Promela Formal Modelling and Verification of IEC
61499 Systems with comparison to SMV

1%t Viktor Shatrov
Computer Technologies Department
ITMO University
Saint Petersburg, Russia
vvshatrov@yandex.ru

Abstract—This paper presents a method of formal modelling
of IEC 61499 systems of Function Blocks with Promela'. The
existing method of formal verification of IEC 61499 using SMV
(Symbolic Model Verifier) is compared with a new approach
of verification using SPIN? which is an explicit-state model-
checker. The performance of both approaches is studied using a
set of deterministic systems of multiple computational units as an
example and a more complex non-deterministic elevator model.

Index Terms—IEC 61499, formal verification, model-checking,
function blocks, SPIN, SMYV, Promela

I. INTRODUCTION

To design and develop industrial cyber-physical systems
(CPS), there exists the IEC 61499 standard [1], which defines
the operation of distributed systems made of Function Blocks
(FB). The standard allows the development of decentralized
control systems having the architecture of the Internet of
Things.

To ensure the reliability of such systems, formal verification
methods are used to detect errors in the system. One of
the effective methods of formal verification is the method
of model-checking [2]. Model-checking performs verification
by checking the fulfillment of the specification property in
all possible states of the system. If a property is violated,
the verifier provides a counter-example which is a sequence
of system states that leads to a state, where the checked
property is violated. To apply the method of model-checking
it is necessary to make a formal model of the system being
checked.

A. Related work

Various approaches have been used for formal modelling of
the IEC 61499 function blocks, an overview of early works
could be found in [3]. The early works on modelling of
IEC 61499 adopted an approach of verification of structural
properties. An example of such an approach is modelling with
timed automata [4].

The timed automata approach allowed to verify structural
properties of the system such as the presence of never-ending
event loops. However it has not modelled function blocks
entirely, e.g. modelling of data variables was omitted and

Input language for SPIN http://spinroot.com/spin/Man/promela.html
2http://spinroot.com/spin

2" Valeriy Vyatkin

Department of Electrical Engineering and Automation

Aalto University
Helsinki, Finland
vyatkin@ieee.org

execution of algorithms were replaced with time delay. Such
an approach can not verify system properties apart from
structural ones.

In contrast, Petri nets and Net-Condition Event Systems
(NCES) [5], [6] approach modelled FBs in their entirety.
The advantages of NCES are: possibility to simulate syn-
chronous and asynchronous systems; availability of means for
hierarchical structuring and modularity; simplicity and large
computational power. NCES networks are equal to Turing
machines, which makes them a universal tool for modelling
FB systems of any degree of complexity. However, it requires
the development of its own model-checker which is a quite
complex task and requires a lot of resources.

The development of a formal meta-model of the IEC 61499
systems based on Abstract State Machines (ASM) [7], [8]
allowed an automatic generation of formal models in the input
language of modern model-checker NuSMV [9].

B. SMV Modelling Issues

However, verification of FBs by SMV imposes several
issues:

e The IEC 61499 standard allows deployment of system
components on different devices which can not be fully
modelled due to asynchronous work of devices. SMV is
intended for verification of synchronous systems and sup-
port of asynchronous processes is deprecated in modern
SMYV model-checkers [10].

« In many studies, verification performance is observed to
deteriorate exponentially as the number of components in
the system increases.

e SMV is admittedly more suitable for verification of open-
loop systems than closed-loop systems [11].

In view of the issues presented, a goal was set to model IEC
61499 using Promela and compare it with SMV modelling.

The rest of the paper is structured as follows. Section II
presents a method of modelling function blocks in Promela
based on the ASM-based formal meta-model. Section III
describes IEC 61499 systems which were used for studying
the performance of SPIN and SMV verification. Section IV
presents the results of the measurements. Finally, this paper is
concluded in Section V.

II. MODELLING OF IEC 61499 WITH PROMELA

The formal meta-model of FBs opens possibilities for the
construction of formal models for different model-checkers.
We will be using the same meta-model of function blocks
based on ASM which was used for SMV models [7]. In this
way, Promela models will have the same level of detail and
same execution semantics of the system as SMV models and
their comparison will be accurate.

