
Cyber-physical automation systems modelling with
IEC 61499 for their formal verification

Midhun Xavier ∗, Sandeep Patil∗, Valeriy Vyatkin∗ †
∗ Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

†Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

Email: {midhun.xavier, sandeep.patil}@ltu.se, vyatkin@ieee.org

Abstract—This paper introduces a problem-oriented notation
within the IEC 61499 syntax to be used for creating formal
closed-loop models of cyber-physical automation systems. The
proposed notation enables creation of a comprehensive tool-chain
that can combine design, simulation, formal verification and
distributed deployment of automation software. The proposed
notation allows for definition of non-deterministic transitions in
ECC of basic function blocks of IEC 61499.

The tool chain includes an IEC 61499 compliant engineering
environment, FB2SMV converter of functions blocks to SMV
code, the NuSMV model-checker and utilities for interpreting
counterexamples.

Index Terms—Formal verification, simulation, IEC 61499,
cyber-physical automation systems

I. INTRODUCTION

Distributed industrial automation systems pose a significant
challenge for their efficient verification and validation due
to their heterogeneous structure, use of wireless communi-
cation and decentralised logic. The inherent inter twinning
of computational and communication processes with complex
physical dynamics has called for the term cyber-physical
systems (CPS) [1] to emphasize the challenges and the need
for new development approaches.

The IEC 61499 architecture [2] is getting increasingly
recognised as a powerful mechanism for engineering such
systems. It has been proven also as an efficient way of
modeling CPS in automation [3].

The challenge of IEC 61499 verification has been well-
recognized from the early stages of the standard’s develop-
ment and evaluation [4], [5]. Closed-loop modelling has been
proposed for the most comprehensive verification [6], which
implies the need for modelling the plant.

In quite many works, the plant modelling [7] was done in the
same formalism, which was used eventually to represent the
model for the model-checker. Graphical modelling languages
of finite-state machines and Petri nets [8], [9] were used in par-
ticular, and the models were prepared using the corresponding
graphical editors. However, the IEC 61499 itself provides a
graphical engineering interface and supports programming in
terms of state machines. Therefore, a problem-oriented nota-
tion could be proposed to take advantage of the existing tools
and avoid using additional ones in the process of modelling.
This paper proposes such an approach by introducing a tool
chain.

The paper is structured as follows: Section II discusses the
related work and problem statement. Section III and IV illus-
trates an example and simulation model in detail. Section V
describes the discrete-state modelling approach including the
implementation of non-deterministic transition in smv. Section
VI gives an overview of FB2SMV tool’s functionalities and
features. Section VII presents the results and analysis of the
work. Finally, Section VIII concludes the paper and outlines
future goals.

II. RELATED WORKS AND PROBLEM STATEMENT

Christensen suggested a model-driven development ap-
proach [10] for distributed automation systems that is based on
the use of the model-view-control object-oriented design pat-
tern [11]. The approach supports several development stages,
from simulation in the loop to the deployment. In [6] that
approach was extended to include also formal verification into
the verification and validation of function block systems.

The suggested framework is heavily based on the closed-
loop architecture of the model, where the plant part is explic-
itly represented in the overall system model. This architecture
allows for easy integration with a simulation model for the
virtual commissioning purposes, which can be seamlessly
converted to the deployment configuration. In addition, the
closed-loop configuration could be transformed to a struc-
turally similar formal model [12], appropriate for more ex-
haustive verification by means of model-checking [13], [14].
The concept of an integrated environment VEDA presented
in [15] had already supported closed-loop verification of IEC
61499 function block systems. While the controller parts of
the closed-loop models were automatically translated into the
corresponding formal model in a Petri-net like language, the
model of the plant parts had to be developed manually in
the same formalism. This made the process of model creation
quite difficult, not allowing for systematic use of the tool
by control engineers. The emergence of the automatic model
generator FB2SMV [16] that is capable of creating SMV
models from IEC 61499 function block systems, promises
increased potential of formal verification on account of using
the industry grade model-checkers of the NuSMV [17] and
NuXMV family. However, the problem of creating the model
of plant in SMV remains to be the limiting factor for industrial
application of the corresponding verification tool-chain.

Fig. 1. Drilling station system.

In this paper, we attempt to overcome this hurdle by
proposing a CPS modelling method that is entirely based
on IEC 61499. By means of the same modelling language,
we represent both simulation models of the plant, which are
equivalent to hybrid automata, and the models for formal ver-
ification [18], which are equivalent to discrete-state automata
with non-determinism. The latter model can be derived from
the former by applying a sequence of transformation steps.

