
IEC 61499 Function Block Implementation of

Intelligent Mechatronic Component

Cheng Pang, Member IEEE, Valeriy Vyatkin, Senior Member IEEE

The University of Auckland

cpan024@aucklanduni.ac.nz, v.yatkin@auckland.ac.nz

Abstract-This paper presents a new approach of implementing

Intelligent Mechatronic Component (IMC) using the IEC 61499
Function Block standard. In particular, this paper tries to
address two issues during the engineering process of IMCs: a

systematic approach of developing and organizing IMC elements
and a seamless and scalable way supporting IMC composition
and reconfiguration. A case study implementation example is

presented to illustrate how the results from this work can be
applied and integrated in Function Block development tools.

I. INTRODUCTION

Since the release of the IEC 61499 Function Block (FB)

standard [1], a number of studies have been conducted to

investigate its practical applications in automation systems.

Although the industry has been aware of the benefits brought

by IEC 61499, the new standard has still not yet been widely

adopted. One of the main reasons is the immaturity of the

development tools, especially the lack of sophisticated IDE,

and the well-integrated design methodologies facilitating

component-based design throughout the entire design cycle of

automation systems.

One of the IEC 61499 features is support of interoperability

among devices from different vendors. The standard provides

an open XML format for storing code modules and

exchanging them between tools and devices from different

vendors. However, the standard is not intended to cover all

aspects of the automation engineering process, such as

visualization, simulation, verification, and deployment. As a

result, vendors of IEC 61499 IDE and tool may choose to

incorporate their own design technologies or apply third-party

approaches to comprehend the design methodology covering

the entire design cycle of their products and therefore

introduce their new, either open or proprietary, storage

formats. These formats usually cannot be recognized by other

tools hence violating the original intention of the IEC 61499

standard. For example, the nxtControl IDE [2] introduces the

concept of Computer Automation Types, which contains

control component, visualization, documentation, and process

connection in a single unit saved in their own proprietary IEC

61499 Solution format. Similarly, ISaGRAF [3] uses

encrypted XML format for storing IEC 61499 applications.

Contrarily, instead of providing a complete solution, some

IEC 61499 design tools only focus on certain aspects of the

design process, typically the composition of control logics,

and often use other existing tools as plug-ins to provide

common functions or themselves are parts of larger domain-

specific design frameworks. As a result, these tools save the

designs as standard IEC 61499 XML files and provide

translators to interface the external tools, which make the FB

designs exchangeable and resuable but also impose the

difficulties to adapt existing design methodologies on various

tools to provide comprehensive design solutions.

The involvement of different tools and technologies in the

engineering process of control systems requires a consistent

data exchange mechanism to ensure smooth workflow during

the whole project. The inability to exchange data across the

heterogeneous tools seamlessly while maintaining the

integrity of semantics will incur extra difficulties, time, and

consequently costs on the development. This paper presents

the first step to seamlessly incorporate IEC 61499 standard

with other tools and standards to support the development

lifecycle of control program for automation system following

a systematic design methodology. The solution consists of:

 an engineering methodology based on the concept of

Intelligent Mechatronic Component (IMC) [4] to support

the design lifecycle of automation systems; and,

 a corresponding generic data exchange mechanism based

on IEC 62424 standard [5] as the key for the integration

of heterogeneous tools in the FB development, so that

each tool can work on its native file format

simultaneously.

This paper is structured as follows. Section II introduces

the general concepts of IMC. Section III outlines the overall

modeling methodology of IMC using IEC 61499 FBs. Then,

Section IV elaborates the generic data exchange mechanism

defined by IEC 62424 with its semantic extensions to support

FB implementation of IMC in Section V. A concrete example

illustrating the development of FB IMCs is also included here.

Finally, this paper is concluded with the contribution of this

work and future research perspectives.

