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Abstract—Function block diagrams (FBD) are widely used for
implementation of programmable logic control (PLC) in safety
critical domains and in the conventional factory automation.
With the growing software intensity of such systems, the size and
complexity of the PLC FBD applications is growing. The implicit
execution order of PLC FBD can be ambiguous for developers,
causing misinterpretation of the control programs behaviour.
This work aims at reducing this ambiguity, investigating re-
implementation of FBDs in a new programming language of
IEC 61499, which has explicit mechanism for defining the exe-
cution order. A method is proposed for generation of IEC 61499
FBDs from the PLC FBDs. We also present a tool that implements
our approach and which is complemented with an automated
tester to prove the equivalence in the behaviour of the source
and generated systems.

I. INTRODUCTION

Decision making in automation systems is often associated
with Boolean logic operations and the language of function
block diagrams (FBD) is commonly used to implement such
operations in many automation applications. Fig. 1 presents
an example of a small fragment in FBD of a system from [1]
that is following (with some variations) the description of the
evolutionary power reactor (EPR) protection system published
by the U.S. Nuclear Regulatory Commission [2], [3]. The
fragment in Fig. 1 shows the diagram of logic of one of the
reactor’s safety subsystems. Here, the stepwise trip criteria is
activated if one of the neutron fluxes exceeds the threshold or
if the temperature of the hot leg is more than 300 ◦C.

The FBD way of logic representation originates in the
hardware implementation tradition. When it becomes a pro-
gramming language, it raises questions of execution semantics,
such as: in which sequence the blocks in the program are to
be evaluated and let produce results, and when the results
of function blocks (FB) become available to other blocks.
Most commonly, programmable logic systems are evaluated
based on the periodic update of inputs. The control program,
represented as FBD need to follow a certain order of FBs in the
diagram in order to produce the output values. The basic rule
is that the blocks which provide their results to other blocks
need to be evaluated before them. But there could be loopback
connections, which raise the question of the execution order.
The more complex become such diagrams, the more confusion
it can raise for engineers developing, testing and analysing

Fig. 1: FBD describing a part SAS-APU of the EPR protection
system logic from Fig. 7 in the notation, customary in nuclear
automation domain [2], [3]. POU: SAS_APU
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Fig. 2: Definition of SAS-APU in IEC 61131-3 FBD language
implemented in CoDeSys [4] tool.

such systems.
The most widely used programming language based on

the logic function block diagrams is the FBD language for
programmable logic controllers standardised in IEC 61131-3
standard [5]. While this standard, to the best of our knowledge,
is not explicitly used in the nuclear automation domain, the
FBD language semantics is very close to that of the proprietary
implementations. On the other hand, the standard-compliant
implementations offer more portability, e.g. by supporting the
XML exchange format for the projects and separate software978-1-7281-9023-5/21/$31.00 c© 2021 IEEE
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Fig. 3: Interface of an IEC 61499 function block.

components. The equivalent FBD implementation of the logic
diagram from Fig. 1 is presented in Fig. 2. Nevertheless, the
IEC 61131-3 FBD design suffers from the same problem of
non-obvious execution order of FBs, as the proprietary FBD
implementations.

In order to eliminate the execution ambiguities in the PLC
FBD language implementations, in this paper we propose to
use FBDs with additional elements unambiguously defining
the execution control rules. These are available in the new
automation standard IEC 61499 [6] as means enabling dis-
tribution of applications, modularity and platform indepen-
dence. Similar challenges are also important for the safety-
critical systems automation. We propose a design pattern that
explicitly stipulates the execution order of FBs that guarantees
correct execution of the logic.

Then we propose an automatic conversion method to gen-
erate the logic implementation in the proposed design pattern
in IEC 61499 given the logic implementation in the traditional
FBD form. The automatic transformation aims at reducing
human effort and reducing the probability of human errors. We
assume the initial FBD is presented in IEC 61131-3 compliant
form to take advantage of the available software tools and
open representation formats such as PLCOpen XML format,
supported by the majority of tools.

