
1

Towards Dependable Model-Driven Design of
Low-Level Industrial Automation Control Systems

Nan Zhou, Di Li, Valeriy Vyatkin, Victor Dubinin and Chengliang Liu

Abstract—Recent technological advances and manufacturing
paradigm evolutions in industrial settings will dramatically in-
crease the complexity of automation control systems. Traditional
solutions to the software development of low-level control kernels
(e.g., numerical control kernel, motion control kernel, real-time
communication tasks) are unable to properly cope with such
complexity due to inadequate level of abstraction and challenges
for dependability. This paper presents a formal semantics inte-
grated model-driven design approach as a holistic solution. A
domain-specific modeling language (DSML) is specified based on
the adaption of IEC 61499 architecture, along with the extensions
of task modeling, task-to-resource allocating and non-functional
specification. Both formal structural and behavioral semantics
of the proposed DSML are then explicitly defined. A meta-
programmable environment is developed for flexible modeling,
verification and code generation. Design-time formal verification
is achieved by automated model transformation. A case study is
demonstrated on implementing a prototype computer numerical
control (CNC) system using the proposed solution.

Note to Practitioner—The low-level automation control system
in the modern manufacturing scenarios require more agility while
respecting strict timing constraints. Handling such a complexity
with manual coding is getting harder and lower efficient. The
domain-specific modeling language and the supporting devel-
opment environment presented in this paper aims to enhance
the level of automation, flexibility and dependability of the
whole design process. For the proposed DSML, the syntax is
defined as meta-models while the semantics is integrated through
model transformation and model annotation. These definitions
are implemented as external rules for a meta-programmable
environment to establish our proposed development tool. The
finding and insight from this paper can be used to enhance the
efficiency and dependability during the developments process of
common control kernels, such as CNC kernel, motion controller
software, etc.

Index Terms—Industrial Automation Control System; Model-
Driven Engineering; Domain-Specific Modeling Language; IEC
61499; Formal Verification.

I. INTRODUCTION

Modern industrial automation and control systems are dom-
inated by distributed mechatronic devices. These devices per-
form functions according to the decisions from their built-
in controllers, ranging from programmable logic controllers

Nan Zhou and Di Li is with the School of Mechanical and Automotive
Engineering, South China University of Technology, Guangzhou, 510640
China (e-mail: menanchow@mail.scut.edu.cn, itdili@scut.edu.cn)

Valeriy Vyatkin is with Luleå University of Technology, Sweden, 97187,
ITMO University, Russia, and Aalto University, Finland, 02150 (e-mail:
vyatkin@ieee.org)

Victor Dubinin is with the Department of Computer Science, University of
Penza, Penza, Russia (e-mail: victor n dubinin@yahoo.com)

Chengliang Liu is with the Institute of Mechatronics, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: chlliu@sjtu.edu.cn)

(PLC), robot controllers, numerical controllers, general motion
controllers, etc. Typically, these controllers should be em-
bedded with real-time systems for executing time-critical au-
tomation control software, including user-specific applications
and a control kernel. User-specific automation applications
are concerned by controller users while the low-level control
kernel is provided by controller vendors.

This paper is mainly focusing on the development aspect
of control kernels, which typically feature some common
functions across various scenarios of industrial automation
control systems, such as motion control, drive communication,
etc. Traditionally, the required functions of control kernel
are coded in a manual way. Then, the control kernel is
supplied along with the controllers by vendors in a closed
way, providing limited extensibility and proprietary application
programming interfaces (API). Therefore, system integrators
may be stuck to vendor-specific solutions when developing
automation applications, leading to restricted possibilities of
rapid product evolutions. Since the modern manufacturing
paradigm is shifting from mass production to mass cus-
tomization, industrial automation and control systems will be
facing ever changing demands regarding their functions and
structures. Being adaptive to these demands while respect-
ing rigorous non-functional constraints (e.g. hard real-time
capability, safety, stability) in shorter time-to-market cycles
requires higher agility of the control kernels. These challenges
raise the complexities of the software development process.
Taming such complexities with the code-centric approaches is
a time-consuming and error-prone process due to inadequate
level of abstraction and dependability. Thus, adoption of new
design methodologies is imperative.

Under the mass customization manufacturing paradigm, the
control kernels should adopt a component-based and recon-
figurable pattern in the distributed context, as pointed out in
[1]. Related works in this domain usually place the emphasis
on the architectural design and the specification of component
models, as can be seen in [2], [3] and [4]. The development
methodology, however, still remains quite primary from the
perspective of abstraction and automation level. For example,
when developing control software in the context of OROCOS1

(an open-source low level framework for machine and robot
control) or LinuxCNC2 (an open source CNC machine con-
troller), the only alternative is manual coding with specific
low level programming languages. Validation and tuning of
non-functional properties must be performed repeatedly on the

1www.orocos.org
2www.linuxcnc.org

2

targeted platforms. To overcome such drawbacks, advanced
developing language and technology should be adopted, with
the following properties supported:
• Model based. This is the basic requirement as it can

enhance the abstraction level of the development process.
• Vendor independent. The requirement can ensure that our

proposal is not bounded to specific proprietary technolo-
gies and platforms.

• Formal semantics integrated. This requirement is aiming
at facilitating early verification to improve the depend-
ability of the modeled artifacts.

Model-driven engineering (MDE) is regarded as one of the
most promising solutions to modern complex software devel-
opment since it can ensure high abstraction level, modularity
as well as flexibility. The Unified Modeling Language (UML)
defined by the Object Management Group (OMG) is widely
applied in the MDE research. Nevertheless, as a kind of gen-
eral modeling language, UML lacks the supports of depicting
and programming in the control engineering’s way. Contrarily,
domain-specific languages (DSL), or more specifically mod-
eling languages (DSML), aim at specific application fields.
DSML can provide intuitive modeling facilities in the direct
notations of domain knowledge. Thus, it’s developer-friendly.
Given that developers in the industrial control community
usually have inadequate expertise on software engineering, this
paper adopts the DSML technology.

Specification of a DSML starts from conceptualizing com-
mon knowledge of the concerned domain and the results turn
into the syntax definitions of the DSML, which are also termed
as meta-model definitions. The abstraction level and scope of
the conceptualization process will determine how applicable
the resultant DSML can be in the concerned domain. In this
paper, the architecture of IEC 61499 [5] and its elements are
utilized as the means for domain conceptualization. Although
IEC 61499 is primarily the standard for modeling application
logics intended to be executed on networks of PLCs, this paper
takes a step further by adopting it for lower-level control
framework design in broader fields, such as general motion
control, numerical control, etc. Stringent timing and resource
constraints should be meet in these fields, which are out of
the scope of IEC 61499. Therefore, the concepts of execution
tasks and rule-based non-functional constraints are defined in
the syntax domain as the extensions of IEC 61499.

Inconsistency among multiple, interrelated models in terms
of structures and behaviors may deteriorate dependability of
the design process and the final executables. Hence, some
correct-by-construction methodologies should be employed to
facilitate automated validation. Formal semantics definitions
of DSML are the initial step in this direction. Particularly,
two types of semantics are involved: structural and behavioral
semantics. Structural semantics aims to describe the meaning
of the models in terms of the structure of model instances
while behavioral semantics is about dynamic characteristics
when executed. In this paper, both these semantics are explic-
itly specified.

The remaining part of this article is organized as fol-
lows. Section II briefly introduces related works. The overall
methodology adopted in this paper is illustrated in Section III.