The functionality of a basic function block (BFB) in IEC
61499 is provided by means of algorithms, which process input
and internal data and generate output data. The block interface
consists of the head and body, where the head is connected to
the event flow, and the body - to the data flow. The algorithms
included in the block are programmed in terms of IEC 61131
[12]. To control the execution of its algorithms BFB utilizes
Execution Control Chart (ECC) which is a graphical or textual
representation of the causal relationships among events at the
event inputs and event outputs of a function block and the
execution of the function block’s algorithms, using execution
control states, execution control transitions, and execution
control actions [1]. The operations of ECC are specified in
the ECC Operation State Machine (OSM), shown in Figure
1. Figures 2 and 3 show examples of basic function block
interface and execution control chart. This example describes
the Arithmetic Logic Unit (ALU) which can add or subtract
two numbers. We will use this example to show how Promela
models are made.

State | Operations | Transition Conditions
s0 Sample tl Input event
inputs oceurs
l1 sl Evaluate 2 No transitions
@ transitions clears
ta s2 Perform t3 A transition
actions clears
@ t4 Actions
completed
Fig. 1. ECC Operation State Machine [1].
Event -8 Event
Event —H
DINT —Ht DINT
DINT &=
Fig. 2. Example of Function Block interface.

SumOp — sumOperation CNF

SUM
START
DIFF \

DiffOp — diffOperation CNF

Fig. 3. ECC of ALU Function Block.

Promela (Process or Protocol Meta Language) is a verifica-
tion modelling language with C-like syntax that allows for the
dynamic creation of concurrent processes. Processes are global
objects, communication between them is performed by the
means of message channels. Message channels can be defined
to be synchronous (i.e., rendezvous), or asynchronous (i.e.,
buffered). Message channels and variables can be declared
either globally or locally within a process. Processes specify
behavior, channels and global variables define the environment
in which the processes run [13].

In Promela, we model function block types as separate proc-
type’s and function block instances are modelled as processes.
The transfer of events and data between blocks is performed
by means of message channels. Every event input and output,
data input and output is modelled as a separate channel.

chan ALU1_EI_SUM = [1] of {bit};

chan ALUl1_VO_RES = [1] of {int};

proctype ALU(chan EI_SUM, EI_DIFF, EO_CNF,
VI_A, VI_B, VO_RES,
alpha, beta) {

Although SPIN is designed to model asynchronous pro-
cesses, it can also model the synchronous operation of individ-
ual components. For this purpose, we will utilize rendezvous
ports. Thus we can make a model in which the work of
various devices will be asynchronous, while the work of the
blocks within one device will be synchronous. According to
the ASM model, o and /3 signals are used to indicate the start
and finish of function block execution. « signal is emitted by
the dispatcher in composite function block while 3 signal is
emitted by basic function block when its execution is finished.

chan ALUl_alpha =
chan ALUl_beta =

(0]
[0]

of {bit};
of {bit};

A. Basic Function Block

The semantic part of formal ASM description consists of a
set of variables at execution time V RTp and set of functions
of elementary transitions T'g. The full formal ASM description
is described in [7], here we provide a description of ASM
model parts and the way of their modelling in Promela.

VRIg =(VIB,VOB,Q,S,NA,NI,«,3)

VIB = {viby,vibg,...,viby,, } —is a set of external buffers
linked to the input variables.

VOB = {wvoby,voby,...,vobn,,} — is a set of external
buffers linked to the output variables.

In Promela VI B and VOB are modelled by buffered channels
initialized with a unit capacity.

@ — is a variable representing the current ECC state.

In Promela to keep track of the ECC state, we define special
mtype for each block type.

mtype:ALU_ECC={START_ecc, SumOp_eccC,...};

mtype:ALU_ECC Q = START_ecc;

S —is a variable representing the current state of the Operation
State Machine (OSM), Dom(S) = {s0, s1, s2}

N A — is the pointer to current ECC action.

N1 - is the pointer to the current step of running algorithm

Promela allows natural execution of sequential algorithms
and has its own implicit command pointer, therefore there is
no need for special variables for NA and NT tracking the
current step of the execution. State of the OSM S is modelled
with labels and transition between OSM states performed by
goto statements.

As mentioned before o and 5 are modelled by rendezvous
ports. Set of functions of elementary transitions 7T’z is defined
by 10 Rule Sets (RS) [7]:

RS1: Once the input signal is selected, we need to reset it.
RS2: Sample all the associated input data when an event fires.
RS3: OSM transition rules.

RS4: ECC transition rules.

RS5: EC-action N A counter rules.

RS6: EC-algorithm NI counter rules.

RS7: Change of output variables values.

RS8: Triggering of output events.

RS9: Changing output data buffers.

RS10: Triggering of 3 termination signal.

The ASM meta-model also defines input signal selection
condition (ISSC) selectE 1.

