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Abstract-This paper presents a new approach of implementing 

Intelligent Mechatronic Component (IMC) using the IEC 61499 
Function Block standard. In particular, this paper tries to 
address two issues during the engineering process of IMCs: a 

systematic approach of developing and organizing IMC elements 
and a seamless and scalable way supporting IMC composition 
and reconfiguration. A case study implementation example is 

presented to illustrate how the results from this work can be 
applied and integrated in Function Block development tools. 

 

I. INTRODUCTION 

Since the release of the IEC 61499 Function Block (FB) 

standard [1], a number of studies have been conducted to 

investigate its practical applications in automation systems. 

Although the industry has been aware of the benefits brought 

by IEC 61499, the new standard has still not yet been widely 

adopted. One of the main reasons is the immaturity of the 

development tools, especially the lack of sophisticated IDE, 

and the well-integrated design methodologies facilitating 

component-based design throughout the entire design cycle of 

automation systems.  

One of the IEC 61499 features is support of interoperability 

among devices from different vendors. The standard provides 

an open XML format for storing code modules and 

exchanging them between tools and devices from different 

vendors. However, the standard is not intended to cover all 

aspects of the automation engineering process, such as 

visualization, simulation, verification, and deployment. As a 

result, vendors of IEC 61499 IDE and tool may choose to 

incorporate their own design technologies or apply third-party 

approaches to comprehend the design methodology covering 

the entire design cycle of their products and therefore 

introduce their new, either open or proprietary, storage 

formats. These formats usually cannot be recognized by other 

tools hence violating the original intention of the IEC 61499 

standard. For example, the nxtControl IDE [2] introduces the 

concept of Computer Automation Types, which contains 

control component, visualization, documentation, and process 

connection in a single unit saved in their own proprietary IEC 

61499 Solution format. Similarly, ISaGRAF [3] uses 

encrypted XML format for storing IEC 61499 applications. 

Contrarily, instead of providing a complete solution, some 

IEC 61499 design tools only focus on certain aspects of the 

design process, typically the composition of control logics, 

and often use other existing tools as plug-ins to provide 

common functions or themselves are parts of larger domain-

specific design frameworks. As a result, these tools save the 

designs as standard IEC 61499 XML files and provide 

translators to interface the external tools, which make the FB 

designs exchangeable and resuable but also impose the 

difficulties to adapt existing design methodologies on various 

tools to provide comprehensive design solutions. 

The involvement of different tools and technologies in the 

engineering process of control systems requires a consistent 

data exchange mechanism to ensure smooth workflow during 

the whole project. The inability to exchange data across the 

heterogeneous tools seamlessly while maintaining the 

integrity of semantics will incur extra difficulties, time, and 

consequently costs on the development. This paper presents 

the first step to seamlessly incorporate IEC 61499 standard 

with other tools and standards to support the development 

lifecycle of control program for automation system following 

a systematic design methodology. The solution consists of:  

 an engineering methodology based on the concept of 

Intelligent Mechatronic Component (IMC) [4] to support 

the design lifecycle of automation systems; and,  

 a corresponding generic data exchange mechanism based 

on IEC 62424 standard [5] as the key for the integration 

of heterogeneous tools in the FB development, so that 

each tool can work on its native file format 

simultaneously. 

This paper is structured as follows. Section II introduces 

the general concepts of IMC. Section III outlines the overall 

modeling methodology of IMC using IEC 61499 FBs. Then, 

Section IV elaborates the generic data exchange mechanism 

defined by IEC 62424 with its semantic extensions to support 

FB implementation of IMC in Section V. A concrete example 

illustrating the development of FB IMCs is also included here. 

Finally, this paper is concluded with the contribution of this 

work and future research perspectives. 

II. INTELLIGENT MECHATRONIC COMPONENT 

The concepts of Intelligent Mechatronic Component (IMC) 

was first introduced in [4] to the automation software design 

domain and then further discussed and extended in [6-8]. The 

general idea of IMC is that, machines or mechatronic 

components come with pre-programmed software, including 

plant models, control programs, and any necessary network 

interfaces. Each IMC can contain the following items: 

 Mechatronic component: a physical functional device 

with sensors, actuators, and electronic circuits; 



 Embedded control device: computing devices with 

interfaces to the sensors, actors, and networks; and, 

 Software components: a set of data and control logics 

implementing various automation functions. These 

elements provide the IMC’s autonomy and cooperation. 

