
Towards user-friendly model checking of IEC 61499
systems with counterexample explanation

Polina Ovsiannikova∗† and Valeriy Vyatkin∗†‡
∗Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia

†Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
‡Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

Email: polina.ovsiannikova@aalto.fi, vyatkin@ieee.org

Abstract—Distributed automation systems design is getting
increasingly popular as the systems become more complex and
modular. The IEC 61499 automation architecture is seen as
the main enabler of component software design for distributed
automation systems. It requires novel approaches to integrated
development environments (IDE) supporting the engineering of
such component software systems. One important part of au-
tomation systems engineering is their verification and validation.
The efficacy of verification is largely dependent on how seamlessly
this process is integrated with the traditional development tools,
such as editors, compilers and debuggers. This work presents a
start of such a development, that automatizes the model checking
process for IEC 61499 systems and provides a visual explanation
of its results in the graphical development environment FBME.

Index Terms—IEC 61499, user-friendly model checking, coun-
terexample explanation, distributed systems

I. INTRODUCTION

IEC 61499 [1] is an international standard for the development
of distributed automation and control systems. According to
this standard, the controller part of a cyber-physical system
is formulated using special elements, function blocks (FB),
which, connected to each other, form function block dia-
grams (FBD)1. For distributed systems that are safety-critical,
it is especially important to satisfy their predefined require-
ments as any failure may cost substantial material losses or
even human lives. Such systems should be rigorously verified,
starting from the formal model level, so that all the possible
faults are identified and the logic that causes them is corrected.
However, to the best of the authors’ knowledge, this whole
workflow starting from verification and ending in debugging
is not implemented in the existing integrated development
environments (IDEs) for ICE 61499 in a user-friendly way.

There exist several approaches to formal verification and
one of them that explores the whole model state space is model
checking [2]. The formal model of the system together with
its specification written in terms of formal languages (e.g.,
temporal logic) form the input of a verification tool, model
checker. In case the system violates its requirements, the model
checker produces a counterexample, i.e., a sequence of system
states, starting from one of the initials, (or a model trace)
where the system property does not hold.

The toughest part comes after the model checking is com-
pleted and some violations of the specifications are revealed. In

1Hereinafter we consider FBDs developed according to IEC 61499 standard.

this case, subsequent debugging of the model involves analysis
of the counterexample produced by the model checker. First,
each system state included in the counterexample is composed
of values of all the system variables, and their amount may
reach hundreds in industrial-sized systems. Second, the coun-
terexample may contain dozens of states, turning it into a large
table of values without information about the model structure,
almost impossible to be used in reasoning. The situation
gets worse for IEC 61499 systems as prior to verification,
they should be converted into formal models, supported by
the model checker, which may introduce additional variables
and complicate the counterexample decoding. Meanwhile, the
initial challenge of the user is not only to verify the system and
decode a counterexample but find the root causes of the issue
in a most representative way, which is graphical in our case.
Therefore, our goal is to develop a method and an algorithm
for a visual explanation of errors detected in model checking
in terms of IEC 61499.

In this work, we present initial studies on visual counterex-
ample explanation for IEC 61499 systems from [3] which will
be implemented in a user-friendly model checking plugin to
the existing IDE, FBME [4]. We also enhance the algorithms
from [3] and provide a draft of the explanation visualization.
The whole toolset to be implemented automatizes the follow-
ing three steps that are done manually in the current work.
First, we convert the system developed in IEC 61499 standard
to a formal model suitable for one of the most well-known
model checkers, NuSMV [5], with the tool FB2SMV [6].
Then, we use NuSMV to check if the system satisfies its spec-
ification provided in form of linear temporal or computation
tree logic (LTL and CTL). If the counterexample is produced,
we utilize it to infer the influence paths in an FBD that lead
to particular values of the variables. The main contribution of
the current paper is the method of inferring influence paths
in an FBD of a system which then can be visualized in an
FBME to facilitate the understanding of the violation, which
increases the user-friendliness of model checking.