II. INTELLIGENT MECHATRONIC COMPONENT

The concepts of Intelligent Mechatronic Component (IMC)

was first introduced in [4] to the automation software design

domain and then further discussed and extended in [6-8]. The

general idea of IMC is that, machines or mechatronic

components come with pre-programmed software, including

plant models, control programs, and any necessary network

interfaces. Each IMC can contain the following items:

 Mechatronic component: a physical functional device

with sensors, actuators, and electronic circuits;

 Embedded control device: computing devices with

interfaces to the sensors, actors, and networks; and,

 Software components: a set of data and control logics

implementing various automation functions. These

elements provide the IMC’s autonomy and cooperation.

New machines or automation systems are constructed as a

result of integrating these elements of existing IMCs. Fig. 1

below illustrates the overall process of building new systems

using IMCs.

Fig. 1. IMC Engineering Methodology

The process starts with capturing the requirements of the

new system. According to the system specifications, analysis

is performed to determine the actual implementation details,

such as the design layout, communication protocols, and so

on. The system’s overall structure will then be conceptualized

using computer-aided design tool. In such tool, the simulation

models, including plant and control models, of IMCs will be

picked from the IMC repository provided by their vendors

and placed into the design space for closed-loop simulation

first. If the simulation results prove that the predefined testing

scenarios are correct, corresponding formal model can be

generated to perform a more exhaustive system validation.

Once the verification results are satisfactory the IMCs’

control programs can be deployed to the physical system.

This unified hierarchical architecture greatly facilitates the

engineering and maintenance processes of current automation

systems. However, to achieve this vision, a proper software

architecture as a form of knowledge organization of IMC

software components and a mechanism supporting automatic

integration and deployment of IMCs are substantial. In this

research, the IEC 61499 Function Block standard is adopted

to handle the control organization, plant model development,

and simulation of IMCs following the modeling approach we

previously developed in [9]. The IEC 62424 standard, on the

other hand, is applied to structure and categorize the IMCs in

the design process and manage the later deployment step.

Next section will first clarify the reasons of using the IEC

61499 standard to develop IMC models and then the FB

modeling methodology for IMC is introduced.

III. SYSTEMATIC IMC MODELING METHODOLOGY

One important feature of IMC is the ability to encapsulate

the component’s functionality into reusable portable software

units. The design of new machines or production systems’

behavior and functions can be reduced to the selection,

scheduling, and composition of such units in a plug-and-play

way. However, to implement the plug-and-play integration of

IMCs from different developers and vendors a unified or

standardized software architecture, network interfaces, and

data formats must be agreed and applied. The new IEC 61499

standard established such framework for agile development

of component-based automation systems, which are portable,

reconfigurable, and interoperable among different vendors.

More importantly, the standard provides a single mechanism

to represent and encapsulate both plant and control models

using the same language and architecture, which perfectly

suits the concepts of IMC.

Given the standardized development means provided by

IEC 61499, the software repository for each IMC must be

also organized in a uniform way and moreover a mechanism

for seamless integration of IMCs must be invented. The

interface-based composite Model-View-Control (MVC)

design pattern we previously developed [9] can play such a

role. Fig. 2 (a) shows the schematic diagram of composing

the software components of two IMCs each of which consists

of a Model FB, a View FB, a Control FB, and peripheral HMI

FBs. The interactions between these functional aspects, such

as the Model-View interaction, Model-Model interaction,

Model-Control interaction, and Control-Control interaction,

are handled by a uniform mechanism. The resultant new IMC

again follows the same MVC topology as shown in Fig. 2 (b).

Fig. 2. Composite Model-View-Control IMC Design

Pattern: (a) Composing two IMCs, and (b) Resultant IMC

This composite MVC design approach provides the means

for designers to manually integrate the FB models of IMCs. A

more important step towards IMC concept is to have software

tools support automatic integrations of these FB models and

their deployment to the physical devices. The IEC 61499

standard does not provide such facility as it is not within the

standard’s scope. As a result, extra information must be

provided for the tools to layout, integrate, and deploy these

IMC FBs. Next section introduces the IEC 62424 standard

and the generic data exchange mechanism we borrowed from

it to specify IMC FBs’ integrating points, layout information,

deployment polices, and so on.