Here we present the structure of the Basic Function Block
model in Promela with comments indicating implementation
of each Rule Set (RS) in the model.

sO0_osm:

end: // sO is valid end state

alpha?true; // blocking communication

ExistsInputEvent

= nempty (EL_SUM) ||
/1 ISSC:

bit selectEI_SUM , selectEI_DIFF;
selectEI_SUM=nempty (EI_SUM)&&Q==START_ecc;

nempty (EI_DIFF);

selectEI_DIFF= !selectEI_SUM
&& nempty (EI_DIFF) && Q==START_ecc;

if
:: atomic {selectEI_SUM —>
EI_ SUM?true; //RS1: reset event input
VI_A?A; //RS2: sample input data
VI_B7B;

atomic { selectEI_DIFF —>

}

i1 (!ExistsInputEvent) —> goto done;
i1 else —> skip;
fi

// RS1:
do
:ratomic{nempty (EL_SUM) —> EI_SUM?true }
::atomic{nempty (EI_DIFF) —> EI_DIFF?true }
::else —> break;

od

goto sl_osm;

reset all other inputs

/1 RS3

sl_osm:
bit trans_START_SumOp, ...;
trans_START_SumOp = nempty (EI_SUM);
trans_START_DiffOp nempty (EI_DIFF);
trans_DiffOp_START l;
trans_SumOp_START = 1;

ExistsEnabledECTran = (...);
atomic
if // RS4: ECC transition.
::(Q == START_ecc && trans_START_SumOp
&& selectEI_SUM) —> Q = SumOp_ecc;
::(Q == SumOp_ecc && trans_DiffOp_START)
—> Q = START_ecc;

:: 1 ExistsEnabledECTran —> goto done;//RS3
else —> skip;
fi;
selectEI_SUM = 0;
selectEI_DIFF = 0;
goto s2_osm; //RS3
s2_osm: //RS6
atomic {
if
(Q == START_ecc) —> skip;
(Q == SumOp_ecc) —>
// action 1
RES = A + B; //RS7
// action 2 RS5
// emit event
VO_RES!RES; //RS9
EO_CNF!true; //RS8
;1 (Q == DiffOp_ecc) —>

fi
goto sl_osm; // RS3
done: // RS10

beta!true;
goto s0_osm;

B. Composite Function Block

An ASM model for Composite Function Block is described
in [14]. The model proposes a concept of scheduler for invok-
ing component function blocks inside a composite function
block.

SMV models use shared variables to transfer messages
between modules. One output message can be received by
several function blocks. Channels in Promela cannot be used
in the same way as shared variables because when one
process receives a message, the message is withdrawn from
the channel and will no longer be received by other processes.
Therefore, the composite function block first puts the outgoing
messages of the basic function blocks in the buffer and then
copies them for all recipients.

isting 2. Composite Function block structure

dispatch:
if
atomic { dispatch_state == ALUIl_turn —>
ALU1_alpha!true;
ALU1_beta?true ;
dispatch_state = ALU2_turn;
atomic { dispatch_state == ALU2_turn —>

fi
goto read_component_event_outputs;

read_component_event_outputs:
omega = empty (ALUI_EO_CNF) && empty (ALU2_...

if
nempty (ALUI_EO_CNF) —>
ALU1_EO_CNF?true ;
ALUI_VO_RES?buf_ALUI_RES;
reset (ALU2_EI_ SUM);

ALU2_EI_SUM! true ;
ALU2_VI_A!buf_ALUl_RES;
ALU2_VI_B!1;
i1 (omega && dispatch_state == DONE_turn) —>
goto done;
(omega && dispatch_state
goto dispatch;

!= DONE_turn) —>

fi
goto read_component_event_outputs;

III. VERIFICATION PERFORMANCE STUDY

To compare SMV and SPIN formal verification perfor-
mance, we model the same systems both in Promela and SMV.

A. System of Arithmetic Logic Units

To study the dependence of verification performance on the
number of function blocks in the system, we will use a set of
ALU systems.

Each system consists of a set of ALUs connected in series
so that the result of a block is passed to the input of the
next one. Figure 4 shows an example of a system with 5
ALUs. The systems differ only in the number of ALUs and are
deterministic. Thus, excluding any other factors and leaving

REQ CNF
RES

awy Mo nus My s

SUM_ CNF SUM CNF SUM CNF SUM CNF SUM CNF

DIFF DIFF DIFF DIFF DIFF
ALY ALY ALY ALY ALY

RES A RES A RES A RES A RES
1B 1B 1B 1kB

[
S

Fig. 4. System of ALUs.

only the number of blocks as a variable, we can clearly show
the dependence of the verification performance on the number
of function blocks

B. Elevator

The system of ALUs is simple and deterministic. To
study the performance of verification on complex and non-
deterministic systems we perform another comparison using
an elevator system (Figure 5). It is the same system that was
used in [15]. The system consists of three composite function
blocks: controller, cabin model, and sensors. The system has
timers, which requires modeling of time and delays. Counting
the basic blocks there are a total of 12 blocks in the system.
The initial floor of the elevator cabin and the floor for the
elevator request are selected non-deterministically.