Both kinds of plant models, implemented as IEC 61499
function blocks can be included to the multi-closed-loop model
connected to the real controllers. This opens the opportunity
of checking the distributed control logic of CPS in simulation
and model-checking.

III. ILLUSTRATIVE EXAMPLE

The modelling method and tool-chain used for CPS veri-
fication are illustrated in this paper using a laboratory-scale
distributed automation system ”Drilling station”, described in
the next subsection. In this case study, we selected and created
a formal model for the same system. Implementation of formal
models of real systems as well as verification is done with the
help of the tool chain.

The drilling station system in Fig. 1 is composed of several
mechatronic components, among which, in this study we
selected only the Drill and rotating Table. It is assumed that the
mechatronic components are smart, i.e. they are equipped with
their own control devices, implementing their basic operations,
which are as follows.

The Drill moves in upward or downward direction. When-
ever a workpiece is detected by the sensor under the drill,
it moves downward and starts drilling. Once it completes
drilling, it moves upwards and rests at the home position.

The Table rotates from one fixed position to another. The
cycle is completed when it rotates six times. When a workpiece
is placed in the loading positions, the table rotates to bring it
under the drill.

The control logic of each mechatronic component is im-
plemented as a function block which follows the IEC 61499
standard. The function block diagram shown in Figure 2
consists of the two function blocks orchestrated to work
together by means of event and data connections between

Fig. 2. Function block representation of the distributed automation of drilling
station.

Fig. 3. Close-up on the decentralised controllers’ interaction.

each other and sources and sinks of sensor inputs and actuator
outputs (function blocks on the left hand side and right hand
side respectively). A close-up on the interacting controllers is
presented in Figure 3.

It is assumed that the smart mechatronic components are de-
livered by their vendors together with the software components
for implementing their control logic. They are integrated to the
drilling station in a way, assuming that the control of internal
operations in each mechatronic component is implemented by
its predefined function block, and the integrator tries to min-
imise its software development effort by reusing the software
components received from the vendors. This approach requires
exhaustive testing of the orchestrated system on compliance
with functional and non-functional requirements.

Hence, we will use both simulation in the loop with the
plant model and formal verification in closed loop for more
exhaustive exploration of the state space.

IV. SIMULATION MODEL

The simulation-in-the-loop environment is shown in Fig.
4. The original function blocks containing the autonomous
control logic of drill and table are connected with the function
blocks implementing simulation models of the drill and table
respectively. The controllers are also connected with each
other exactly same way as in the real configuration in Fig.
3. For example, the function block TableMod11 of type
TableModTop represents a model of the table, that is driven
by one control signal fwd. When this signal receives the value

Fig. 4. The Function Block representation of the simulation-in-the-loop
configuration.

TRUE, the simulated table starts continuous rotation clockwise.
The rotation is stopped if fwd resets to FALSE.

The model outputs the Boolean value FixPos which be-
comes TRUE when the table comes to one of the six fixed
positions. To keep table in the fixed position, the controller has
to stop motion by resetting the control signal fwd to FALSE.
Besides, the model produces the WP DRILL signal, which is
the reading from sensor indicating the presence of workpiece
under the drill.

The simulation environment reproduces the working be-
havior of the real plant which helps to visually identify the
behavior of the system before deploying the distributed control
to the real hardware. Besides, the errors identified during the
formal verification can be represented in simulation.

The simulation models, used in this configuration, have
continuous dynamics, which is the time-domain implemen-
tation of hybrid state machine as discussed in [6]. The core
part of the plant simulation function block is based on the
hybrid automaton model of the process, as illustrated in Fig. 5.
The state machine has three states corresponding to the static
position of the moving object, such as vertical axis of the drill,
or the rotating table. These are stHOME, stEND and stSTOP.
There are also two dynamic states, when the coordinate of the
object is changing: dMOVETO and dRETURN.

When the state machine is in the one of the dynamic states
(say, dMOVETO), it emits the START output event which
invokes the external E CYCLE FB, which starts emitting
periodic events, activating the function block with the state
machine. The state machine remains in the dMOVETO state
until the position reaches the the end position, i.e. Pos=DIST.
Until then the loopback transition condition is true, so the
state-machine remains in the dMOVETO state. Every time
the loopback transition is executed, the event CHG is emit-
ted which also invokes the external ”Integrator” FB, which
recalculates the new value of the process variable based on
the current value, duration of the time interval between recal-

REQ CHG

Process
variable:
position

Fig. 5. Computational implementation of a hybrid automaton in function
block.