New machines or automation systems are constructed as a 

result of integrating these elements of existing IMCs. Fig. 1 

below illustrates the overall process of building new systems 

using IMCs. 

 
Fig. 1. IMC Engineering Methodology 

The process starts with capturing the requirements of the 

new system. According to the system specifications, analysis 

is performed to determine the actual implementation details, 

such as the design layout, communication protocols, and so 

on. The system’s overall structure will then be conceptualized 

using computer-aided design tool. In such tool, the simulation 

models, including plant and control models, of IMCs will be 

picked from the IMC repository provided by their vendors 

and placed into the design space for closed-loop simulation 

first. If the simulation results prove that the predefined testing 

scenarios are correct, corresponding formal model can be 

generated to perform a more exhaustive system validation. 

Once the verification results are satisfactory the IMCs’ 

control programs can be deployed to the physical system.  

This unified hierarchical architecture greatly facilitates the 

engineering and maintenance processes of current automation 

systems. However, to achieve this vision, a proper software 

architecture as a form of knowledge organization of IMC 

software components and a mechanism supporting automatic 

integration and deployment of IMCs are substantial. In this 

research, the IEC 61499 Function Block standard is adopted  

to handle the control organization, plant model development, 

and simulation of IMCs following the modeling approach we 

previously developed in [9]. The IEC 62424 standard, on the 

other hand, is applied to structure and categorize the IMCs in 

the design process and manage the later deployment step.  

Next section will first clarify the reasons of using the IEC 

61499 standard to develop IMC models and then the FB 

modeling methodology for IMC is introduced. 

III. SYSTEMATIC IMC MODELING METHODOLOGY 

One important feature of IMC is the ability to encapsulate 

the component’s functionality into reusable portable software 

units. The design of new machines or production systems’ 

behavior and functions can be reduced to the selection, 

scheduling, and composition of such units in a plug-and-play 

way. However, to implement the plug-and-play integration of 

IMCs from different developers and vendors a unified or 

standardized software architecture, network interfaces, and 

data formats must be agreed and applied. The new IEC 61499 

standard established such framework for agile development 

of component-based automation systems, which are portable, 

reconfigurable, and interoperable among different vendors. 

More importantly, the standard provides a single mechanism 

to represent and encapsulate both plant and control models 

using the same language and architecture, which perfectly 

suits the concepts of IMC. 

Given the standardized development means provided by 

IEC 61499, the software repository for each IMC must be 

also organized in a uniform way and moreover a mechanism 

for seamless integration of IMCs must be invented. The 

interface-based composite Model-View-Control (MVC) 

design pattern we previously developed [9] can play such a 

role. Fig. 2 (a) shows the schematic diagram of composing 

the software components of two IMCs each of which consists 

of a Model FB, a View FB, a Control FB, and peripheral HMI 

FBs. The interactions between these functional aspects, such 

as the Model-View interaction, Model-Model interaction, 

Model-Control interaction, and Control-Control interaction, 

are handled by a uniform mechanism. The resultant new IMC 

again follows the same MVC topology as shown in Fig. 2 (b). 

 
Fig. 2. Composite Model-View-Control IMC Design 

Pattern: (a) Composing two IMCs, and (b) Resultant IMC 

This composite MVC design approach provides the means 

for designers to manually integrate the FB models of IMCs. A 

more important step towards IMC concept is to have software 

tools support automatic integrations of these FB models and 

their deployment to the physical devices. The IEC 61499 

standard does not provide such facility as it is not within the 

standard’s scope. As a result, extra information must be 

provided for the tools to layout, integrate, and deploy these 

IMC FBs. Next section introduces the IEC 62424 standard 

and the generic data exchange mechanism we borrowed from 

it to specify IMC FBs’ integrating points, layout information, 

deployment polices, and so on. 

IV. IEC 62424 STANDARD AND CAEX 

The IEC 62424 standard was published in 2008 with the 

original aim to specify the representation of process control 

engineering requests in Process & Instrumentation Diagrams 

(P&ID) along with the data exchange mechanism between 

P&ID tools and Process Control Engineering and Computer 

Aided Engineering tools. To implement a generic data 



exchange mechanism, an abstract object-oriented data format 

called Computer Aided Engineering Exchange (CAEX) was 

developed. Although CAEX is originally designed for the 

engineering in process industries, it has been adopted by 

AutomationML [10] as the technical basement to achieve 

seamless data storage and exchange covering all aspects of 

automation engineering activities from plant planning and 

functional engineering to the final commissioning. Indeed, 

CAEX can be applied to all types of static object information, 

such as various design topologies, as well as for non-technical 

applications.  