Following that, the syntactical and semantic definitions are
given out in Section IV and Section V, respectively. Section VI
discusses a model transformation approach for integrating
formal verification of domain models. A proof-of-concept case
study on implementing a CNC system is demonstrated in
Section VII. Finally, Section VIII concludes the paper and
outlines the future work.

II. RELATED WORKS

A. Modeling of Industrial Automation Control Systems

This paper proposes adapting existing standardized high
level DSMLs for the fields of lower-level automation control,
because such a strategy can reuse knowledge and well-proven
practices to ensure acceptances by developers. For the high-
level user-specific applications which are executed on top of
control kernels, there have been amounts of standardized DSLs
available, and most of them are model-based.

In the world of PLC-based automation control program-
ming, there are two predominant international standards: IEC
61131-3 [6] and IEC 61499. In this paper, IEC 61499 is
regarded as a more appropriate choice for adaptation, since
it specifies a systematic approach for modeling distributed
control system based on hierarchical event-driven function
block (FB) architecture. Besides, IEC 61499 provides inherent
supports of reconfiguration of FB networks. These features
are desirable for modeling component-based reconfigurable
control systems. A comprehensive review on the recent ap-
plications of IEC 61499 in the industrial automation domain
can be referred to [7]. In [8] IEC 61499 is utilized to model
the control software of machine tools. With regard to low-
level control, functions of PLC/CNC control and real-time
communications [9] are encapsulated in FBs. In [10] a novel
layered CNC architecture is proposed based on IEC 61499.
Since their implementations relied on Java-based technologies,
a dedicated processor is assumed to be required for ensuring
real-time capabilities. These practices prove the feasibility of
IEC 61499 in the low-level control software design.

For the vision of dependable domain-specific modeling
to become reality, a design environment is necessary. Such
a development environment with efficient correct-by-design
mechanisms integrated is critical for the availability and
success of a DSML. There are several active IEC 61499
modeling tools available for developers, as introduced in [11].
However, most of these tools lack flexible support for design-
time verifications and corrections of semantics ambiguities and
errors. Furthermore, most of these tools require specific run-
time environments for executing models. As per this pattern,
behavior semantics of models only implicitly emerge from
these manually-coded software, leading to the problem that
validation is only possible in the late stage.

Besides, most of the available IEC 61499 modeling tools
are built on such an infrastructure where syntax representations
and semantics analysis are hard-coded. Any updates of syntac-
tical and semantic rules will result in heavy programming and
re-compiling of these tools. Such an inflexibility will lead to
problems on model managements and exchanges, which may
further affect the dependability of models. These problems

3

are also identified by Dai et al. [12]. An extensible approach
based on ontology is then proposed by them. However, their
work did not propose or exploit behavioral semantics of IEC
61499 in a formal way. Instead, it still relies on the underlying
execution environment. In this paper, a meta-programmable
and extensible modeling environment is developed to eliminate
such pitfalls existing in the current tools. The generic modeling
environment (GME) [13] is introduced as the basic framework
of this tool, and both syntactical and semantic definitions are
encoded as external rules in the format of extensible markup
language (XML) files.

B. Verification of Industrial Automation Control Systems

Formal methods are a well-proven solution to early vali-
dation and verification during the IEC 61499 based control
system design process. Usually a specific type of formal
model or language should be selected and then transformation
rules between source models and the formal counterparts
are established, such as the NCES (a Petri Nets variant)
model in [14], abstract state machine in [15], Esterel (a
synchronous language) in [16]. These works mainly contribute
to verification against correctness of logical sequences. In [17]
timed automata are employed for verifying temporal behavior
of FBs and FB network from the nonfunctional perspective. In
their work, a scheduler is modeled for verifying the temporal
behaviors of FB networks. However, in real-time control
the basic scheduled entities of operating systems should be
modeled and verified as well, which was not addressed in the
work presented in [17].

Mapping IEC 61499 FB networks to scheduled tasks is
necessary for specifying real-time constraints. Doukas and
Thramboulidis propose in [18] the concept of Event Paths (EP)
as segments of application to capture real-time requirements
using the notation of deadlines and priorities. A similar
concept called Event Chain (EC) is introduced by Zoitl et al.
in [19]. However, the timing constraints are only applied in
the implementation phase. Model-level verification of schedu-
lability is therefore impossible. In [20] Lindgren et al. use
EC for introducing an informal real-time semantics to enable
model-level analysis of schedulability-related properties. The
timing analysis relies on the prerequisite implement of stack
resource policy scheduler.

In this paper, we introduce a concept of execution task
attributed with rule-based timing constraints as the design-time
extension in the context of IEC 61499. With these extensions
available, modular and hierarchical mapping between the
proposed DSML and formal models can be set up. In our
current work, we use time automata for verifying functional
and non-functional properties. Since the behavior semantics
of time automaton is defined by labelled transition system
(LTS) mathematically, the paper currently leverages LTS as the
basis for the formal behavior descriptions of FB, FB networks
as well as execution tasks to maintain semantics equivalence
during model transformation.

To guarantee the rationality of our formal behavior seman-
tics definitions, some readily available execution models of
FB and FB networks proposed in the existing works will

be directly adapted and represented in LTS. Currently we
prefer the buffered sequential execution model [21] due to
the fact it is used in the most industrially adopted tools,
such as NxtControl and 4DIAC. A complete formal behavior
semantics specification of our DSML is attained by composing
behavioral semantics of execution task and these existing
formal execution semantics. In addition, the object constraint
language (OCL) is introduced for formal specifications of
structural semantics. In this way, both structural and behavioral
semantics can be integrated in the proposed DSML-based
approach on a formal basis, thus ensuring dependability of
model artifacts at the early design stage.

To the best of the authors’ knowledge, no related work exists
for comprehensively integrating corrections and verifications
of structural and behavioral semantics during the modeling
process of low level control system with IEC 61499. In
[22] and [15] both structural and behavioral semantics are
considered, but the work takes synchronous semantics as a
prerequisite. This semantic model requires dedicated compiler
and has minor applications currently. This paper presents an
initial step toward this end on the basis of the sequential
execution model, which is widely adopted among existing
IEC 61499 applications. Two principles are followed in our
work. The first one is to reuse as much as possible existing
well-proven practices on formal syntax and semantics about
IEC 61499, which has been stated above. The other one is to
leverage techniques and tools with industrial maturity to set up
supporting tool-chains for dependable domain modeling. For
the second principle, the model-integrated computing (MIC)
approach [23] and the supporting tool-suites [13] are involved.
MIC represents a model-based design paradigm for embedded
real-time system using DSML. The tool UPPAAL for formal
verification is integrated via model-to-model transformation.
By following these two principles, the paper achieves the
contributions as follows:
• A domain-specific modeling language with complete ab-

stract syntax based on IEC 61499 is proposed for efficient
development of low-level industrial control systems;

• Both formal behavioral and structural semantics are de-
fined for the proposed DSML for dependable design
of domain models, and a model transformation method
is proposed to automate formal verification of domain
models;

• A meta-programmable environment for modeling, veri-
fication and code generation is established, with which
a prototype CNC system is implemented to prove the
feasibility of IEC 61499 in low level control system
design.

III. OVERVIEW OF METHODOLOGY

This section introduces the overview of our proposed solu-
tion to dependable model-based design of low level industrial
automation control systems. Basic concepts and features of
MIC-based meta-modeling are also briefly introduced.