Fig. 6. The visual representation of the simulation process.

culations is determined by the DT parameter of the E CYCLE
and speed of the motion.

Given the ever changing process values, the evolution of
the model can be visually displayed using internal or external
means. The development, reported in this paper, was done
using the NxtStudio of NxtControl, which offers a proprietary
visualisation technology called CAT. The plant model blocks
were implemented as the CATs, therefore the model behaviour
was implemented internally, within the same development
environment. The interactive system visualisation by means
of CATs is shown in Fig. 6.

V. DISCRETE-STATE MODELLING APPROACH

The discrete-state model of the system is created in IEC
61499 based on the simulation model described in the previous
section.

The discrete-state equivalent of the simulation configuration
is shown in Fig. 7. Here the function blocks simulating the
drill and table are substituted by their analogs operating in
the discrete state domain, instead of modelling the continuous
process parameters, such as the drill’s and table’s numeric po-
sition. The model can be then simulated in the IEC 61499 IDE
with values of function block inputs and outputs displayed and
modified interactively. It can be translated to the SMV model
using FB2SMV tool and exposed to the formal verification by
model-checking.

A. Notation for Plant Modelling

In the current example, the drill model is represented by an
instance of a basic discrete motion model LinearDA. Its state-
machine implementation is shown in Fig. 8. The execution

Fig. 7. Discrete state function block model of the Drilling station.

Fig. 8. Discrete state linear motion process model with NDT.

semantics of the state-machine follows the rules of IEC 61499,
i.e. the function block is activated by an input event, and the
state machine evolution is following the rules for execution
control chart (ECC) of basic function blocks.

Similarly to the hybrid state-machine in Fig. 5, the discrete
state model of the drill specifies three static and two dynamic
states, but it does not model the position as a numeric value.
The drill moves from stHOME to stEND state via a motion
state called ddMOVETO. The state transition occurs from
stHOME to ddMOVETO whenever FWD signal is TRUE. It
is remarkable to note the NDT event input of the LinearDA
function block, which remained unassigned in the application
in Fig.7. The NDT is reserved in the proposed modelling no-
tation for Non-Deterministic Transition. Whenever the formal
model generator will encounter NDT in the state machine, it
will interpret it accordingly. For example, the SMV modelling
of NDT will be described in section V-C

In terms of our model, the use of NDT in the transition
from the motion state ddMOVETO to the static state stEND
models the unknown duration of the motion from one state to
another.

B. Non Deterministic Transitions in controllers

Non-deterministic transition can be also helpful for simpli-
fication of controller models containing timers. For example,
in our case study, the controllers were developed as state

Fig. 9. a) The real drill controller with external timeout. b) The interface of
modified drill Controller with non- deterministic transition input.

Fig. 10. a) The ECC of the real drill controller; b) The ECC of the modified
drill controller with a non-deterministic transition modelling the time delay.

machines with timeouts, therefore they are implemented in
composite function blocks. In the drill, drilling process needs
to be done for several durations, which is achieved with the
help of The E DELAY function block. The composite function
block consists of a real controller and E DELAY function
block as shown in figure 9,a.

However, formal modelling of the timers in SMV is compu-
tationally hard. It can be avoided if the concrete delay duration
was substituted by non-deterministic transitions with the help
of NDT signal. Therefore, the controllers can be modified
this way in order to be reduce complexity of model-checking.
Therefore, we removed the timeout E DELAY substituted the
corresponding input of the function block and added NDT
input. The execution control chart of the real drill controller
and the modified drill controller are shown in figure 10.

C. Modelling of non-determinism in SMV

SMV provides a way to accomplish non-deterministic
choice by providing a set of values to the signal. The first
statement is used to declare the variable NDT as a Boolean
type and the second statement is used to initialize the NDT
variable to either TRUE or FALSE value.

1 | VAR NDT:= b o o l e a n ;
2 | i n i t (NDT) := { TRUE, FALSE } ;

In every transition we are giving a provision to choose either
TRUE or FALSE. This makes the NDT variable unpredictable
in each transition.