A. General CAEX Concepts 

The essence of CAEX is the XML-based CAEX schema, 

which unites model and meta-model techniques into a single 

template. As a meta-model, CAEX provides a syntactic but 

flexible means for defining specific semantics and structure 

on the stored object information. On the other hand, CAEX 

standardizes an object-oriented way of storing information to 

establish a generic data exchanging mechanism. Therefore, a 

CAEX file created in a specific application can also be 

recognized by other applications supporting CAEX model but 

with their individual interpretation of the stored information. 

This decoupling mechanism preserves the data integrity while 

allowing heterogeneous manipulation on the data objects.  

Fig. 3 below illustrates the top-level view of the CAEX 

schema which describes the valid structure of a CAEX file 

and the relationships between the meta-elements. 

 
Fig. 3. Top-Level View of CAEX Schema 

The root element of CAEX schema is called CAEXFile 

which contains the definitions of three class libraries: 

 SystemUnitClassLib is a library lists arbitrary number of 

objects of type SystemUnitClass, which can be used to 

describe, for example, physical or logical plant objects 

or units including their specifications, internal structure, 

and operating parameters. Each SystemUnitClass type 

consists of attributes, interfaces, and recursively nested 

and interrelated InternalElements describing the internal 

structure of the modeled system. Within the library, 

SystemUnitClass types are organized as a tree to depict 

the user’s library hierarchy and the classes’ relationships. 

 RoleClassLib also collects objects of type RoleClass as 

a tree. Each RoleClass type only consists of attributes 

and interfaces as its purpose is to describe the abstract 

requirements of objects. 

 InterfaceClassLib again arranges InterfaceClass types as 

a tree. InterfaceClasses are used to define interfaces and 

relations for RoleClasses and SystemUnitClass types. 

The class types listed above can be instantiated and stored 

in InstanceHierarchy to structure the system being modeled. 

By using a reference mechanism and hierarchical structures, 

CAEX supports the concepts of inheritance and composition 

on class types and instances. At last, the ExternalReference 

element defines the mechanism to reference external data and 

interlink external object information to local objects. 

B. Basic CAEX Modeling Example 

Without supplying further semantic definition, one typical 

usage of CAEX is to model the structure of static object 

information, such as topologies of physical plants, documents, 

or even Petri nets. The following example demonstrates how 

a CAEX model is developed to describe the structure of a 

mechatronic device called FESTO Distributing Station (DS) 

from the early planning phrase to final implementation. As 

depicted in Fig. 4, DS consists of two parts: a Stack Magazine 

(SM) module and a Changer module. The main function of 

DS is to transfer the workpieces inside the magazine barrel of 

SM to the downstream station via the suction cup of Changer. 

 
Fig. 4. (a) Stack Magazine and (b) Changer Modules [11] 

Depending on the required modeling granularity, the object 

structure of DS can be stored up to a certain level of details. 

This example only considers the composition layout and 

object relations in the hierarchical structure of DS to present 

the basic usages of CAEX elements and concepts that will be 

later used to define further semantics for describing IMC FBs. 

The modeling process starts with identifying components 

in DS. Each component is treated as a role outlining its 

abstract functions and properties as depicted in Fig. 5.  

 
Fig. 5. RoleClassLib for Distributing Station 

The properties and requirements of each role are stored as 

attributes inside the corresponding RoleClass element. For 



instance, the InductiveSensorRole element specifies the 

operating temperature, physical size, and sensing range of the 

inductive sensor that the SM module requires. According to 

the requirements, a concrete inductive sensor with the correct 

dimensions, suitable temperature tolerance, and sensitivity is 

selected from the SystemUnitClassLib library, which stores 

and categorizes the detail information of, for example, the 

standard FESTO components and sensors as shown in Fig. 6. 

 
Fig. 6. SystemUnitClassLib for FESTO Components 

Each SystemUniClass element can support multiple roles as 

indicated by its child SupportedRoleClass elements and the 

inheritance relations across SystemUnitClass elements can be 

identified by the corresponding Class attribute. For example, 

the InductiveSensorClass element inherits all the properties 

from the CommonSensorClass with extra functions to support 

the InductiveSensorRole required by the SM module. The 

SupportedRoleClass element and the Class attribute can be 

used by tools to automatically identify and instantiate the 

suitable class for specific role during the IMC design process.  