A. Overview
Our proposed solution is based on the MIC approach and

its related tools. The framework for implementing model-

4

IEC 61499 Standard
+

Domain Extension

Meta meta-model
(UML-Compliant MetaGME)

DSML Designer

Syntax

Model
Translator A

Model
Translator B

Simulation Tools

Verification Tools

Code
Generator A

Code
Generator B

DSML User

Physical Systems

M3
Layer

M2
Layer

M1
Layer

M0
Layer

BeagleboneBlack IndustrialPC
MotioncontrolCard Drive_X Drive_Z

TCP/IP PCIBUS EtherCAT

Fig. 1. The architecture of DSML in the OMG four-layered architecture

based design in the context of MIC can be depicted with
the classical four-layered architecture proposed by OMG,
as shown in Fig. 1. In the M0 layer, industrial automation
systems can be implemented with domain models provided
in the M1 layer. Domain models should conform to specific
syntax and semantics defined in the M2 layer. Prior to spec-
ifying these definitions, analysis of domain concepts should
be conducted to identify the scope of the DSML. In our
solution, the reference architecture and elements of the IEC
61499 standard, along with domain-specific extensions, are
adopted as the guidelines for meta-modeling. These meta-
models are conformed to a self-explanatory meta-metamodel
called MetaGME, which has the basic elements compliant to
the UML class diagrams. The meta-metamodel provided by
the MIC tools is defined in the M3 layer.

In detail, there are two roles of developers in our proposal.
The first one is DSML developer mainly involved in the
M2 layer, and the other one is (low level) control system
developer in the M1 layer. In the M2 layer syntactical elements
are described using UML-compliant class diagrams while
structural semantics are defined by OCL rules. OCL is a
declarative language for describing rules that apply to models
in UML notation, which makes it suitable for integration in our
UML-compliant meta-models. Behavior semantics are then
formulated accordingly. Since there are no tools for verifying
the behavior semantics of our domain models directly, a model
translator is required to set up the mappings between them
and other formal models. Similarly, integrations of model
simulators or code generators can be achieved by developing
the corresponding model translators. These translators are
developed based on the syntactical elements in the M2 layer.

In the M1 layer, developers may design their own systems
or applications using the domain models defined in the upper
layer. Runtime validation of OCL rules is enabled in this

TABLE I
TYPICAL KINDS OF METAGME NOTATIONS

MetaGME concepts Roles Visualization

Model Compositional containers Rectangle
Atom Primitive objects Rectangle
Reference Pointers to MetaGME objects Rectangle
Set Aggregate containers Rectangle
Connection Non-Aggregate relation Rectangle

Containment Aggregate association Solid Line
(Ended with Diamond)

Aspect Logical visual partitions Rectangle
FieldAttribute Properties of objects String-typed Attribute
Inheritance Inheritance association Triangle
First Class Objects Abstract of entities Rectangle
Proxy Alias of specific object Rectangle

layer to detect inconsistencies of domain models instantly. The
achieved model artifacts will be taken as inputs for model
transformations or code generations.

The tool architecture for applying the MIC approach is
detailed in [13]. Specifically, the whole architecture is based on
the Generic Modeling Environment (GME), which is a meta-
programmable and configurable tool for definition and compo-
sition of domain-specific models. Due to these features, GME
can be used interchangeably for meta- and domain-specific
modeling by simply replacing the external definition rules file.
The XML-based file is termed as paradigm in the context of
MIC. In our case, the resultant paradigm generated in the M2
layer contains all the necessary syntax and structural semantics
definitions. Incompatibilities of models after modifications or
upgrades of the paradigm can be automatically detected by
GME to eliminate any possible ambiguities. The developed
model translators can be integrated in the GME as plug-ins
and they are invoked manually in the M1 layer.

B. Metamodeling with GME

This subsection briefly introduces the MetaGME notations
and some related featurs of GME as background knowledge
for the following syntax definitions. Comprehensive introduc-
tions on the details of MetaGME can be found in [24].

MetaGME is an extension of UML class diagrams with
OCL constraints to imply the abstract syntax specified by
the metamodel. Therefore, MetaGME shares many similari-
ties with Meta Object Facilities (MOF), the meta-modeling
language of UML. Compared with MOF, MetaGME enables
modeling of separated concerns by introducing ”Aspect” [25]
for viewpoint notation. However, this concept will not be
elaborated in our syntax definitions due to page limits. Basic
concepts of MetaGME notations as well as their visualization
styles are illustrated in TABLE I. In the context of MetaGME,
most of the required information for meta-modeling and CASE
tool implementation suggested in [26] is provided as default
attributes of metamodels. All the metamodels defined with
MetaGME contain predefined graphical presentation prefer-
ences and spatial position information, which can be cus-
tomized and are handled by the GME tool implicitly during
domain model design.

5

IV. SYNTAX DEFINITIONS AND META-MODELING

This section discusses the syntax definitions of our DSML.
Firstly the formal syntax is given using the set theory, then
the corresponding meta-models are described in the context
of MIC. This paper doesn’t elaborate on the definitions of
basic FB (BFB), composite FB (CFB) and service interface FB
(SIFB) because they have been extensively studied in related
works. We focus on formalizing system configuration, task
models, FB-to-task allocation and non-functional constraints.

The complete definitions start with the system model, as it’s
the topmost element in the IEC 61499 standard.

Definition 1 (System Model): A system model Sys is a 4-
tuple defined as: Sys = 〈Dev, Seg,Asys, L〉, where:
• Dev is a non-empty finite set of device models;
• Seg is a link segment set containing various kinds of

inter-device communication patterns. For example, in our
current works, we define several attributes for EtherCAT
segment, including transmission delay and jitter as well
as synchronization error;

• Asys denotes an application composed by IEC 61499 FB
networks (FBN) in the scope of system model layer. Asys
is usually platform-agnostic in this layer and it can be
refined as a set of application segments with respect to
specific task models;

• L denotes a 3-arity relation linking the device models and
the link segments, L ⊆ {〈dev, seg, dev′〉 | dev, dev′ ∈
Dev, seg ∈ Seg, dev 6= dev′}.

Definition 2 (Device Model): A device model in our DSML,
dev, is defined as a 4-tuple: dev = 〈DPara,Res,Γ, TR〉,
where:
• DPara is a set of device specific parameters, e.g. com-

munication settings and IEC 61499 management ID;
• Res is a finite set of resource models;
• Γ is a non-empty finite set of task models;
• TR stands for an allocating function between Γ and Res,
TR : Γ→ Res, meaning that a task will be executed in
a specific resource model.

Definition 3 (Resource Model): A resource model defined in
our DSML, res, is a 3-tuple: res = 〈RPara, P,Γres〉, where:
• RPara is a set of parameters, such as the type of

operating system, maximum RAM size and the type of
IEC 61499 resource;

• P is an execution policy of FB network, currently only
the buffered sequential execution model (BSEM) [21] is
supported in our proposal;

• Γres denotes a set of tasks allocated to the resource.
The resource model is the abstraction of a hardware com-

puting unit with several executing tasks. Such a definition is
different from what it is in the IEC 61499 standard.

Definition 4 (Application Model): The aforementioned con-
cept Asys and A′i in a specific resource model i are ap-
plication models A, which is defined as a 3-tuple: A =
〈FBI,EC,DC〉, where FBI is a finite set of FB instances;
EC is an event connection function, EC :

⋃
i∈FBI({i} ×

EOi) →
⋃
d∈FBI({d, ε} × (EId ∪ {ε})); DC is a finite

set of data connections, DC :
⋃
i∈FBI({i} × DIi) →⋃

d∈FBI({d, ε} × (DOd ∪ {ε})). We adopt the definitions of

output/input events EI , EO and variable sets of output/input
data DI , DO in [27] with a few adaptions.