3 | n e x t (NDT) := c a s e
4 | TRUE : { TRUE, FALSE } ;
5 | Esac ;

Implementing non-determinism in every transition can be
limited by introducing conditions in the next statement. If it
is not required for the NDT variable to choose values in every
transition then we can design like below:

6 | n e x t (NDT) := c a s e
7 | C o n d i t i o n : { TRUE, FALSE } ;
8 | TRUE : NDT;
9 | Esac ;

VI. FB2SMV TOOL

The fb2smv tool [16] is a model generator for generating
SMV models of function block systems in IEC 61499. It is a
part of formal verification tool-chain, that includes the model
checker NuSMV and the tool for counterexample analysis in
terms of the original FB system.

The tool implements the formal model of IEC 61499 as per
the modelling method present in [19]. In order to construct
SMV code, the fb2smv tool uses Abstract State Machine
(ASM) [20] as an intermediate model. The tool takes IEC
61499 function blocks expressed in XML format as input and
generates a formal model with the help of ASM semantics.
According to [19], the structure of SMV code consists of the
declaration part and the rules part, which are the ASM rules.

The tool converts basic and composite function blocks
and also includes more additional features like, limiting the
boundaries of variables to reduce the state space, changing
execution order of FBs, deciding the input event priority
by changing its order etc. The proposed non-deterministic
transitions notation has been added to the tool as a result of
this work.

VII. RESULTS AND ANALYSIS

In this paper, we demonstrated on a case study example, the
use of IEC 61499 language for design and formal verification
of cyber-physical automation systems. First, we designed the
control logic of each mechatronic component in a drilling
station and then implemented it as a function block in IEC
61499 standard. The simulation environment of the drilling
station is developed with the help of the same controllers
which are used in the real configuration. We reproduced the
same plant behavior in the simulation model using the function
blocks. In order to create a formal model of the system, we
transformed existing function blocks of the plant models and
controllers by adding non- deterministic transitions, using the
proposed NDT notation. Using FB2SMV we converted the
functional blocks to SMV code, which was verified using
NuSMV on a machine with Intel(R) core(TM) i7-10510U CPU
@1.80GHz 2.30GHz with 32GB RAM. The simulate feature
of NuSMV was used to check the formal model’s working

behavior. Simulating the SMV code in interactive mode gives
us the provision to go through each state by giving appropriate
sensor inputs. We can try all possible input combinations to
verify whether the system behaves as we expected. We can also
randomly simulate the traces or we can manually go through
each state by selecting different input combinations.

The main drawback of simulation is that the number of
possible behaviors can be too large or even infinite. Simulation
can show the presence of bugs, not their absence.

More comprehensive verification can also be done by
model-checking various properties, i.e. checking whether a
requirement is true or not in all possible execution traces
of control logic. This will allow us to test critical scenarios
where there can be failures in some combination of inputs.
The formal model of the system was verified with help of
CTL [21] specifications. While testing the CTL specifications
in NuSMV, we found the following statement is false so it is
possible that the table can rotate while the drilling process is
going on.

−− s p e c i f i c a t i o n G ! (DRILL TABLE CFB3 inst .
DrillCTL RET = TRUE &
DRILL TABLE CFB3 inst . ActuatorGen EO =
TRUE)

While executing the above specification, the NuSmv gave
a counterexample that contradicts this statement. The counter-
example generation for the above specification took 26000
seconds to complete. The counterexample helps to identify the
error in the controller’s design. We tested the same logic in the
simulation model, the table rotated from its current position
to another while drilling the workpiece. The real system also
exhibits the same issue.

To fix this issue we need to analyze the counterexample
provided by the NuSMV, but identifying the variables changed
in each iteration is difficult. The Nutrac tool provides a better
way to understand each state. The Nutrac tool converts the
counter example to a CSV file. This CSV file’s columns
represent states and rows represent input/output events or data
input/output variables. We analyzed the CSV file and identified
the issue. The issue was present in the execution control chart
of the table’s controller. It is required to add the BLOCK signal
and it should be checked before moving from DRILLED state
to REMOVED state. We verified the CTL specification again
and this time NuSMV gave the TRUE result. The modified
controller is tested in the real object, as well as in a simulation
system and it was behaving as we expected i.e table was not
able to rotate while drilling is going on.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a tool chain which helps to

verify and analyze the function blocks implemented in IEC
61499 standard. This tool chain can be used for continuous
development and evaluation of distributed control systems.
With the help of this tool chain, it is possible to test the
system quickly and efficiently. The accurate implementation
formal model is necessary to identify all possible flaws in
the system. The existing functionalities of fb2smv along with

the non-deterministic transitions in function blocks help to
provide a similar formal model of the system. Previously,
the counter-example analysis was complicated but now the
Nutrac tool solves this issue by giving a better representation
of counter-example in CSV format. The developers working on
complex system design can use this tool chain for continuous
development and testing.