The classes selected from the SystemUnitClassLib will then 

be instantiated as internal elements and then assebmled inside 

InstanceHierarchy to define the internal structure of DS. As 

shown in Fig. 7, the StackMagazineModule element contains 

all the components used to build the SM module. The details 

and role requirements of the components are provided by the 

SystemUnitClass and RoleClass elements specified by the 

respective Class and Role attributes while extra properties, 

such as the position of the inductive sensor in SM can be 

specified as additional attributes under InductiveSensor. 

 
Fig. 7. InstanceHierarchy for Distributing Station 

At last, the connection between the components can be 

realized by defining their external interfaces. For instance, 

Fig. 8 shows the WorkpieceInterface used to describe the 

connections between the SM and Changer modules with the 

details such as workpiece flow direction, connection port, and 

possible workpiece type. This interface concept provides the 

mechanism to define the semantics for automatic connection 

of the IMC models. 

 
Fig. 8. InterfaceClassLib for Distributing Station 

V. SEMANTIC EXTENSIONS AND DEMONSTRATION EXAMPLE 

CAEX provides a standardized storage means of data in a 

syntactic way. The data templates defined by the designers 

provide the corresponding semantic specifications for tools to 

interpret the stored data. This section elaborates the data 

templates developed in this work to store the details of IMC 

FBs and the imposed semantics on the data structure for tools 

to interpret and manipulate the underneath FB models and 

hence to achieve automatic configuration and generation of 

new system designs. 

In our template, the RoleClassLib stores a number of roles 

containing abstract properties and requirements that can be 

associated with InternalElement or SupportedRoleClass. For 

the first case, the RoleClass delivers common attributes and 

interfaces to the associated InternalElements while allowing 

concrete requirements to be specified in the RoleRequirement 

elements. For the second case, the RoleClass tags indicate 

what roles the current object can play. By examining the 

SupportedRoleClasses, software tools can extract necessary 

information from the role’s attributes and interfaces to, for 

example, automatically configure the object and hence set up 

suitable deployment environment. The following Fig. 9 lists 

the RoleClassLib templates developed in this work.  

 
Fig. 9. RoleClassLib Templates 

The most essential RoleClassLib is the IEC61499Standard 

library, which contains RoleClass representations of various 

IEC 61499 entities from the generic System, DeviceType, and 

ResourceType to the concrete inherited FRAME_DEVICE and 

PANEL_RESOURCE types. These concrete RoleClasses store 

the required parameters and configuration information as 

attributes and interfaces whose actual values will be specified 

when the roles are associated. The IEC61499Standard library 

is typically used to define IEC 61499 applications’ topology 

and therefore provide the information of possible deployment 

configurations. Moreover, the hierarchy structure implies the 

compatibility of the resources and devices. For example, the 



VIEW_PANEL resource must only be deployed to the 

FRAME_DEVICE not any the other devices. 

The implementation details of IMC FBs, especially the 

configuration of the MVC components and the connection 

semantics of their signal interfaces, are stored as instances of 

SystemUnitClass under the corresponding SysemUnitClassLib. 

As FBs can easily have tens of I/O ports, direct connections 

of these signals can significantly crowd the original design 

and worsen the readability of the resultant SystemUnitClass. 

Therefore, in this work, the IMC FB models are developed 

following the composite MVC design pattern as described in 

Section III, which uses IEC 61499 Adapter Interfaces (AIs) to 

logically group related signals into a single link. Similar to 

the concept of software interfaces, AIs are used to identify the 

compatibility of signals as only matched AI types can be 

connected. Fig. 10 shows the SM IMC’s Model, View, and 

Control FBs whose AIs are connected following the same 

topology as illustrated in Fig. 2.  

 
Fig. 10. Model, View, and Control FBs of Stack Magazine 

Referring to the CAEX model, the SM IMC is modeled by 

the SystemUniCLass StackMagazineIMCFB with all MVC 

FBs represented as interlinked InternalElements inside it as 

shown in Fig. 11 below. 