Definition 5 (Variables): Let DI , DO, and IV be sets
of (names of) input, output and internal variables of FB,
respectively. Let us denote DI , DO, and IV sets of variable
states. For example, DI =

⋃
di∈DI({di}×Ddi),where Ddi is

a domain of the variable di. Therefore, a ”valued” variable is
a pair in the form 〈name, value〉, e.g. 〈di, vdi〉 ∈ DI. Below
we use the denotation [] for a set of tuples which contains
all combinations of variables’ values (tagged by names of
variables). For example, [DI] =

∏
di∈DI({di} ×Ddi).

Definition 6 (System Configuration Model): The concept of
system configuration model K is defined as a set of device
configuration models: K =

⋃
i∈Dev Conf i.

Definition 7 (Device Configuration Model): The concept
of device configuration model Confdev for a specific dev
is defined as a finite set of mapping functions: Confdev =⋃
j∈Resdev conf j , conf j : Γj

′ → A′j
where:
• Γ′j is a set of allocated task models in a specific resource

model j;
• A′j represents the allocated parts of application model in

a specific resource model j;
Given Asys = 〈FBIsys, ECsys, DCsys〉, we define A′i =
〈FBI ′i, EC ′i, DC ′i〉, FBI ′i = FBIi∪FBICI , EC ′i = ECi∪
ECCI , DC

′
i = DCi ∪ DCCI , where FBIi ∈ 2FBIsys is

a set of allocated application parts from the system layer,
ECi ∈ 2ECsys , DCi ∈ 2DCsys , while FBICI represents a
set of platform-specific FB for inter-task communications and
ECCI/DCCI are related connections;

Definition 8 (FB Instance): A FB instance f is defined as
a 2-tuple: f = 〈n, T 〉, where n represents the unique name
of f ; T denotes the type definition of f , T ∈ TB ∪ TC ∪ TS ,
which denotes the type definitions of BFB, CFB and SIFB
respectively; The concrete formal definitions of FB types,
along with the components of FB types, such as interface,
ECC, algorithm, can be referred to [27].

Definition 9 (Task Model): A task model
in our DSML, tsk, is a 6-tuple defined as:
tsk = 〈TPara, Ie, Oe, CI , CO, NFR〉,
where:
• TPara is a set of real-time parameters, including priority,

deadline, worst case execution time, period, etc.;
• Ie denotes a set of external inputs ie of tsk, ie is im-

plemented as synchronization module (semaphore, event,
etc.);

• Oe denotes a set of external outputs oe of tsk, oe is also
implemented as synchronization module.

• CI represents an external input connections function. For
a task model tsk associated with a resource model j, the
concerned part of application A′ = confj(tsk), let fs
be a FB instance and ei be an input event port of the
interface list in fs, we define CI : Ie → {〈fs, ei〉 | fs ∈
FBIA

′ ∧ ei ∈ EIfs}.
• CO represents an external output connections function.

For a task model tsk associated with a resource model
j, the concerned part of application A′ = confj(tsk), let

6

System
<<Model>>

Task
<<Model>>

Id : field
Priority : field
Period : field
Deadline : field
WCET : field
BCET : field

Configuration
<<Model>>

Constraint
<<Atom>>

Rule : field

AT
<<Connection>>

TaskRef
<<Reference>>

AppRef
<<Reference>>

TR
<<Connection>>

Resource
<<Model>>

IEC61499ResType : enum
ResParameter : field
FBNExecution : enum
MaxRAMSize : field

DC
<<Connection>>

EC
<<Connection>>

Link
<<Connection>>

Segment
<<Atom>>

Jitter : field
Drift : field

FBI
<<Model>>

Type : field

Device
<<Model>>

MGR_ID : field
IEC61499DevType : enum

Application
<<FCO>>

0..*

0..*
0..*

0..* 0..*

dst0..* src0..*

0..*

dst1

src0..*

0..*

0..*

0..*

dst0..* src0..*

0..*1..* 0..*

AppRule1

CFB
<<ModelProxy>>

EC
<<ConnectionProxy>>

DC
<<ConnectionProxy>>

Execute
<<Connection>>

ECTrans
<<Connection>>

Priority : field
InputEvent : field
Guard : field

State
<<Atom>>

InitState
<<Atom>>

IV
<<Atom>>

Type : enum

Algorithm
<<Model>>

Language : enum
Text : field

ECAction
<<Atom>>

Algorithm : field
OutputEvent : field

ECState
<<Atom>>

ECCElement
<<FCO>>

WITH
<<Connection>>

DataInterface
<<FCO>>

Type : enum

EventInterface
<<FCO>>

DO
<<Atom>>

DI
<<Atom>>

EO
<<Atom>>

EI
<<Atom>>

Interface
<<FCO>>

SIFB
<<Model>>

CFB
<<Model>>

BFB
<<Model>>

FB
<<Model>>

0..*0..*

dst0..* src0..*dst0..* src0..*

dst
0..*

src
0..*

dst0..*

src0..*

0..*0..*

0..*0..*

0..*

0..*

dst0..*src0..*

0..*

0..*

Fig. 2. The meta-models of our DSML in MetaGME notation (core parts)

fe be a FB instance and eo be an output event port of
the interface list in fe, we define CO : {〈fe, eo〉 | fe ∈
FBIA

′ ∧ eo ∈ EOfe} → Oe.
• NFR represents a set of non-functional requirements.

The core meta-models of our DSML are shown in Fig.2.
Domain models defined in the M1 layer are concrete instances
conformed to these meta-models. To be more specific, the
left part of Fig.2 describes the core parts of our meta-models
related with the formal definitions stated in this section, while
the right part is the meta-models related to the function block
type definitions. The rectangle symbols are classes defined
according to the MetaGME paradigm, representing various
kinds of syntactical elements.

Most of the MetaGME concepts are involved in our pro-
posal, including Model, Atom, FCO, Connection, Proxy and
Reference. Their functions are introduced in TABLE I. Atom
and Model are mainly leveraged in our DSML for modeling
the syntactical units. For example, we use Model to describe
System, Device, Resource, FB, System Configuration, Task, and
Atom is mainly used to specify Variables. The parameters of
device, resource and task models are defined as attributes of
the meta-models. FCO is utilized for defining Application,
because it is regarded as a virtual concept in our approach,
meaning that the concrete models contained in the system/task
model are FBs and event/data connections instead. Reference is
adopted for describing the counterparts of tasks or applications
in multiple layers. Proxy is an auxiliary concept for describing
the same object in the complicated meta-models. We employ
Connection for specifying relations and functions in the formal
syntax definitions. Specifically, we use this concept to model
Device Configuration and Task-Resource allocating function
(ref. to AT and TR class in Fig.2). Although MetaGME only
allow metamodeling of relationships with a ”Class-body-end”
[28] representation, the mechanism of integrating user-defined
attributes make it flexible enough for our DSML proposal.
For example, one-to-one mapping can be simply achieved
by setting cardinality constraints attribute, avoiding too much
OCL rules specification.

Non-functional requirements are defined as Atoms contained
in the task models. The textual attribute named ”Rule” is

used for specifying the concrete requirements in the form
of Timed Computation Tree Logic (TCTL). Similarly, the
structural semantics is defined as OCL rules associated with
these class diagrams, represented by the circular symbol in
Fig. 2. Due to space limits, not all the OCL rules are shown.
These rules will be further elaborated in the following sections.