IV. IEC 62424 STANDARD AND CAEX

The IEC 62424 standard was published in 2008 with the

original aim to specify the representation of process control

engineering requests in Process & Instrumentation Diagrams

(P&ID) along with the data exchange mechanism between

P&ID tools and Process Control Engineering and Computer

Aided Engineering tools. To implement a generic data

exchange mechanism, an abstract object-oriented data format

called Computer Aided Engineering Exchange (CAEX) was

developed. Although CAEX is originally designed for the

engineering in process industries, it has been adopted by

AutomationML [10] as the technical basement to achieve

seamless data storage and exchange covering all aspects of

automation engineering activities from plant planning and

functional engineering to the final commissioning. Indeed,

CAEX can be applied to all types of static object information,

such as various design topologies, as well as for non-technical

applications.

A. General CAEX Concepts

The essence of CAEX is the XML-based CAEX schema,

which unites model and meta-model techniques into a single

template. As a meta-model, CAEX provides a syntactic but

flexible means for defining specific semantics and structure

on the stored object information. On the other hand, CAEX

standardizes an object-oriented way of storing information to

establish a generic data exchanging mechanism. Therefore, a

CAEX file created in a specific application can also be

recognized by other applications supporting CAEX model but

with their individual interpretation of the stored information.

This decoupling mechanism preserves the data integrity while

allowing heterogeneous manipulation on the data objects.

Fig. 3 below illustrates the top-level view of the CAEX

schema which describes the valid structure of a CAEX file

and the relationships between the meta-elements.

Fig. 3. Top-Level View of CAEX Schema

The root element of CAEX schema is called CAEXFile

which contains the definitions of three class libraries:

 SystemUnitClassLib is a library lists arbitrary number of

objects of type SystemUnitClass, which can be used to

describe, for example, physical or logical plant objects

or units including their specifications, internal structure,

and operating parameters. Each SystemUnitClass type

consists of attributes, interfaces, and recursively nested

and interrelated InternalElements describing the internal

structure of the modeled system. Within the library,

SystemUnitClass types are organized as a tree to depict

the user’s library hierarchy and the classes’ relationships.

 RoleClassLib also collects objects of type RoleClass as

a tree. Each RoleClass type only consists of attributes

and interfaces as its purpose is to describe the abstract

requirements of objects.

 InterfaceClassLib again arranges InterfaceClass types as

a tree. InterfaceClasses are used to define interfaces and

relations for RoleClasses and SystemUnitClass types.

The class types listed above can be instantiated and stored

in InstanceHierarchy to structure the system being modeled.

By using a reference mechanism and hierarchical structures,

CAEX supports the concepts of inheritance and composition

on class types and instances. At last, the ExternalReference

element defines the mechanism to reference external data and

interlink external object information to local objects.

B. Basic CAEX Modeling Example

Without supplying further semantic definition, one typical

usage of CAEX is to model the structure of static object

information, such as topologies of physical plants, documents,

or even Petri nets. The following example demonstrates how

a CAEX model is developed to describe the structure of a

mechatronic device called FESTO Distributing Station (DS)

from the early planning phrase to final implementation. As

depicted in Fig. 4, DS consists of two parts: a Stack Magazine

(SM) module and a Changer module. The main function of

DS is to transfer the workpieces inside the magazine barrel of

SM to the downstream station via the suction cup of Changer.

Fig. 4. (a) Stack Magazine and (b) Changer Modules [11]

Depending on the required modeling granularity, the object

structure of DS can be stored up to a certain level of details.

This example only considers the composition layout and

object relations in the hierarchical structure of DS to present

the basic usages of CAEX elements and concepts that will be

later used to define further semantics for describing IMC FBs.