II. PRELIMINARIES

A. IEC 61499

IEC 61499 defines a design paradigm for distributed au-
tomation and control systems. The system here is represented
as an FBD, which is formed by a set of interconnected FBs

that communicate to each other. Each FB has two types of
inputs and outputs, i.e., data and event interfaces. Any event
input or output can be bound to a subset of data inputs or
outputs respectively, which means that the corresponding data
will be received and processed or sent only if the particular
event fires. Intuitively, any update of the event variable opens
the gates for the data connected to it.

There exist FB of three kinds: basic, composite and service
interface. The kind of block defines its function, architec-
ture and logic. A basic FB is the fundamental element of
IEC 61499 architecture. Its logic is defined by an execution
control chart (ECC), which is, essentially, a Moore automaton
and consists of states, transitions and actions. Its transitions
are guarded by the conditions on input events and variables
of the FB along with its internal variables. ECC actions may
be of two types, i.e., emitting an output event or an algo-
rithm execution, where the algorithms are formulated using
structured text, a programming language of IEC 61131-3 [7].
Whenever any of incoming transitions of a state is executed,
the corresponding algorithms are run and the events are fired.
Next, composite FBs encapsulate nets of interconnected basic
FBs and provide an interface for the inputs and outputs of the
internal diagram. The function of the composite FB is defined
by data and event flows in its internal diagram. The last type,
a service interface FB are not considered in this work. The
final FBD is assembled using the available FBs.

B. Checking and debugging of IEC 61499 applications

There exists a good amount of research on the application
of different formal verification techniques to IEC 61499 pro-
grams. Usually, the authors divide them into dynamic and
static [8] or online and offline [9] verification. While the
first group of methods aims to observe the system during its
operational state (or simulation) and inform the analyst if the
system’s behavior violates the specification here and now, the
second group is responsible for pre-running check.

In this paper, we deal with pre-operational checks and
address static verification. There exist various modeling ap-
proaches of IEC 61499 applications that aid in subsequent ver-
ification. For example, the authors of [10] design IEC 61499
systems using UML and generate test cases for functional and
non-functional requirements for the application. Their final
FBD is inferred automatically from the UML model. On the
other hand, a more thorough way to analyze the model state
space, model checking, is used in the number of works [9],
[11], [12], [13], [14]. They propose modeling systems using
SIGNAL formalisms [9], transition systems [14], translating
ECC charts to timed CTL [11] and model checking them
in SIGNAL, SMV-verifiers or UPPAAL [15] correspondingly.
Approaches [12] and [13] translate the programs into Prolog
code or signal-net systems in order to perform model checking.

As we can see, the work on verification of IEC 61499
systems and on their model checking, in particular, has already
been done. Among the mentioned works, probably, the most
user-friendly approach to verification is suggested in [13],
where the failure trace can be visualized in the signal signal-

net system that was verified and in the original Net Condi-
tion/Event System. Our approach differs from the mentioned
works, by making a step further in user-friendly verification,
that involves not only displaying the counterexample in the
FBD but a visual guidance along the paths that influenced
values of variables they choose and make the verification
process seamless.

III. INFERENCE OF AN INFLUENCE GRAPH

In this section, we present the general method of counterex-
ample explanation using an example, skipping the formal
definitions. We work with FBDs developed according to the
IEC 61499 standard and call them systems. We extend their full
sets of variables with the events of their nested FBs and ECC
states of the basic FBs treating them as Boolean variables.
This means, that when an event fires or an ECC state becomes
active their corresponding variables become true. Thus, we
have three kinds of variables: events, ECC states and model
variables. Assume that the system was converted into the
format of a model checker, verified and the specification was
violated.