Based on the meta-models, the domain-specific modelling
environment can be established automatically via the build-
in MetaGME interpreter. During the modelling process, the
type repository for device, resource as well as FB should be
defined firstly. The system model can be composed using the
model instances with respective to the types. The instantiation
mechanism is also guaranteed by the GME tool.

V. FORMAL SEMANTIC DEFINITIONS

In this section, both the structural and behavioral semantics
are discussed formally. These semantics are described in terms
of the concepts defined in Section IV.

A. Structural Semantics

This sub-section adopts OCL for formal specification of
structural semantics. During the meta-modeling process, OCL
equations can be adhered to related meta-models directly. In
additions, the GME tool provides the options for determining
how and when these OCL equations will be evaluated during
the modeling process. For example, a specific OCL rule
can be checked anytime automatically, or manually by user
invocations, by setting the priority and triggering conditions
of the OCL rule in the meta-model domain. Therefore, simple
semantics analysis can be flexibly realized for the end users
in the M1 layer. Upgrades of the structural semantics will
then require no modifications of the model artifacts of users.
Therefore, dependability of models from the perspective of
structural constraints can be attained in an extendable way.
In [12], a similar configurable approach is proposed based on
the ontology technology, which however requires additional
transformation among different tools. Therefore, dynamic se-
mantics analysis during the modeling process is not supported.

7

TABLE II
PARTS OF OCL EQUATIONS FOR STRUCTURAL SEMANTICS SPECIFICATIONS

No. Constrained Object Description OCL Equation

(1) ECC Each ECC can have no more than one initial state. self.parts(InitState)→size ≤ 1;
(2) ECC State Each EC state must have at least one entry and one exit ECTrans. self.connectedFCOs(”dst”,ECTrans)→size >0 and self.connectedFCOs(”src”,ECTrans)→size >0;

(3) ECTrans No identical EC transition condition is allowed.

let parent:gme::Model = self.parent() in
let sibling= parent.parts(ECTrans) in

let guardcondition = sibling→select(a:ECTrans | a.Guard = self.Guard) in
guardcondition→size ≤ 1;

(4) Interface The name should be unique in the FB.
let parent:gme::Model = self.parent() in

let sibling= parent.atomParts()→select(a | a.kindName = self.kindName) in
let nameofInf = sibling→select(a | a.name = self.name) in nameofInf→size ≤ 1;

(5) Input Variable The datatypes of both connected ports should be compliant. let associateds = self.connectedFCOs(”src”,DC) in
associateds→forAll(obj:DO | obj.Type = self.Type);

(6) Application The role of FB must be ”Instance” in Application. self.parts()→select(p | p.kindName = ”FB”)→forAll(p | p.isInstance() = true)

Fig. 3. Warning information of incompatible connection (STRING to BOOL)

In our current progress, two types of constraint rules are
defined: cardinality constraints and type constraints. Cardi-
nality constraints deal with a series of constraints on the
valid amount of specific elements, while the type constraints
limit the usage of types in the specific context, such as data
connections in FBN, role of model in an application, etc. These
constraints rules are mainly derived from the specification
in the IEC 61499 standard. Parts of the developed rules
are illustrated in Table II, where the build-in key word self
denotes the constrained object itself. An example is described
to illustrate how structural semantics analysis works in the
context of MIC. The example application model is shown in
Fig.3, where

A = 〈{FB1,FB2},
{〈FB1,EO〉 7→ 〈FB2,EI〉, 〈FB2,EO〉 7→ 〈ε, ε〉},
{〈FB2,DI〉 7→ 〈FB1,DO〉, 〈FB2,DI〉 7→ 〈FB1,DO〉, 〈FB1,DI〉 7→ 〈ε, ε〉}〉.

Several incompliances against IEC 61499 exist in this
example. Such as multiple ports with the same name, re-
dundant input connections for a variable ports. Regarding the
type checking case, we let the data type for FB1.DO to be
STRING while FB2.DI as BOOL. According to the rules
in Table II, four warnings related to structural semantics will
be thrown after evaluations. The total rules are listed on the
left of the warning information interface. The information on
the top and right of the dialog box indicates the detailed
explanations and evaluation results. The domain modelers can
then efficiently locate the errors in their models.

B. Behavioral Semantics

This sub-section focuses on the formulation of formal
behavior semantics to define the state evolutions of domain
models when executed. The behavior semantics of FB, FBN
based application as well as the task model are formalized
with input/output LTS (IOLTS) [29]. Particularly, the formal
execution models for BFB and FBN in [21] are leveraged.

IOLTS is a derivative of LTS, which is composed of system
states and transitions between states. Transitions in a LTS
are labelled with actions to describe the behaviors when
the transitions fire. A labelled transition system is a 4-tuple
LTS = 〈Q, q0, L,→〉, where Q is a non-empty set of states;
q0 ∈ Q denotes the initial state; L is a set of actions that a LTS
can perform; →⊆ Q × (L ∪ {τ}) × Q means the transitions
between states with the execution of certain actions, τ denotes
the internal actions of a LTS, and τ 6∈ L. 〈q, a, q′〉 ∈→ is often
written in the form of q a−→ q′.

IOLTS extends the actions of LTS by clarifying its input
actions and output actions between the system and its environ-
ment. IOLTS can be defined as a five-tuple 〈Q, q0, LI , LO,→〉.
LI is a set of input actions while LO the output actions,
LI ∩ LO = ∅. In our proposal, we define LI as observable
trigger conditions while LO as observable emitted objects or
effect functions.

In existing work around the behavior semantics of IEC
61499, finite state machine (FSM) is a widely adopted formal
model. LTS shares many similarities with finite state machine
mathematically. FSM is mainly used for validating sequential
correctness according to specific rules while LTS may be
more suitable for checking non-functional properties, such as
liveness, safeness, etc. The intrinsic difference is that LTS
does not necessarily have finite set of states and finite set
of transitions like finite state machine. Therefore, a FSM can
be seen as a LTS by mapping their counterparts respectively.
Such a feature can facilitate reuses of the achievements on this
topic for ensuring the rationality of our proposal.

Definition 10 (Behavior Semantics of BFB): Given a BFB
instance B = 〈nB , TB〉, with TB = 〈intf, ECC, IV,Alg〉,
(herein, intf = 〈EI,EO,DI,DO,WI,WO〉 is the interface
definition of TB , IV is a set of internal variables while Alg
denotes a set of algorithms. Below, the objects relating to
instance B will be marked with the superscript B. Further
explanations regarding these concepts can be referred to [27]),
the corresponding behavioral semantic model of B is defined

8

as:
SBFB = 〈QB , qB0 , LBI , LBO,→B〉,

where
• QB = {〈lB , vB〉 | lB ∈ ES, vB ∈ [DI]× [IV]× [DO]}

is the state space of B, herein lB ∈ ES is the active state
in the state set of ECC represented with ES while vB is
tuple containing concrete values of all variables.