The modeling process starts with identifying components

in DS. Each component is treated as a role outlining its

abstract functions and properties as depicted in Fig. 5.

Fig. 5. RoleClassLib for Distributing Station

The properties and requirements of each role are stored as

attributes inside the corresponding RoleClass element. For

instance, the InductiveSensorRole element specifies the

operating temperature, physical size, and sensing range of the

inductive sensor that the SM module requires. According to

the requirements, a concrete inductive sensor with the correct

dimensions, suitable temperature tolerance, and sensitivity is

selected from the SystemUnitClassLib library, which stores

and categorizes the detail information of, for example, the

standard FESTO components and sensors as shown in Fig. 6.

Fig. 6. SystemUnitClassLib for FESTO Components

Each SystemUniClass element can support multiple roles as

indicated by its child SupportedRoleClass elements and the

inheritance relations across SystemUnitClass elements can be

identified by the corresponding Class attribute. For example,

the InductiveSensorClass element inherits all the properties

from the CommonSensorClass with extra functions to support

the InductiveSensorRole required by the SM module. The

SupportedRoleClass element and the Class attribute can be

used by tools to automatically identify and instantiate the

suitable class for specific role during the IMC design process.

The classes selected from the SystemUnitClassLib will then

be instantiated as internal elements and then assebmled inside

InstanceHierarchy to define the internal structure of DS. As

shown in Fig. 7, the StackMagazineModule element contains

all the components used to build the SM module. The details

and role requirements of the components are provided by the

SystemUnitClass and RoleClass elements specified by the

respective Class and Role attributes while extra properties,

such as the position of the inductive sensor in SM can be

specified as additional attributes under InductiveSensor.

Fig. 7. InstanceHierarchy for Distributing Station

At last, the connection between the components can be

realized by defining their external interfaces. For instance,

Fig. 8 shows the WorkpieceInterface used to describe the

connections between the SM and Changer modules with the

details such as workpiece flow direction, connection port, and

possible workpiece type. This interface concept provides the

mechanism to define the semantics for automatic connection

of the IMC models.

Fig. 8. InterfaceClassLib for Distributing Station

V. SEMANTIC EXTENSIONS AND DEMONSTRATION EXAMPLE

CAEX provides a standardized storage means of data in a

syntactic way. The data templates defined by the designers

provide the corresponding semantic specifications for tools to

interpret the stored data. This section elaborates the data

templates developed in this work to store the details of IMC

FBs and the imposed semantics on the data structure for tools

to interpret and manipulate the underneath FB models and

hence to achieve automatic configuration and generation of

new system designs.

In our template, the RoleClassLib stores a number of roles

containing abstract properties and requirements that can be

associated with InternalElement or SupportedRoleClass. For

the first case, the RoleClass delivers common attributes and

interfaces to the associated InternalElements while allowing

concrete requirements to be specified in the RoleRequirement

elements. For the second case, the RoleClass tags indicate

what roles the current object can play. By examining the

SupportedRoleClasses, software tools can extract necessary

information from the role’s attributes and interfaces to, for

example, automatically configure the object and hence set up

suitable deployment environment. The following Fig. 9 lists

the RoleClassLib templates developed in this work.

Fig. 9. RoleClassLib Templates

The most essential RoleClassLib is the IEC61499Standard

library, which contains RoleClass representations of various

IEC 61499 entities from the generic System, DeviceType, and

ResourceType to the concrete inherited FRAME_DEVICE and

PANEL_RESOURCE types. These concrete RoleClasses store

the required parameters and configuration information as

attributes and interfaces whose actual values will be specified

when the roles are associated. The IEC61499Standard library

is typically used to define IEC 61499 applications’ topology

and therefore provide the information of possible deployment

configurations. Moreover, the hierarchy structure implies the

compatibility of the resources and devices. For example, the

VIEW_PANEL resource must only be deployed to the

FRAME_DEVICE not any the other devices.