The rest of the paper is structured as follows. Section II
presents in a nutshell the idea of the proposed design pat-
tern for IEC 61499. Section III discusses related research
works mainly related to automatic generation of IEC 61499
applications given IEC 61131-3 designs. Section IV and V
discuss the transformation methodology and verification of this
transformation respectively. Section VI shows conversion of
sample systems. Section VI summarises the results.

II. IMPLEMENTATION OF LOGIC COMPUTATIONS IN
IEC 61499 FBS

IEC 61499 was introduced as a system-level architecture
for distributed automation systems, extending the software
model of IEC 61131-3 standard with the means of describing
complex distributed systems composed thereof. The difference
of FB in the IEC 61499 architecture is that in addition to data
interface it has also event interface for explicit definition of
the invocation control: event inputs are used to activate the
block. As a result of internal computations the block may
change output data variables and emit output events, which, if
connected to event inputs of other blocks, will activate them.

The proposed enhancement of logic block diagrams execu-
tion is illustrated in a nutshell in Fig. 4. Here a part of the block
diagram from Figs. 1 and 2, consisting of two threshold blocks
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Fig. 4: Implementation of the OR of two thresholds in
IEC 61499.

and one OR block, is re-implemented using a design pattern
proposed in this paper. Each function block has two event
inputs INIT and REQ, and two event outputs INITO and
CNF. The INIT event input is used for initialisation purposes.
Typically, it is used to invoke a function block only once, at the
system startup in order to let it assign internal variables to the
desired initial values. Upon the initalisation, the block emits
event INITO. To guarantee that the initialisation is performed
only once, all FBs in the application are connected into the
“initialisation chain”, linking the INITO output of one block
with the INIT input of only one other block. The REQ event
input is used for requesting the function block to perform its
main function of calculating its data outputs given the values
of data inputs. Upon the calculation, the CNF event output is
emitted. The CNF output of one FB A is connected to REQ
input of only one other FB B. Thus all FBs in the application
are connected to another, “result calculation chain”, following
a simple rule: all FBs where data connections to FB B originate
need to precede it in the chain.

In Fig. 4, the first block in the “result calculation chain”
is HIGH_THRESH1. Having received an event e1r at the REQ
input, it reads the value v11 to the data input IN and calculates
its Boolean output REQ, indicating the threshold is crossed.
Then it passes the calculated value to the input IN1 of the
OR2_1 FB via a data connection. However, the invocation
request follows the blue event link to the HIGH_THRESH2
FB, which checks the second threshold crossing, passes the
result via a data link to OR2_1 and then emits the event CNF,
which invokes the OR2_1 last in the chain. It is assumed that
the invocation events keep coming to the input REQ of the
first in the chain FB as the data inputs of the application get
re-sampled.

The benefit of this design pattern is in the unambiguous
definition of the execution order of FBs in the application, both
for the initialisation and for the main computation scenario.

III. RELATED WORK

Various studies are carried out in order to make a transfor-
mation from IEC 61131-3 to IEC 61499. These studies focus
on transformation rules which are based on the fundamentals
of both standards, conversion of specific parts of a system,
migration of languages, etc. Most of these transformations
are manual or semi automatic where only some parts of



the original system are transformed automatically. Manual
conversion of systems are feasible only when those systems are
relatively less complex and small in size. As the complexity
and size of the system increase, which is the case for industrial
systems, manual conversion would take much effort and time
to shift to the new paradigm and to benefit from it.

Wenger et al. [7] introduce an approach with concepts
and rules for transforming IEC 61131-3 into IEC 61499.
With their model driven approach, they convert an example
system manually using the concepts and rules described.
The same authors [8] use FBDs in IEC 61131-3 (written
using structured text (ST) code) to generate function block
definition in IEC 61499 manually. This paper also details
about language migration by considering various examples and
cases prevalent in the industry. Gerber et al. [9] also defines
rules for translating one FB in IEC 61131-3 to IEC 61499
FB. Sunder et al. [10] outline basic concepts of IEC 61131-3
and IEC 61499, and describe general transformation concepts
which map various elements of IEC 61131-3 to equivalent ele-
ments in IEC 61499. Further they investigate how to transform
logic described using different programming languages. While
these works lay foundation for the conversion by setting rules,
they do not explore how to make this transformation process
automatic.