• qB0 = 〈lB0 , vB0 〉, qB0 ∈ QB is the initial state of B;
• LBI = {〈eiB , diB〉 | eiB ∈ EI ∪ {1}, diB ∈ [DI]}, EI

is an input event set of B, 1 represents ”always true”;
• LBO : ES×V V → (({B} × EO)∗∪{ε})×V V O, V V =

[DI]×[IV]×[DO], V V O = [IV]×[DO], the * operation
on the set {B}×EO represents a set of all finite strings
of elements from this set;

• →B⊆ QB × (LBI ∪LBO ∪ {τB})×QB represents a state
transition of B.
The operational semantics of BFB can be defined as:

〈lB , vB〉 〈ε,di
B〉−−−−→ 〈lB , vB〉, 1©

EnableTrans(lB ,eiB ,diB ,lB
′
)=true

〈lB ,vB〉
〈eiB,diB〉−−−−−−−→
LO(lB ′,vB)

〈lB ′,vB ′〉
, 2©

〈lB , vB〉 τB−−→ 〈lB , vB〉. 3©

The case 1© means that when only input variables ar-
rive without occurring of input events, the state space of
FB remains unchanged, neither output events nor output
variables will be send, herein ε represents the absence of
objects. The final case means that the state of B remain
unchanged when internal actions perform. Specifically, tran-
sitions of IEC 6499 ECC Operation State Machine (OSM)
during the execution process of BFB are treated as the in-
ternal actions. The case 2© means that when the predicate
EnableTrans(lB , eiB , diB , lB

′
) holds under the inputs of

eiB and diB , the state of B will evolve from 〈lB , vB〉 to
〈lB ′, vB ′〉, with output action LO(lB

′
, vvB) being executed.

To explain the second rule, we firstly define:

EnableTrans(lB , eiB , diB , lB
′
) , V al(eiB) ∧ gtei

B

(diB)

where eiB ∈ EI∪{1}, diB ∈ [DI], V al : EO∪EI∪{1} →
{true, false}, gt is a guard function associated with an ECC
transition t and tei

B

is an ECC transition t labelled with eiB

going out. Here, g ∈ G, G represents a set of all possible
guard functions g : [DI] → {true, false}, t ∈ T represents
an element in the ECC transition set T , T ⊆ ES × (EI ∪
{1})×G× ES. Specifically, V al(1) = true, g(∅) = true.

We currently assume that only input data is involved in the
guard conditions, and a transition is related to one input event
at most. Besides, multiple transitions between two states with
identical input events are not allowed.

Then, we define CA ⊆ ES × K for relating ECC states
and EC actions K, K = (Alg ∪ {ε}) × (EO ∪ {ε}), Alg
represents a set of all algorithm functions alg, alg : V V →
V V O. Then, the function LBO , which updates variable states
and generates sequences of output events, can be defined as
LBO : ES × V V → ({B} × EO)∗ × V V O and calculated by
the following algorithm:

inputs: lB is a current state of ECC, and vB is a tuple of current states of
all variables of BFB instance B.
outputs: z is a sequence of event outputs from which signals will be
outcome when executing the algorithm, and x is a resulted state of internal
and output variables of the BFB instance.
1: z ← ε // Construct an empty sequence
2: foreach 〈lB , klB 〉 ∈ CA // Order of actions is not considered currently
3: if algklB 6= ε then
4: x← algklB (vB);
5: end if
6: if eoklB 6= ε then
7: V al(eoklB)← true; // Set output event
8: z ← z + 〈B, eoklB 〉; // Add the output event to the sequence, ”+”
means concatenating a new character to the tail of a string
9: end if
10: end foreach
11: return 〈z, x〉

An execution procedure of a BFB instance B under the
event and data input is defined as a function of run-to-
complete steps consisting of multiple state transitions. It can
be calculated by the following algorithm:
RTC StepB : EI × V V → ({B} × EO)∗

assumption: 1)there is an initial execution queue z0 ∈ QE∗ before starting
the algorithm; 2) lB

+
is used both as an ordinary variable and as a bounded

variable in logical expressions with a quantifier; 3) when calculating logical
expressions with a quantifier, the destination ECC state is stored in lB

+
.

inputs: eiB ∈ EI is an event input with a signal to be active; lB0 ∈ ES is
a current state of ECC from which it is run; vB0 ∈ V V is a tuple of current
states of all variables of BFB instance B.
outputs: z is a sequence of event outputs from which signals will outcome
when executing the possible ECC transitions.
1: lB

− ← lB0 ; vB ← vB0 ; z ← z0 // Set initial conditions
2: if ∃ (lB

−
, eiB , lB

+
) ∈ T : EnableTrans(lB

−
, eiB , diB , lB

+
)

then
3: V al(eiB)← false // Reset input event
4: do
5: lB

− ← lB
+ // Update current active ECC state

6: 〈e, vvo〉 ← LB
O(lB

−
, vB) // Run output action upon transition

7: Update values of vB according to vvo by matching names of variable
8: z ← z + e // Gather output event sequences
9: until ∃ (lB−, 1, lB+) ∈ T : EnableTrans(lB−, 1, diB , lB+)
10: end if
11: return z

Since we mainly concern the reachability of specific ECC
states of FBs, we simply consider the state transition behaviors
occurring under specific inputs. The comprehensive procedures
including the data buffering mechanism, the transitions of
OSM during execution and the formalized running process
of algorithms can be referred to [30].

Before specifying the behavioral semantics of application
model in the context of BSEM, the basic element of the
buffered queue during execution should be identified.

Definition 11 (Execution Queue Element): Given an appli-
cation model A = 〈FBI,EC,DC〉, a set of execution queue
elements is defined as: QE =

⋃
j∈FBI(j×EOj). EOj is a set

of output events in the interface list of FB instance j. Then, the
execution queue can be defined as QE∗, where the * operation
represents a set of all finite strings of elements from the set
QE including the empty string. Let eq = e1e2...en(n ≥ 0),
eq′ = e1e2...ek(k ≥ 0) be the substrings of QE∗, some related
help functions of QE* are defined as follows:
• Dequeue : QE∗ → QE × QE∗, this function pops up

the first element in the queue;
• Enqueue : QE∗ × QE∗ → QE∗ this function pushes

sequences into the tail of queue;

9

• Empty : QE∗ → {true, false}, it can be calculated by
the rule: {

Empty(eq) = true, if n = 0

Empty(eq) = false, if n > 0

• SelectActiveFB : QE∗ × [DO]→ {ε} ∪ FBI ×EI ×
[DI], it can be calculated by the following algorithm:

assumption: the function of the values of FB instances output variables,
and the function WI are considered known in the algorithm and not passed
as parameters
inputs: eq ∈ QE∗ is the execution queue
outputs: k is an identifier of the active FB instance; eik is an event input
with a signal to be processed; D is a tuple of valued input variables
associated with eik .
1: if ¬Empty(eq) then // The queue is not empty
2: 〈e, eq′〉 ← Dequeue(eq), e = 〈i, eei〉, e ∈ QE // Pop up the first
queued FB and output event
3: 〈k, eik〉 ← EC(i, eei) // Extract connected FB and input event
4: dik ←WI(eik) // WI : EI → 2DI , extract the input variables
related with the ”with” function
5: foreach dk ∈ dik
6: 〈f, dof 〉 ← DC(k, dk) // Extract connected FB and output variable
7: D ← D + 〈dik, vdof 〉 // vdo

f
is the value of dof

8: end foreach
9: return 〈k, eik, D〉
10: else return ε

Definition 12 (Behavioral Semantics of Application): The
execution of an application model involves selection of active
FB instance based on event and data propagations. Given an
application model A = 〈FBI,EC,DC〉, with the buffered
sequential execution mechanism, the corresponding behavioral
semantic model can be defined as:

SA = 〈QA, qA0 , LAI , LAO,→A〉,

where
• QA represents the state space of A, QA = {〈kA, eqA〉 |
kA ∈ FBI ∪{ε}, eqA ∈ QE∗}, kA is the last active FB;

• qA0 = 〈ε, ε〉 ∈ QA is the initial state of A;
• LAI = {〈kA, eik, dik〉 | kA ∈ FBI, eik ∈ EIk, dik ∈