The implementation details of IMC FBs, especially the

configuration of the MVC components and the connection

semantics of their signal interfaces, are stored as instances of

SystemUnitClass under the corresponding SysemUnitClassLib.

As FBs can easily have tens of I/O ports, direct connections

of these signals can significantly crowd the original design

and worsen the readability of the resultant SystemUnitClass.

Therefore, in this work, the IMC FB models are developed

following the composite MVC design pattern as described in

Section III, which uses IEC 61499 Adapter Interfaces (AIs) to

logically group related signals into a single link. Similar to

the concept of software interfaces, AIs are used to identify the

compatibility of signals as only matched AI types can be

connected. Fig. 10 shows the SM IMC’s Model, View, and

Control FBs whose AIs are connected following the same

topology as illustrated in Fig. 2.

Fig. 10. Model, View, and Control FBs of Stack Magazine

Referring to the CAEX model, the SM IMC is modeled by

the SystemUniCLass StackMagazineIMCFB with all MVC

FBs represented as interlinked InternalElements inside it as

shown in Fig. 11 below.

Fig. 11. SystemUniClassLib Templates

The StackMagazineIMCFB inherits the GenericIMCFB

class indicates it represents an IMC FB which has attributes:

IMCFolderReference and IMCPreviewPath informing the

location and preview path of the IMC model. The CAEX

models of MVC FBs are identified by the associated IMCFB

RoleClass, which has a requirement, IEC61499FBReference,

specifying the path to the FB file. The SupportedRoleClasses

of, for example, ModelFB indicate that it can be deployed to

the ImageResource and PANEL_RESOURCE. Similarly, the

DS_HMI_Set_Demo1 collects normal FBs and hence inherits

the GenericFunctionBlock class and associates with role

FunctionBlock. On the other hand, the IO interfaces of the

FBs are represented as ExternalInterfaces of types from

IEC61499InterfaceClassLib as listed in Fig. 12.

Fig. 12. InterfaceClassLib Templates

The IEC61499AdapterInterface models AI port, which has

attributes Type, Direction, and Path specifying the AI type,

port direction (socket or plug), and the path to the AI file. On

the other hand, the IEC61499EventSignal interface represents

IEC 61499 event port with attribute Direction specifying

whether the port is input or output. Similarly, in additional to

the Direction attribute, the IEC61499DataSignal interface has

a Value attribute defining the type and value for the data port.

Finally, the connections between the MVC FBs are stored

as InternalLinks of the parent SystemUnitClass which enables

automatic configuration of the MVC FBs when the parent

class is instantiated. Each InternalLink has three attributes as

exemplified in Fig. 13 where attribute Name defines the link’s

name and attributes RefPartnerSideA and RefPartnerSideB

specify the link’s source and destination port using the format

FB_UniqueID:IO_Name. For instance, the entry {912a71b9-

cb28-4af1-8da7-cec6dfa44547}: INITO refers to the unique

ID of StackMagazineIMCFB’s ModelFB element and the port

name is INITO. This unique ID reference mechanism is used

to avoid conflict when cross referencing objects especially in

the component-based design environment of IMC FB.

Fig. 13. AI Connections as InternalLink

Existing IMC FBs from the SystemUnitClassLib can be

instantiated as InternalElements and then placed, connected,

and configured inside InstanceHierarchy to further define the

structure of new IMC FBs, which can be then stored as new

SystemUnitClass back to the library for later use. During the

design process, new elements such as InternalLinks, attributes,

and InternalElements can be added to detail the new system’s

requirements following the same mechanism as designing

SystemUnitClasses. Fig. 14 exemplifies an InstanceHierarchy

representing the structure of the DS module as a result of

configuring the existing SM and Changer models with HMIs.