Now, a counterexample produced by a model checker
does not include information about the system structure, and
restoration of the ”story“ taken place in the system requires
a considerable amount of time and effort. Such ”story“ exists
for each element (or variable) of the system, i.e., an event,
a variable or an active ECC state, at each counterexample
step and essentially is a directed graph of changes of system
variables in the past in relation to the chosen variable at
the chose step. In this graph, each node is an assignment
a, which is a tuple (u(a), s(a), v(a)), where v(a) is a value
of a particular variable (u(a)) at a particular counterexample
step (s(a)). We call such a graph an influence graph and
build it for an assignment chosen by the user, which we call
explanation target, as follows.

Starting in the explanation target, we traverse the FBD
backwards structurally and according to counterexample steps
numbers. Each kind of a system variable has its own algorithm
that returns child nodes to be added to the result graph and
which is schematically depicted in Figure 1.

We infer child nodes for an event ae only if it has fired. In
this case, two scenarios are possible. First, if u(ae) is an output
of composite FB or input of any FB, then, following incoming
connections, we take an event that fired, which is the closest
in past according to counterexample step numbers (Figure 1a).
Otherwise, the child is the ECC state that emitted ae.

Children of an ECC state as (Figure 1b) are the states that
are reachable following incoming transitions of as in case they
are unconditional. If there are incoming transitions that have
guards, we take the one that was active at s(as) and search for
important assignments that caused the predicate to be true.
Hereinafter, the latter can be done with one of the algorithms
developed in our previous works [16] or [17].

To find child nodes for a variable av , we check the structural
position of u(av) in D. If it is an output of a composite FB,
we follow the incoming connection and pick the assignment of

S1: 7
EO2:7

S2: 6
EO2:6

S3: 2
o1:=false; EO1:2

(o1 ∨ in1) ∧ EI1

EI1 EO1

EO2

o1

in1

in2

in3

in4

o2

EI2

(a) Explanation for an event variable. Assume that event EO2 fired at
counterexample step 7.

S1: 7
EO2:7

S2: 6
EO2:6

S3: 2

o1:=false; EO1:2

(o1 ∨ in1) ∧ EI1

EI1 EO1

EO2

o1

in1

in2

in3

in4

o2

EI2

(o1, 7, TRUE);
(in1, 7, FALSE);
(E1, 7, TRUE)

(b) Explanation for an ECC state variable.

S1: 7
EO2:4

S2: 6
EO2:3

S3: 2
o1:=false; EO1:2

(o1 ∨ in1) ∧ EI1

S4: 1

o1:=in2 ∧ in3;
o1:=o1 ∨ in4; EO1:1EI1 EO1

EO2

o1

in1

in2

in3

in4

o2

EI2

(o1, 7, TRUE);
(in2, 1, TRUE);
(in3, 1, TRUE);
(E1, 1, TRUE)

(c) Explanation for a model variable.

Fig. 1: Conceptual models showing explanation rules for each of the
variables kinds in a part of IEC 61499 basic block. Blue triangles
mark the explanation target, empty blue arrows direct the attention of
the reader to the child nodes of the explanation target in the influence
graph, which are marked with bold blue ovals. Notation “v : n” means
that variable v is true at counterexample step n. In dashed rectangles
we provide assignments of important variables.

the found variable at step s(av). In case u(av) is an input of
any FB in D, first, we take assignments of the closest events
in the past that fired when u(av) changed its value. Then, we
add to this set the assignment of the output variable connected
to u(av) from the step when the events fired. In the last case,
when u(av) is an output of a basic FB (Figure 1c), first, we
look for a counterexample step when the value of the variable
was changed and take assignments of the output events that
fired at the found step and which are connected to the variable.
Then, we look for ECC states that change the value of u(av)
in their algorithms and pick the one closest in the past to the
step when the value was changed. This state is added to the
final result together with the explanation of the right part of
the assignment expression.