[DIk]};
• LAO : FBI × EI × [DI]→ QE∗;
• →A⊆ QA × (LAI ∪ LAO ∪ {τA})×QA represents a state

transition of A.
The operational semantics of an application model can be

defined as:

qA0
〈kA,eik,dik〉−−−−−−−−−−→

LAO(kA,eik,dik)

〈kA, eqA〉 1©

lA←SelectActiveFB(eqA), lA=〈kA′
,eik

′
,dik′〉

〈kA,eqA〉
lA−−−−−−−−−−−→

LA
O

(kA′,eik′,dik′)
〈kA′,eqA′〉

, 2©

〈kA, eqA〉 τA−−→ 〈kA, eqA〉. 3©

Case 1© specifies insertion of event source FB into the
execution queue by the task related with this application
model. This FB is connected to specific external inputs of the
task model. In case 2©, the output action function for updating
execution queue can be calculated based on the following
algorithm:

1: ee← RTC Stepk(eik, vk) // Execute active FB k, gather outputs
2: return ee

The execution procedure of an application model A initiated
by the input action 〈fs, eifs , difs〉 is named as AppExec, it
can be calculated by the following algorithm consisting of
multiple state transitions:

1: eqA ← LA
O(fs, eifs , difs)

2: lA = SelectActiveFB(eqA)
3: while (lA 6= ε)
4: do
5: ee← LA

O(lA)

6: eqA ← Enqueue(ee, eqA)
7: lA = SelectActiveFB(eqA)
8: end while
9: return ee // ee is the queued strings during the latest execution

In the algorithm presented above, Line 1-3 corresponds to
the first case of state transition of A while Line 5-8 represent
the second case. The returned value of this procedure will be
utilized during the execution of a task model.

Definition 13 (Behavior Semantics of Task Model): The
execution of a task model includes the interactions with under-
lying operating system and the execution of FB application.
Given a task model t = 〈TPara, Ie, Oe, CI , CO, NFR〉, the
corresponding behavioral semantic model can be defined as:

St = 〈Qt, qt0, LtI , LtO,→t〉
where
• Qt represents the state space of t, Qt = S × QtA, S =
{idle, ready, executing, finished, error} and QtA is
the state space of related application model Aτ ;

• qt0 = 〈idle, qA0
t〉 ∈ Qt is the initial state of tsk, qA0

t ∈
QtA.

• LtI = {δ}∪Ie∪LIA, LIA is the input actions of Aτ and
δ represents the system call from operating system;

• LtO = LO
A ∪Oe, LOA is the output actions of Aτ ;

• →t⊆ Qt × (LtI ∪ LtO ∪ {τ t}) × Qt represents the state
transition of tsk under certain inputs, and five common
cases of transitions may exist:

〈idle, qtA〉
δ−→ 〈ready, qtA〉, 1©

〈ready, qtA〉
ie−−−−−−−→

LAO(fs,ei,ε)
〈executing, qtA

′〉, ie ∈ Ie, 2©

lA←SelectActiveFB(eqAτ), lA=ε
〈executing,qtA〉−→oe 〈finished,q

t
A〉
, oe ∈ Oe, 3©

lA←SelectActiveFB(eqAτ), lA=〈kA′
,eik

′
,dik′〉

〈executing,qtA〉
lA−−−−−−−−−−−→

LA
O

(kA′,eik′,dik′)
〈executing,qtA

′〉
, 4©

〈s, qtA〉
τt−→ 〈s, qtA〉, s ∈ S. 5©

The execution procedure of a task model can be calculated
by the following algorithm:

1: s← idle, qA ← qtA0 // Initial Conditions
2: P (δ) // Await system call (PV operation, P: pending, V: posting)
3: s← ready
4: foreach ie ∈ Ie // The order of ie is not considered
5: P (ie) // Await specific external input
6: 〈fs, eifs 〉 = CI(ie) // Extract related FB instance and input event
7: s← executing
8: Z ← AppExec(fs, eifs , ε)

9: foreach z of Z, z = 〈fze , eof
z
e 〉

10: oe ← CO(fze , eo
fze), V (oe) // Extract and post related external output

11: end foreach
12: s← finished
13:end foreach

10

ExtOUT
ExtSP

ExtPV

INIT

INITO

POSTO

EXT_PRE

6713

Task

MAIN INITSTART

MAIN INITEXO INITO

INITEX

INIT

POSTPRE START

POSTINITPRE PREO INITO POSTO

INIT

POSTPRE

MAIN

STARTINIT

MAININIT

INITO EXO

INIT

EX

[T: CALCULATOR]
CALC

INIT
PRE
POST

INITO
PREO

TD

SP
KP
KI

PV

DTERM
ITERM

XOUT
Error

CYCLE

POSTO

RUN
HOLD

[T: DERIVATIVE]
DEV

INIT
EX

INITO
EXO

XIN
CYCLE

RUN
XOUT

[T: INTEGRAL]
INT

INIT
EX

INITO
EXO

XIN
CYCLE

HOLD
XOUT

Fig. 4. A PID application modeled with our DSML

where Line 1-3 corresponds to the first case of state transition
, Line 4-8 represent the second and the fourth case while Line
9-12 are related to the third case.

The formal behavioral semantics can be the guidelines for
the implementation phase activities, such as automatic code
generation and execution environment establishment, which
will not be elaborated in this article as design phase activities
are the main concerns. Since that domain models conformed to
the formal behavior semantics described in this section cannot
be directly verified using the available tools, a model-to-model
transformation approach is therefore required.

VI. AUTOMATED FORMAL VERIFICATION THROUGH
MODEL TRANSFORMATION

In this section, formal verification of models composed
by our DSML is discussed. A model checking approach
based on the timed automaton (TA) is presented. Particularly,
the graphical model checking tool, UPPAAL, is employed
for this purpose. Multi-layered time automata networks are
automatically generated from the source model in the M1
layer, facilitating formal verification on schedulability and
liveness of task models as well as reachability of FB models. A
simple application for implementing PID calculation using our
proposed DSML will be described as the illustrative example
in this section. The example is shown in Fig. 4.

A TA can be defined as a 6-tuple: 〈L, l0, C, V,A,E〉, where
L is a set of locations, l0 is the initial location, C is a set of
real-valued clocks, V is a set of Boolean, channel or integer
variables defined in the form of 〈name, value〉, A is a set of
actions, E ⊆ L× 2A ×EV AL×L is a set of edges between
locations, where EV AL is a set of all possible functions:
eval : [V]× [C]→ {true, false}. In the context of UPPAAL,
the actions A = Async ∪ Aupdate, where Async denotes the
synchronization actions between TA, and Aupdate is a set of
updating functions over [V]× [C]. A TA network T is simply
defined as a set of TA, T = {ta1, ta2, ..., tan}. The semantics
of TA can be specified with a LTS [31].

Finally, the complete UPPAAL model can be defined as:
UM = 〈GV, T , I〉, where GV is a collection of variables,
including clock type, channel type, etc., I = 〈PI,≺〉 is the
ordered set of TA model instances PI inherited from T , the
orders of TA models determine their priorities.

Algorithm 1: Transforming Tasks Set to UPPAAL model
inputs : A set of tasks Γ related to a device model dev.
output: A populated model UM = 〈GV, T , I〉.

