pp. 310-318.

[98] J. L. M. Lastra, L. Godinho, A. Lobov, and R.

Tuokko, "An IEC 61499 application generator for

scan-based industrial controllers," in 3rd IEEE

International Conference on Industrial Informatics

(INDIN '05), 2005, pp. 80-85.

[99] PROFACTOR. (2010). Reconfigurable Robotic

System. Available:

http://www.fordiac.org/25.0.html

[100] L. Ferrarini, M. Romano, and C. Veber,

"Automatic Generation of AWL Code from IEC

61499 Applications," in Industrial Informatics,

2006 IEEE International Conference on, 2006, pp.

25-30.

[101] G. Polakow and M. Metzger, "Design and

Implementation of LabVIEW-Based IEC61499

Compliant Device," Holonic and Multi-Agent

Systems for Manufacturing, Proceedings, vol.

5696, pp. 183-192, 2009.

[102] D. O'Sullivan and D. Heffernan, "VHDL

architecture for IEC 61499 function blocks,"

Computers & Digital Techniques, IET, vol. 4, pp.

515-524, 2010.

[103] F. Weehuizen and A. Zoitl, "Using the CIP

protocol with IEC 61499 communication function

blocks," 5th IEEE International Conference on

Industrial Informatics, vol. 1-3, pp. 261-265, 2007.

[104] V. Vyatkin, M. De Sousa, and A. Zoitl,

"Communication aspects of IEC 61499

architecture," in Industrial Electronics Handbook,

ed: Taylor & Francis, 2010.

[105] CAN-CiA. (2011). Call for IEC 61499 experts.

Available: http://www.can-

cia.org/index.php?id=1256

[106] C.-h. Yang and V. Vyatkin, "Model transformation

between MATLAB simulink and Function Blocks,"

in Industrial Informatics (INDIN), 2010 8th IEEE

International Conference on, 2010, pp. 1130-1135.

[107] V. Vyatkin, G. Zhabelova, N. Higgins, M. Ulieru,

K. Schwarz, and N. K. C. Nair, "Standards-enabled

Smart Grid for the future Energy Web," in 1st

IEEE and NIST Conference Innovative Smart Grid

Technologies (ISGT), 2010, pp. 1-9.

[108] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preusse,

and C. Gerber, "One Decade of IEC 61499

Modeling and Verication - Results and Open

Issues," in Preprints of the 13th IFAC Symposium

on Information Control Problems in

Manufacturing, Moscow, Russia, 2009.

[109] G. Čengić and K. Akesson, "On Formal Analysis

of IEC 61499 Applications, Part A: Modeling,"

IEEE Transactions on Industrial Informatics, vol.

6, pp. 136-144, May 2010.

[110] L. V. Allen, K. M. Goh, and D. M. Tilbury,

"Closed-Loop Determinism for Non-Deterministic

Environments: Verification for IEC 61499 Logic

Controllers," in 2009 IEEE International

http://www.fordiac.org/25.0.html
http://www.can-cia.org/index.php?id=1256
http://www.can-cia.org/index.php?id=1256

IEEE Transactions on Industrial Informatics, 7(4), 2011, pp. 768-781 16

Conference on Automation Science and

Engineering, 2009, pp. 1-6.

[111] P. Cheng and V. Vyatkin, "Automatic model

generation of IEC 61499 function block using net

condition/event systems," in 6th IEEE

International Conference on Industrial Informatics

(INDIN'08), 2008, pp. 1133-1138.

[112] C. Gerber, I. Ivanova-Vasileva, and H. M. Hanisch,

"Formal modelling of IEC 61499 function blocks

with integer-valued data types," Control and

Cybernetics, vol. 39, pp. 197-231, 2010.

[113] C. Suender, V. Vyatkin, and A. Zoitl, "Formal

Validation of Downtimeless System Evolution in

Embedded Automation Controllers," ACM

Transactions on Embedded Control Systems, 2011.

[114] P. Tait, "A path to industrial adoption of distributed

control technology," in IEEE Conference on

Industrial Informatics (INDIN'05), Perth, Australia,

2005, pp. 86-91.

[115] M. Colla, A. Brusaferri, and E. Carpanzano,

"Applying the IEC-61499 model to the shoe

manufacturing sector," IEEE Conference on

Emerging Technologies & Factory Automation, pp.

569-576, 2006.

[116] K. Thramboulidis, S. Sierla, N. Papakonstantinoul,

and K. Koskinen, "An IEC 61499 based approach

for distributed batch process control," 5th IEEE

International Conference on Industrial Informatics,

pp. 177-182, 2007.

[117] C. C. Insaurralde, M. A. Seminario, J. F. Jimenez,

and J. M. Giron-Sierra, "IEC 61499 model for

avionics distributed fuel systems with networked

embedded holonic controllers," in IEEE

Conference on Emerging Technologies & Factory

Automation, 2006, pp. 1128-1136.

[118] C. Pang, J. Yan, V. Vyatkin, and S. Jennings,

"Distributed IEC 61499 Material Handling Control

based on Time Synchronization with IEEE 1588,"

in IEEE International Conference on Clock

Synchronisation, Munich, 2011.

[119] IEC61499-4, "Function Blocks for Industrial

Process Measurement and Control Systems, Part 4:

Rules for Compliance Profiles," ed. Geneva:

International Electrotechnical Commission, 2005.

[120] ITA, "IEC 61499 Compliance Profile for

Feasibility Demonstrations," 2002.

[121] OOONEIDA, "Compliance Profile -- Execution

Models of IEC 61499 Function Block

Applications," 2009.

[122] "IEC 61499 Compliance Profile for CIP based

communication function blocks," 2009.