Fig. 14. InstanceHierarchy Template Example

The DS system consists of two devices, DISPLAY and HMI

of type ImagDev and FRAME_DEVICE respectively. The

MVC FBs of SM and Changer IMCs are deployed to

ImageResource Res1 under DISPLAY while the HMI FBs are

installed in the PANEL_RESOURCE inside HMI. All the

properties, interfaces, and internal connections between the

MVC FBs are directly instantiated from the corresponding

SystemUnitClasses. Further connections among the SM and

Changer IMCs and other FB models are also specified as

InternalLinks under elements DISPLAY-Res1 and HMI-Res1

respectively. According to this DS InstanceHierarchy, tools

can automatically generate a new system configuration and

determine suitable deployment polices based on the hierarchy

structure and the supported roles.

At last, the CAEX reference mechanism is used to support

modular development of IMC FBs. In particular, as shown in

Fig. 15 the SM IMC model can be stored as external file and

then referenced use the ExternalReference element where the

Path attribute specifies the file location and Alias defines the

actual tag name to be referenced in the new design.

Fig. 15. InstanceHierarchy Template Example

VI. CONCLUSIONS

The IEC 61499 standard established a unified framework

for developing the logic part of next generation automation

systems. However, the engineering process of modern control

systems involves not only the control algorithms but also the

visualization, simulation, and final deployment of the entire

system, for example. These engineering aspects are not

covered in the standard but must be supported by the IEC

61499 development tools. This paper presented an approach

of implementing IMCs to bridge various engineering aspects

of developing automation systems using IEC 61499 FBs with

the generic data exchange mechanism CAEX to seamlessly

integrate the heterogeneous tools involved in the entire design

process. The demonstrative FESTO Distributing Station

example illustrates the design flexibility using IMCs. The

future research will focus on applying the CAEX templates to

incorporate more practical engineering tools and standards.

REFERENCES

[1] International Electrotechnical Commission, Function blocks for
industrial-process measurement and control systems - Part 1:
Architecture. Geneva: International Electrotechnical
Commission, 2005.

[2] nxtControl. (2009, December). [Online]. Available:
www.nxtcontrol.com

[3] ISaGRAF. (2009, December). [Online]. Available:
www.isagraf.com

[4] V. Vyatkin, "Intelligent mechatronic components: control
system engineering using an open distributed architecture," in
Emerging Technologies and Factory Automation, 2003.
Proceedings. ETFA '03. IEEE Conference, 2003, pp. 277-284
vol.2.

[5] International Electrotechnical Commission, IEC 62424:
Specification for representation of process control engineering
requests in P&I Diagrams and for data exchange between P&ID
tools and PCE_CAE, 1 ed.: International Electrotechnical
Commission, 2008.

[6] C. Sünder, et al., "Functional structure-based modeling of
automation systems," International Journal of Manufacturing
Research, vol. 1, pp. 405-420, 2006.

[7] S.-M. Lee, et al., "A Component-based Distributed Control
System for Assembly Automation," in 2nd IEEE Conference on
Industrial Informatics (INDIN 2004), Berlin, Germany, 2004,
pp. 33-38.

[8] K. Thramboulidis, "Model-integrated mechatronics - toward a
new paradigm in the development of manufacturing systems,"
Industrial Informatics, IEEE Transactions on, vol. 1, pp. 54-61,
2005.

[9] C. Pang and D. V. Vyatkin, "Systematic Closed-Loop
Modelling in IEC 61499 Function Blocks: A Case Study," in
Information Control Problems in Manufacturing, 2009.
INCOM09. 13th IFAC Symposium on, Moscow, Russia, 2009,
pp. 199-204.

[10] L. Hundt, et al., "Seamless Automation Engineering with
AutomationML," in 14th International Conference on
Concurrent Enterprising (ICE 2008), Lisboa, Portugal, 2008,
pp. 685-692.

[11] F. Ebel, et al., FESTO Distributing Station Manual.
Denkendorf, 2006.