 
Fig. 11. SystemUniClassLib Templates 

The StackMagazineIMCFB inherits the GenericIMCFB 

class indicates it represents an IMC FB which has attributes: 

IMCFolderReference and IMCPreviewPath informing the 

location and preview path of the IMC model. The CAEX 

models of MVC FBs are identified by the associated IMCFB 

RoleClass, which has a requirement, IEC61499FBReference, 

specifying the path to the FB file. The SupportedRoleClasses 

of, for example, ModelFB indicate that it can be deployed to 

the ImageResource and PANEL_RESOURCE. Similarly, the 

DS_HMI_Set_Demo1 collects normal FBs and hence inherits 

the GenericFunctionBlock class and associates with role 

FunctionBlock. On the other hand, the IO interfaces of the 

FBs are represented as ExternalInterfaces of types from 

IEC61499InterfaceClassLib as listed in Fig. 12. 

 

 
Fig. 12. InterfaceClassLib Templates 

The IEC61499AdapterInterface models AI port, which has 

attributes Type, Direction, and Path specifying the AI type, 

port direction (socket or plug), and the path to the AI file. On 

the other hand, the IEC61499EventSignal interface represents 

IEC 61499 event port with attribute Direction specifying 

whether the port is input or output. Similarly, in additional to 

the Direction attribute, the IEC61499DataSignal interface has 

a Value attribute defining the type and value for the data port.  

Finally, the connections between the MVC FBs are stored 

as InternalLinks of the parent SystemUnitClass which enables 

automatic configuration of the MVC FBs when the parent 

class is instantiated. Each InternalLink has three attributes as 

exemplified in Fig. 13 where attribute Name defines the link’s 

name and attributes RefPartnerSideA and RefPartnerSideB 

specify the link’s source and destination port using the format 

FB_UniqueID:IO_Name. For instance, the entry {912a71b9-

cb28-4af1-8da7-cec6dfa44547}: INITO refers to the unique 

ID of StackMagazineIMCFB’s ModelFB element and the port 

name is INITO. This unique ID reference mechanism is used 

to avoid conflict when cross referencing objects especially in 

the component-based design environment of IMC FB. 

 
Fig. 13. AI Connections as InternalLink 

Existing IMC FBs from the SystemUnitClassLib can be 

instantiated as InternalElements and then placed, connected, 

and configured inside InstanceHierarchy to further define the 



structure of new IMC FBs, which can be then stored as new 

SystemUnitClass back to the library for later use. During the 

design process, new elements such as InternalLinks, attributes, 

and InternalElements can be added to detail the new system’s 

requirements following the same mechanism as designing 

SystemUnitClasses. Fig. 14 exemplifies an InstanceHierarchy 

representing the structure of the DS module as a result of 

configuring the existing SM and Changer models with HMIs. 

 
Fig. 14. InstanceHierarchy Template Example 

The DS system consists of two devices, DISPLAY and HMI 

of type ImagDev and FRAME_DEVICE respectively. The 

MVC FBs of SM and Changer IMCs are deployed to 

ImageResource Res1 under DISPLAY while the HMI FBs are 

installed in the PANEL_RESOURCE inside HMI. All the 

properties, interfaces, and internal connections between the 

MVC FBs are directly instantiated from the corresponding 

SystemUnitClasses. Further connections among the SM and 

Changer IMCs and other FB models are also specified as 

InternalLinks under elements DISPLAY-Res1 and HMI-Res1 

respectively. According to this DS InstanceHierarchy, tools 

can automatically generate a new system configuration and 

determine suitable deployment polices based on the hierarchy 

structure and the supported roles.  

At last, the CAEX reference mechanism is used to support 

modular development of IMC FBs. In particular, as shown in 

Fig. 15 the SM IMC model can be stored as external file and 

then referenced use the ExternalReference element where the 

Path attribute specifies the file location and Alias defines the 

actual tag name to be referenced in the new design.  

 
Fig. 15. InstanceHierarchy Template Example 

VI. CONCLUSIONS 

The IEC 61499 standard established a unified framework 

for developing the logic part of next generation automation 

systems. However, the engineering process of modern control 

systems involves not only the control algorithms but also the 

visualization, simulation, and final deployment of the entire 

system, for example. These engineering aspects are not 

covered in the standard but must be supported by the IEC 

61499 development tools. This paper presented an approach 

of implementing IMCs to bridge various engineering aspects 

of developing automation systems using IEC 61499 FBs with 

the generic data exchange mechanism CAEX to seamlessly 

integrate the heterogeneous tools involved in the entire design 

process. The demonstrative FESTO Distributing Station 

example illustrates the design flexibility using IMCs. The 

future research will focus on applying the CAEX templates to 

incorporate more practical engineering tools and standards. 
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