CarPos Floor
6
> 2
4
3 O] !
2
L O o
o]

Fig. 5. Elevator system.

As in [15], event delays may occur between the sensors
and the controller. If the event delay is too long, the elevator
may pass a floor and needs to return and correct the position
of the cabin. This considerably increases the complexity of
the system behavior. We perform verification in two variants:
with a constant fixed event delay, and with a non-deterministic
choice of the delay for each event.

System liveness and safety properties are checked, which
are written as LTL-properties.

Liveness properties are expressed as the requirement that
the elevator arrives on request at the right floor.

G(Button_press = N — FAtFloorN)

Safety properties check that cabin doors are opened only
when the elevator stays on the floor.

G(DoorOpenN — AtFloorN)
Full SMV and Promela models and the source files of IEC
61499 systems are available in the public repository>.

IV. RESULTS AND DISCUSSION
Measurements were performed on MacBook Pro (16-inch,
2019), 2,3 GHz 8-Core Intel Core i9, 32GB RAM.
Verification time and memory consumption for systems of
ALUs are presented in Figures 6 and 7.

2000 —— SMV

== SPIN

1500

1000

Time, sec.

500

2 4 6 8 10 12 14
Function Blocks Number
Fig. 6. Verification Time
—— SMV
——SPIN
150
Ko}
=
i
5 100
£
[
=
50
2 4 6 8 10 12 14

Function Blocks Number

Fig. 7. Required Memory

The graph in Figure 6 shows the exponential degradation
of the SMV models performance as the number of function
blocks in the system increases. The time varies from one
second for verification of two blocks, to half an hour for
verification of a system of fifteen blocks. At the same time,
the verification of the same systems in SPIN varies from 0.35
to 0.85 seconds and show a linear increase in time.

Regarding memory consumption in Figure 7, it can be
seen that SPIN initially requires an order of magnitude more
memory. However, as the number of function blocks in the
system increases, the gap between SPIN and SMV narrows
and changes places.

The results of verification for elevator system with fixed and
non-deterministic event delays are presented in tables I and II
respectively.

The significant difference in performance between SMV and
SPIN, as well as the slowdown of SMV as the number of

3https://github.com/vi34/conf/tree/main/INDIN2021

TABLE I
ELEVATOR RESULTS

Property Time, sec. Memory, Mb.

SMV | SPIN | SMV | SPIN
G (DoorOpen0 — AtFloor0) 1054 2,4 108 881
G (DoorOpenl — AtFloorl) 1182 2,6 112 881
G (DoorOpen2 — AtFloor2) 1160 2,5 105 881

G (Button_press = 0 — F AtFloor0) | 1388 9,5 120 923
G (Button_press = 1 — F AtFloorl) 1700 8,2 129 914
G (Button_press = 2 — F AtFloor2) | 1663 9,6 125 923

TABLE II

ELEVATOR WITH NON-DETERMINISTIC EVENT DELAYS

Property Time, min. Memory, Mb.

SMV | SPIN | SMV | SPIN

G (DoorOpen0 — AtFloor0) 146 0,3 336 2593

G (DoorOpenl — AtFloor1) 221 0,3 338 2593

G (DoorOpen2 — AtFloor2) 141 0,3 289 2593

G (Button_press = 0 — F AtFloor0) 510 1 432 2855
G (Button_press = 1 — F AtFloorl) 314 0,9 369 2790
G (Button_press = 2 — F AtFloor2) 156 1 302 2855

function blocks increases, can be explained by the following
features of the verifiers: SMV is a symbolic model-checker,
while SPIN is an explicit-state model-checker. Symbolic ver-
ification is less prone to state-space explosion problems, as
it is with explicit-state model-checkers. Symbolic verification
uses binary decision diagrams (BDD) for this purpose. The
verification performance, in this case, depends to a greater
extent not on the state space size, but on the size of resulting
BDD formulas, which in turn depend on the total number of
variables in the initial model. With full-scale modelling of
function blocks, the resulting model is quite detailed and has a
large number of variables. Adding even the simplest function
block to the system adds dozens of variables to the model,
while the system’s state space may increase insignificantly. At
the same time, a closed-loop modelling approach is applied,
in which a model of the control object is supplemented to the
controller. Modelling the controller in conjunction with the
control object model in a closed-loop enables the simulation
of the real behavior of the system and reduces the state space
of the system but at the same time the number of variables
increases due to the introduction of the control object model.
The peculiarities of SPIN operation allow it to work better in
all the above circumstances than SMV.