Shaw et al. [11] present a semi-automated process which
transforms ladder logic into a FB system. The ladder logic is
converted into equivalent C code automatically which can be
later used in FB architecture.

Some works are focused on integrating both IEC 61131-3
and IEC 61499 standards. In their paper, Campanelli et al. [12]
run both environments in parallel and interact each other which
enables to get benefits of both standards.

Above works try to address different parts of the same prob-
lem, to generate a IEC 61499 system based on a IEC 61131-3
system. These studies present transformation rules, which con-
vert a specific part of the original system. However, no work
addressed the specific problem of automatic transformation of
FBDs into the equivalent IEC 61499 diagrams. This work aims
at bridging this gap. We automate the conversion of systems
designed using FBDs and verify the execution result of the
new system is equivalent to the intended one.

IV. TRANSFORMATION
This work focuses on the transformation of a system developed
in CoDeSys software tool following the IEC 61131-3 standard
into the equivalent in terms of behaviour system in IEC 614499
standard that can be opened with nxtSTUDIO [13]. In this
section we explain the workflow and the algorithms used in
this transformation process.

The system in CoDeSys is exported as PLCOpenXML file
which contains the details of all blocks and connections of
the system. For each function block in the original FBD, an
IEC 61499 FB type is created with the same data inputs and
outputs, and additional event inputs and outputs as in Fig. 4.
If the original function block is defined as an FBD, then the
transformation result will be a composite FB in IEC 61499.
Otherwise, the result is a basic FB with the execution control

(a) Transformation of an FB interface.

(b) Transformation of an FB definition.
Fig. 5: Patterns for transformation of a basic FB from
IEC 61131-3 to IEC 61499.

chart (ECC) created following the pattern presented in Fig. 5b.
The ECC pattern is the same for all such basic blocks. The
main functionality of the FB is copied to the REQ algorithm,
and the initialisation functionality (to be executed in the first
PLC scan) is copied to the INIT algorithm.

We represent an FBD of the target system as a graph that
is generated based on the source IEC 61131-3 system, using
the following principles. For each encountered function block
instance in the source program, a node (which is an FB) is
created in the graph model according to pattern in Fig. 5. If the
block is composite, the same procedure is applied recursively
to its type definition (i.e., its internal FBs). These nodes
are connected together with directed arcs based on the data
connections of corresponding blocks in the IEC 61131-3 FBD.
Since the IEC 61499 type blocks have both data and event
inputs, event connections between the blocks are established
based on their execution order. The method for solving this
problem is presented below.

A. Inference of event connections in the IEC 61499 system

To infer event connections we need to perform some ma-
nipulations on the graph described above. This graph, first,
is transformed into a directed acyclic graph (DAG). Then,
its nodes are ordered topologically based on their implicit
execution order in IEC 61131-3 system. This ordering is used
for creating event connections for the initialisation of FBs and
for creating execution event chains in the resulting function
block network. Thus, from the graph, we obtain an FBD where
each block is executed only after the execution of the blocks
which it has incoming data connections from.
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Fig. 6: DAG generation

1) Directed Acyclic Graph generation
Topological ordering of nodes in a graph is possible only if

the graph is a DAG. If the FBDs contain cycles, they must be
removed before applying any sorting algorithms. Algorithm 1
takes the graph as an input and transforms it into a DAG
(helper function removeLoop is provided in Algorithm 2).
Algorithm 1: DAG Generation

Data: Graph corresponding to the network G
Result: DAG of the input graph

1 // Initialisation
2 start node← first node in the graph
3 remove incoming edges to start node in G
4 dst nodes← list of nodes with incoming edges
5 src nodes← list of nodes without incoming edges
6 // Process each node n in src nodes
7 for n in src nodes do
8 removeLoop(n)

Algorithm 2: DAG Generation: Loop removal function
Data: starting node n, list of continuous nodes streak, graph G
Result: Loops in graph G is removed

1 Function removeLoop(n, streak={}):
2 e← list of edges with starting node n
3 for m in e do
4 d← destination node of edge m
5 if d in streak then
6 remove edge m from G

7 else
8 removeLoop(d, streak + {n})

For example, consider a cyclic graph with seven nodes in
Fig. 6a. Following the Algorithm 1, node 1 is marked as the
first node based on its position. All the incoming edges to
node 1 and other connections which make the graph cyclic
are removed. Fig. 6b shows the obtained DAG.