IV. CASE STUDY

A. System model

We checked the applicability of the algorithms described in
Section III for debugging by applying them manually on the
model similar to a drilling station with distributed control that

Fig. 2: A schematic view of a drilling station with rotating table feed.

was used in a case study for verification tool VEDA [18]. The
system consists of a drill and a table that rotates under the drill
delivering workpieces to the position of the drill. The drill can
be switched on only when the table is in a fixed position and
there is a workpiece below, which is detected by the sensor.
After the drilling is finished, the table drives the workpiece
away. We implemented the system in IEC 61499 and tested it
on a real system in a laboratory using NxtStudio development
environment and Iceblock PLCs.

The control of the system consists of two basic FBs: drill
and table controllers. The overall FBD of the system is formed
by the interconnected controllers and FBs representing sensors,
carriage and drilling mechanisms. To save space, in Fig. 3
we provide a screenshot only of interaction between two
mentioned controllers and parts of their ECCs, which are
relevant for our case study.

B. System verification

One of the main safety properties that the system
described above should satisfy is that the detail being
processed must not be moved to another position un-
til the drilling is over and the drill is lifted. A fail-
ure in this specification leads to the detail malfunctioning.
Such property may be represented in LTL form as fol-
lows: G¬(DrillCTL.RET∧TableCTL.DRIV E ON). As
shown in Fig. 3b, DrillCTL.RET does not mean that the drill is
returned to its initial position and one more transition guarded
by HOME is required to make sure that the drill is lifted.

To check this specification, first, we used FB2SMV to
generate the SMV model of our system. Then the obtained
model together with its LTL property was sent as input to the
NuSMV model checker, which showed that the requirement
does not hold and generated a counterexample. The length of
the latter was 520 states, each of which contained 167 vari-
ables. To localize the failure we used an LTL counterexample
visualizer from [16], and found out that the failure occurs
between steps 381 (where DrillCTL.RET becomes true) and
401 (where the TableCTL.DRIVE ON event is emitted). Now,
to learn why TableCTL.DRIVE ON had been emitted before
DrillCTL was in its HOME state, we start building the influence
graph in TableCTL.DRIVE ON at step 401. This assignment
was influenced by active ECC state ROTATE at step 399 that,
in turn, was obtained as a result of an unconditional transition
from state REMOVE at step 395. Here we see that the model

(a) Interfaces of the drill and the table controllers. The rest of
the FBD is omitted to save space.

(b) Parts of the controllers ECC showing the process of the fault localization. Red
bold rectangles highlight the elements, whose assignments are nodes of an graph of
influences with the root in DRIVE ON which is true at counterexample step 401. Red
dashed arrows imitate edges of this graph.

Fig. 3: Communication between the drill and the table controllers for the system from Fig. 2 implemented in FBME: interfaces and parts of
the ECC views.

occurred in this state because BLK at step 385 became false,
which happened due to action UNLOCK in the state DRILL END

of the drill controller that set its output LOCK to false at
step 385.

This deduction shows us the scenario where the detail is
moved away from the drill while the drill is still not lifted and
even though it is stopped, this situation remains critical.

V. CONCLUSIONS AND FUTURE WORK

Thorough verification is a crucial stage of the design process
of industrial automation systems. This paper gives a start to
our work on user-friendly model checking for IEC 61499
applications and shows the feasibility of using additional
verification techniques for agile automation systems. Our goal
is to provide analysts with the appropriate tools that will allow
them to benefit from model checking without having actual
knowledge in formal methods. We begin with the visualisation
of the influence graph in an FBD and its draft is shown in
Figure 3b. The case study explains how the graph is inferred
and illustrates the usefulness of such a toolset, revealing the
failure scenario which is hard to obtain and notice during the
simulation or conventional testing.

One of the main goals of our future work is to automatize
the manual process we performed in our case study and
integrate it into a novel IDE for IEC 61499, FBME [4]. The
first steps towards this have already been done. We developed
a debugging panel where a counterexample for the opened
FBD can be uploaded and visualized in the diagram. Our
future directions include improving the models, generated by
FB2SMV to enable automatic verification of systems with
integer variables and checking open-loop scenarios along with
user-friendly graph of influences visualization.