V. CONCLUSION

With regard to the IEC 61499 formal verification task, we
can distinguish the following advantages and disadvantages of
verification with SPIN and SMV.

SMYV advantages:

¢ low memory consumption for small systems;

o tooling for automatic model generation.

SMYV disadvantages:

« performance;

« only synchronous modelling. [15] V. Shatrov and V. Vyatkin, “Formal verification of IEC 61499 enhanced

. with timed events,” in /1th Advanced Doctoral Conference on Comput-
SPIN advantages: ing, Electrical and Industrial Systems (DoCEIS 2020), 1-3 July, 2020,
o short verification time; Costa de Caparica, Portugal. Springer, 2020, pp. 168-178.

« multiple device modelling;
« dispatcher models beyond the cyclic model,
« verification of systems in closed-loop.

SPIN disadvantages:

« absence of tools for an automatic model generation;
« limitation of the maximum system size of 255 function
blocks.

In conclusion, this paper presented a way of modeling IEC
6499 with Promela, compared verification performance with
SMYV model checker, and showed that SPIN is better suited for
the task of formal verification of IEC 61499 function blocks
in a closed-loop. Further direction of work is the development
of a toolkit for automatic generation of Promela models from
XML descriptions of function blocks.

ACKNOWLEDGMENT

This work was sponsored, in part, by the JetBrains Research
initiative and by the H2020 project 1-SWARM co-funded by
the European Commission (grant agreement: 871743).

REFERENCES

[1] IEC, International Standard IEC 61499. Function blocks for industrial-
process measurement and control systems. Part 1: Architecture, Interna-
tional Electrotechnical Commission, 2005.

[2] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[3] H. M. Hanisch, M. Hirsch, D. Missal, S. Preufle, and C. Gerber, “One
decade of IEC 61499 modeling and verification - Results and open
issues,” vol. 13. IFAC Secretariat, 1 2009, pp. 211-216.

[4] M. Stanica and H. Guéguen, “Using timed automata for the verification
of IEC 61499 applications,” IFAC Proceedings Volumes, vol. 37, no. 18,
pp. 375-380, 2004.

[5] V. Vyatkin and H.-M. Hanisch, “Verification of distributed control sys-
tems in intelligent manufacturing,” Journal of Intelligent Manufacturing,
vol. 14, no. 1, pp. 123-136, 2003.

[6] V. Vyatkin, “Modelling and verification of discrete control systems,”
2007.

[71 S. Patil, V. Dubinin, and V. Vyatkin, “Formal Verification of IEC61499
Function Blocks with Abstract State Machines and SMV-Modelling,” in
2015 IEEE Trustcom/BigDataSE/ISPA, vol. 3. 1EEE, 2015, pp. 313-
320.

[8] ——, “Formal modelling and verification of IEC61499 function blocks

with abstract state machines and SMV-execution semantics,” in Inter-

national Symposium on Dependable Software Engineering: Theories,

Tools, and Applications. Springer, 2015, pp. 300-315.

D. Drozdov. FB2SMV: IEC 61499 Function blocks XML code to SMV

converter. [Online]. Available: https://github.com/dmitrydrozdov/fb2smv

[10] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pis-
tore, M. Roveri, and A. Tchaltsev, “Nusmv 2.4 user manual,” CMU and
ITC-irst, 2005.

[11] I. Buzhinsky, A. Pakonen, and V. Vyatkin, “Explicit-state and symbolic
model checking of nuclear 1&C systems: A comparison,” in JECON
2017-43rd Annual Conference of the IEEE Industrial Electronics Soci-
ety. 1EEE, 2017, pp. 5439-5446.

[12] IEC, 61131-3: Programmable controllers—part 3: Programming lan-
guages, International Standard, Second Edition, International Elec-
trotechnical Commission, Geneva, 2003.

[13] R. Gerth. (1997) Concise promela reference. [Online]. Available:
http://spinroot.com/spin/Man/Quick.html

[14] S. Patil, V. Dubinin, C. Pang, and V. Vyatkin, “Neutralizing Semantic
Ambiguities of Function Block Architecture by Modeling with ASM,” in
Perspectives of System Informatics. Springer Berlin Heidelberg, 2015,
pp. 76-91.

[9

—