2) Topological ordering
Once the blocks in the original system are represented as

nodes in a DAG, they can be sorted topologically based on
incoming data connections of the blocks. There are multi-
ple algorithms available for finding a topological order of
nodes of a graph such as Kahn’s algorithm [14] and depth-
first search (DFS) [15]. We infer the linear order of blocks
execution using a DFS-based sorting algorithm.

Consider the graph shown in Fig. 6b that has 7 nodes and
there are no cycles in it. As this graph is a DAG, we can order
its nodes topologically. There can be multiple solutions for this

sorting as nodes at the same depth can have same position in
the sorted list. Two of the solutions are [4, 1, 2, 5, 3, 6, 7]
and [1, 2, 4, 3, 5, 6, 7]. We can choose any of these solutions
since in the case of traversal based on this sorted order, each
node in the graph is visited only after visiting other nodes
from which this node has incoming edges.

B. Implementation

The conversion tool is developed using Python3 [16]. This
section provides the details of its implementation.

The PLCOpenXML file generated from CoDeSys is read
and it is converted into a Python data type, dictionary. Each
program organisation unit (POU) in the original system is
extracted and stored as a separate dictionary. Corresponding
to each POU, which is an FB since we are considering only
the systems designed using FBs, an object is created with the
details of its inputs and outputs. FB definitions, which state the
relations between the inputs and the outputs, are also added to
these objects. These definitions take form of ST code for basic
FBs or of a network of basic blocks in the case of composite
function blocks.

In this conversion tool, each basic function block of the
input FBD is converted into a basic FB with a predefined
ECC with four states as per Fig. 5. The algorithms associated
with the states of the ECC are copied directly from the block
definition in IEC 61131-3.

The event connections between the generated IEC 61499
FBs are generated based on the established topological or-
dering mentioned in the section IV-A, such that one FB sends
event to the other FB that immediately succeeds it in the order.

Some of the blocks in CoDeSys may have their inputs
negated. In IEC 61499, there is no direct feature to negate
an input. In order to do this in the converted system, we insert
a predefined NOT block before each negated input, which takes
a Boolean input and outputs its inverted value. In other words,
we add NOT block to INIT and REQ event chains and replace
the corresponding direct data connection between two blocks
A and B with data connection from A to NOT block and from
NOT block to B.

Once all the objects are updated with connection details
and extra blocks for negating inputs are inserted, the objects
are written to function block definition files (.fbt). These
files are placed in correct directories and archived with the
project name. This archive is the final output of the conversion
process, which can directly be opened in IEC 61499 compliant
IDEs, such as nxtSTUDIO or 4DIAC [17].

C. Discussion

The scope of the tool is limited to FBD diagrams, so the
conversion of systems designed in ST, sequential function
chart or ladder diagram is not supported. Also the tool expects
some particular names and structure for certain parts of the
system, which might not always be the case when it comes
to a normal system used in the industry. Extending the scope
to different languages can be done without much effort as
the tool already has a framework for processing the XML



Fig. 7: Diagram of the EPR protection system logic [1].

files generated by CoDeSys. For incorporating various design
styles, some adaptive techniques have to be developed to
analyse the style and to extract necessary data from the system.

V. TESTING PLATFORM
In order to verify the correctness of the conversion, outputs
of both IEC 61131-3 and IEC 61499 systems are compared
for the same inputs. Doing this manually is possible only
if the system has a relatively small number of inputs and
outputs. For systems of high complexity, this process should be
automatized, therefore, we complemented our converter with
an automatic testing tool. The tool generates a set of inputs
randomly, applies these inputs to both systems and compares
the outputs. Correctness of conversion can be checked by
matching the outputs. Working of the testing platform is
described below.

The automatic test generator takes a file which specifies
types and ranges of inputs that has to be sent to the system.
Depending on this file and the number of test cases, sets of
input values are generated using the Python library random
and stored to a file. This file is later accessed for sending input
values to both systems.