ACKNOWLEDGMENTS

This work was supported, in part, by the H2020 project
1-SWARM co-funded by the European Commission (grant
agreement: 871743) and by the Government of the Russian
Federation under Grant 08-08.

REFERENCES

[1] V. Vyatkin, IEC 61499 function blocks for embedded and distributed
control systems design. ISA-Instrumentation, Systems, and Automation

Society and O3neida, 2012.
[2] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,

Model checking. MIT press, 2018.
[3] M. Tereshchuk, “An algorithm and a tool for visualization of the causes

of a cyber-physical system specification violation,” Bachelor’s Thesis,
ITMO University, Saint Petersburg, Russia, 2020.

[4] JetBrains, “Jetbrains/fbme,” 2020. [Online]. Available: https://github.
com/JetBrains/fbme

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[6] (2021) FB2SMV: IEC 61499 function blocks xml code to smv converter.
[Online]. Available: https://github.com/dmitrydrozdov/fb2smv

[7] M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming industrial
automation systems. Springer, 1995.

[8] J. O. Blech, P. Lindgren, D. Pereira, V. Vyatkin, and A. Zoitl, “A
comparison of formal verification approaches for IEC 61499,” in 2016
IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), 2016, pp. 1–4.

[9] C. Schnakenbourg, J. Faure, and J. Lesage, “Towards IEC 61499
function blocks diagrams verification,” in IEEE International Conference
on Systems, Man and Cybernetics, vol. 3, 2002, pp. 6 pp. vol.3–.

[10] T. Hussain and G. Frey, “Uml-based development process for IEC
61499 with automatic test-case generation,” in 2006 IEEE Conference on
Emerging Technologies and Factory Automation, 2006, pp. 1277–1284.

[11] B. Glatz, F. Cleary, M. Horauer, H. Schuster, and P. Balog, “Comple-
menting testing of iec61499 function blocks with model-checking,” in
2016 12th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications (MESA), 2016, pp. 1–7.

[12] V. Dubinin, V. Vyatkin, and H. Hanisch, “Modelling and verification
of IEC 61499 applications using prolog,” in 2006 IEEE Conference on
Emerging Technologies and Factory Automation, 2006, pp. 774–781.

[13] V. Vyatkin and H. M. Hanisch, “Formal modeling and verification
in the software engineering framework of IEC 61499: a way to self-
verifying systems,” in ETFA 2001. 8th International Conference on
Emerging Technologies and Factory Automation. Proceedings (Cat.
No.01TH8597), vol. 2, 2001, pp. 113–118 vol.2.

[14] V. Dubinin, V. Vyatkin, and A. Shalyto, “Formal modeling and verifica-
tion of IEC 61499 function blocks on the basis of transition systems,” in
2016 International Siberian Conference on Control and Communications
(SIBCON), May 2016, pp. 1–4.

[15] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” 2006.

[16] A. Pakonen, I. Buzhinsky, and V. Vyatkin, “Counterexample visualiza-
tion and explanation for function block diagrams,” in 2018 IEEE 16th
International Conference on Industrial Informatics (INDIN). IEEE,
2018, pp. 747–753.

[17] P. Ovsiannikova, I. Buzhinsky, A. Pakonen, and V. Vyatkin, “Oeritte:
User-friendly counterexample explanation for model checking,” IEEE
Access, vol. 9, pp. 61 383–61 397, 2021.

[18] V. Vyatkin and H.-M. Hanisch, “Verification of distributed control sys-
tems in intelligent manufacturing,” Journal of Intelligent Manufacturing,
vol. 14, no. 1, pp. 123–136, 2003.

https://github.com/JetBrains/fbme
https://github.com/JetBrains/fbme
https://github.com/dmitrydrozdov/fb2smv

	Introduction
	Preliminaries
	IEC 61499
	Checking and debugging of IEC 61499 applications

	Inference of an influence graph
	Case study
	System model
	System verification

	Conclusions and future work
	References