The non-deterministic transitions in function blocks can
be extended by introducing NDT as a variable to the FBs.
This NDT variable can be any of any IEC 61499 data type
but the NDT variable should be able to choose one value
from set values. For example, if we introduce NDT as a
variable of integer data type and its values limited 0 to 5
then it should be able to randomly select one value from 0
to 5. In order to introduce more randomness to our formal
model, it’s better to implement NDT as a variable instead of
using NDT as an event signal. An interesting field to explore
is if we can generate the specification as well as the plant
model automatically then existing manual interventions can
be avoided. The tool chain which identifies all possible errors
and fixes them automatically could be the next step in the
future.

IX. ACKNOWLEDGEMENTS

This work was sponsored, in part, by the H2020 project
1-SWARM co-funded by the European Commission (grant
agreement: 871743).

REFERENCES

[1] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. MIT Press, 2017.

[2] “IEC 61499-1: Function Blocks Part 1: Architecture,” 2012.
[3] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, “Discrete-

event-based deterministic execution semantics with timestamps for in-
dustrial cyber-physical systems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 50, no. 3, pp. 851–862, 2017.

[4] V. Vyatkin and H.-M. Hanisch, “A modeling approach for verification
of IEC 1499 function blocks using net condition/event systems,” in
1999 7th IEEE International Conference on Emerging Technologies and
Factory Automation. Proceedings ETFA’99 (Cat. No. 99TH8467), vol. 1.
IEEE, 1999, pp. 261–270.

[5] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One
decade of IEC 61499 modeling and verification-results and open issues,”
IFAC Proceedings Volumes, vol. 42, no. 4, pp. 211–216, 2009.

[6] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-loop
modeling in future automation system engineering and validation,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 39, no. 1, pp. 17–28, 2008.

[7] I. Buzhinsky and V. Vyatkin, “Plant model inference for closed-loop
verification of control systems: Initial explorations,” in 2016 IEEE 14th
International Conference on Industrial Informatics (INDIN). IEEE,
2016, pp. 736–739.

[8] B. Berthomieu and M. Diaz, “Modeling and verification of time de-
pendent systems using time petri nets,” IEEE transactions on software
engineering, vol. 17, no. 3, p. 259, 1991.

[9] M. Zhou and K. Venkatesh, Modeling, simulation, and control of flexible
manufacturing systems: a Petri net approach. World Scientific, 1999.

[10] J. H. Christensen, “Design patterns for systems engineering with IEC
61499,” Verteilte Automatisierung-Modelle und Methoden für Entwurf,
Verifikation, Engineering und Instrumentierung, p. 63–71, 2000.

[11] (2008) Model-view-controller design pattern. [Online]. Available:
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

[12] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal
methods for building dependable industrial automation systems,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3772–3783,
2019.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[14] G. Frey and L. Litz, “Formal methods in plc programming,” in Smc
2000 conference proceedings. 2000 ieee international conference on
systems, man and cybernetics.’cybernetics evolving to systems, humans,
organizations, and their complex interactions’(cat. no. 0, vol. 4. IEEE,
2000, pp. 2431–2436.

[15] V. Vyatkin and H.-M. Hanisch, “Verification of distributed control sys-
tems in intelligent manufacturing,” Journal of Intelligent Manufacturing,
vol. 14, no. 1, pp. 123–136, 2003.

[16] fb2smv model generator. [Online]. Available:
https://github.com/dmitrydrozdov/fb2smv

[17] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[18] F. Wang, “Formal verification of timed systems: A survey and perspec-
tive,” Proceedings of the IEEE, vol. 92, no. 8, pp. 1283–1305, 2004.

[19] D. Drozdov, V. Dubinin, S. Patil, and V. Vyatkin, “A formal model
of IEC 61499-based industrial automation architecture supporting time-
aware computations,” IEEE Open Journal of the Industrial Electronics
Society, vol. 2, pp. 169–183, 2021.

[20] Y. Gurevich and E. Börger, “Evolving algebras 1993: Lipari guide,”
Evolving Algebras, vol. 40, 1995.

[21] E. A. Emerson and J. Y. Halpern, “Decision procedures and expressive-
ness in the temporal logic of branching time,” Journal of computer and
system sciences, vol. 30, no. 1, pp. 1–24, 1985.