Inputs are read from the file and are sent to the original
system. Once one cycle of execution is over with the first set
of inputs, the outputs are written to another file. This process
is looped over all the sets of inputs. SysFile library in
CoDeSys is used for files reading and writing. We add extra
blocks to the original system to get test inputs and to write
back the outputs.

Previously generated random test inputs are sent to the
IEC 61499 system and outputs from it are received using
TCP connection. The TCP server runs externally as a Python
program, which accesses the test cases and sends them to the
clients whenever a client sends a request. There are two TCP
clients connected to the converted system, one for receiving
the test cases and the other for sending back the results.
The TCPIO service function block from the Runtime.Base

library is used as the client. With each test case, the system
executes one cycle and the corresponding output is sent back to
the server. The outputs received from nxtSTUDIO are written
into a file.

Since we provide the same input to the original and the
converted system, one cycle of execution with the same input
should give the same output from the both systems. The
outputs corresponding to each test input set are stored as a
single string in the file. A Python program which reads the
output files of both the systems extracts these strings and
compares them. If corresponding strings are equal, the outputs
are same for both systems for that particular input set, which
indicates that both the original and the converted systems have
the same behaviour.

VI. CASE STUDY
As a case study, we selected the control logic of the Priority
and Actuator Control System (PACS) in Fig. 7 [1]. This is
an industrial-sized system which has the main features we
considered such as composite blocks and data loops. The block
diagram consists of composite blocks, content for one of which
was earlier presented in Fig. 1. In order to apply the automatic
transformation approach, the control logic was re-implemented
in the IEC 61131-3 compliant tool CoDeSys.

The PACS system implemented in CoDeSys has 24 types of
FBs. There are 19 basic FBs which are defined using structured
text (ST) language and the remaining blocks are composite.
These composite blocks have only interconnected basic FBs,
thus having only one level of hierarchy. The transformation
process was run on a machine which has 8GB of RAM,
Intel i5-8256U CPU at 1.6GHz and running Windows 10. The
transformation process was completed in 837ms.

Due to space limitations, we cannot include the converted
PACS system, thus, we illustrate the automatic conversion
using a much simpler example (see Fig. 9), but having similar
complication features, e.g. data loops and hierarchy, as in
the PACS. It has two basic FBs and a composite block.
Fig. 8 shows the main network and and the definition of the
composite block in the converted system.

The composite block has multiple loops in its network.
There are two connections which make the graph of the
network cyclic, one connection from FB3_0 to FB2_0 and
another connection from FB4_0 to FB1_0 as seen in Fig. 9.
In order to make event connections in nxtSTUDIO, the above
mentioned connections are removed and topological order of
execution is found.

The block FB2_1 in the main network (Fig. 9) has its
input negated. To have this negation in the converted system,
a predefined block which outputs the negated input is inserted
before the block FB2_1 as shown in Fig. 8.

VII. RESULTS
In this work, the problem of improving the clarity of logical
control programs presented as FBDs with implicitly defined
execution rules, has been addressed by modelling them in
IEC 61499, which has the means for explicit definition of
execution order by means of event connections. The approach



Fig. 8: Converted IEC 61499 version of the illustrative example.

Fig. 9: Illustrative example of a hierarchical FBD with data
loops in IEC 61131-3.

was illustrated using the IEC 61131-3 version of FBD. Main
focus is given to systems designed using FBDs which are
implemented either using ST code or a network of FBs.
Definition of a basic function block in the original system,
which is in ST code, is used to make the ECC of the
corresponding basic function block in the converted system.
Event connections between the blocks are made based on their
topological order, derived from the graph model of the original
FBD. Based on the presented algorithms, a tool has been
developed for automatic conversion of systems presented in
IEC 61131-3 standard (in CoDeSys tool) to systems compliant
with IEC 61499 standard. The results can be directly opened
and executed in IEC 61499 tools, e.g. nxtSTUDIO. We also
developed a testing tool to check that the behaviors of the
source and the obtained systems are identical. For this, same
inputs, which are randomly generated, are given to both the
original and the converted systems and the corresponding out-
puts are compared. Two sample systems shown in section VI
were converted and tested using the developed tools and the
results indicate that the converted and the original systems
execute identically.
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