1 procedure TS2TA(Γ)
2 GV ← ∅, T ← ∅, I ← ∅;
3 Create a scheduler TA, ta1 := 〈L, l0, ∅, ∅, Ata1 , Eta1 〉;
4 L = {idle, scheduling, executing}, l0 = idle;
5 T ← T ∪ {ta1}, I ← I ∪ {Ita1}; // Add new instance to the end of I
6 foreach τ ∈ Γ do
7 Create a variable id as the index of τ , and two channel variables

cv1, cv2 as the flags of starting/finishing execution,
GV ← GV ∪ {id, cv1, cv2};

8 Create a compound variable gv containing sub-variables respective to
the attributes of TParaτ , GV ← GV ∪ {gv};

9 Create two actions async1, async2 awaiting/posting the
starting/finishing flag, based on cv1, cv2;

10 Create a pair of edges, e : executing
async1−−−−−→ scheduling,

e′ : scheduling
async2, eval(gv)−−−−−−−−−−−−→ executing;

11 Create an action async3 and a pair of edges,

e1 : scheduling
eval(gv)−−−−−−→ idle,

e1
′ : idle

async3−−−−−→ scheduling; // Awaiting periodic system call
12 Ata1 ← Ata1 ∪ {async1, async2, async3};
13 Eta1 ← Eta1 ∪ {e, e′, e1, e1′};
14 Create a TA for τ , taτ := 〈L′, l′0, C

′, V ′, A′, E′〉;
L′ = {idle, ready, executing, finished, error}, l′0 = idle

15 Update A′, E′ according to τ ;
16 T ← T ∪ {taτ}, I ← I ∪ {Itaτ }; // Adjust orders of elements in

I based on their priorities specified in TParaτ

17 return UM

The proposed model transformation approach will produce
several UPPAAL models: a task set verification model and
a series of FBN verification models respective to each task
model. The FBN verification model consists of several TA
for verifying FBs in the FBN. During the transformation
process, the behavior semantics of FB, FBN and task are
derived in the form of time automata. Since they have the
same mathematical definitions based on LTS, the verification
of these time automata networks can also prove the non-
functional properties of the source models, assuming that the
model-to-model mapping procedure is correct.

Algorithm 1 shows the main mapping rules for populating
a UPPAAL model with the input of a specific device model
containing a set of task models. Several Task TA will be cre-
ated to abstract the temporal execution procedure of the input
task set. These tasks are scheduled with a policy called Rate
Monotonic Scheduling, which is modeled by the Scheduler
TA. Comprehensive modeling of RM-based scheduler is out
of the scope of this paper, therefore we will not elaborate on
it. Algorithm 2 will populate a UPPAAL model from a single
task, with internally calling Algorithm 3 for transforming FB
instances in the task model to corresponding TA models.
The Event dispatcher TA model generated by Algorithm 2
abstracts the AppExec function while those by Algorithm 3
is respective to the RTC Step function. Currently, only BFB
instances can be transformed while SIFB instances should be
added manually. The generated TA can be utilized in UPPAAL
for simulating the logical behaviors. Furthermore, together
with the TCTL rule files, formal verification of the concerned
non-functional properties can be achieved. These algorithms
are implemented using the graph rewriting and transformation
language, a model transformation language provided as a part
of the MIC toolchain [32].

11

Algorithm 2: Transforming Task to UPPAAL model
inputs : A task model τ and related application model Aτ figured out by the

device configuration model.
output: A populated model UM = 〈GV, T , I〉.

1 procedure T2TA(τ, Aτ)
2 foreach f ∈ FBIAτ do
3 Create a FB TA taf , taf ← FB2TA(f); // Only BFB is supported
4 T ← T ∪ {taf};
5 I ← I ∪ {Itaf }; // Add new instance to the end of I

6 Create an event dispatcher TA tae,
tae := 〈L, l0, {c0}, {v0}, Atae , Etae 〉, L = {l0}, l0 = idle,
Atae = {async0, aupdate0},
Etae = {e0}, e0 : idle

async0,aupdate0−−−−−−−−−−−−→ idle;
7 T ← T ∪ {tae}, I ← I ∪ {Itae}; // Add new instance to the end of I
8 foreach ec ∈ ECAτ do
9 Create a channel variable cv and a integer variable nIdx as the index

of ec, GV ← GV ∪ {cv, nIdx};
10 Create a location l, Ltae ← Ltae ∪ {l};
11 Create a synchronization action async awaiting the occurrence of cv,

and a update action aupdate for enqueue operation of nIdx;
12 Atae ← Atae ∪ {async, aupdate};
13 Create an edge e : idle

async,aupdate−−−−−−−−−−−→ l, and the reverse edge
e′ : l −→ idle;

14 Etae ← Etae ∪ {e, e′};

15 foreach dc ∈ DCAτ do
16 Create v, GV ← GV ∪ {v}, v is related to the input variable of dc;

17 foreach ie ∈ Ieτand oe ∈ Oeτ do
18 Update tae based on CI and CO as lines 9-14 do;

19 return UM

Algorithm 3: Transforming BFB to TA
inputs : A BFB model f .
output: A populated model ta = 〈L, l0, C, V,A,E〉.

1 procedure FB2TA(f)
2 foreach es ∈ ESf do // ES denotes the ECC states of f
3 Create a location, l, L← L ∪ {l};
4 foreach ea ∈ Kes do // K: Actions related to es
5 Create a location, l′, L← L ∪ {l′};
6 Create an edge e, a synchronization and an update actions

a0, a1, based on ea, l, l′; E ← E ∪ {e};
A← A ∪ {a0, a1};

7 foreach et ∈ ET f do // ET denotes the state transitions
8 Create an edge e, a synchronization and an update actions a0, a1,

based on et and related guard condition;
9 E ← E ∪ {e}; A← A ∪ {a0, a1};

10 foreach fbv ∈ DIf ∪DOf ∪ IV f do
11 Create a variable v based on fbv, V ← V ∪ {v};

12 return ta

The example shown in Fig. 4 mainly contains a single task
model and a FB application composed by 3 interconnected
FB instances. The task model is mapped to a resource model
representing the DSP-based hardware platform running the
DSP/BIOS operating system. The corresponding ECCs of each
FBI are shown in the bottom part of Fig. 4.

By applying the model transformation algorithms stated in
this section, several TA models can be achieved, as shown in
Fig. 5. Since there is only one task model in the example,
the generated task set verification models shown in Fig. 5(a)
contains only one TA for the task, and only one pair of tran-
sitions exists between the scheduling and executing location
of the Scheduler TA. Detailed implementation of the line 15
in Algorithm 1 (e.g., constructions of actions and transitions)
is based on a template TA similar to Task TA in Fig. 5(a).
Multiple Task TA models will share the same location sets
and edge sets, only differing in the value of the id.

Fig. 5(b) represents the event dispatcher TA related to the
FB application contained in the task model. The corresponding
TA models for each FBI are given in Fig. 5(c). These models
are generated with Algorithm 2 and Algorithm 3. In detail,
async0 in the line 6 of Algorithm 2 is corresponding to
the synchronization action "event[front]!" in Fig. 5(b),
which means posting the top element of the execution queue.
Meanwhile, aupdate0 in the line 6 of Algorithm 2 is related to
the update action "dequeue(), isInit=1" in Fig. 5(b),
which removes the top element from the execution queue. In
Fig. 5(c), the anonymous locations are created by the code
snippet from line 4-6 in Algorithm 3. Transition from named
locations representing specific ECC states to these anonymous
locations will execute synchronization and update actions with
respective to sending output event and executing algorithm
function. For the code snippet from line 7-9 in Algorithm 3, the
source locations of the created edges will be the anonymous
locations related with the corresponding source ECC states.

Basically, the first property can be verified for the generated
models is the schedulability by checking whether the predicate
”AG ¬ deadlock” holds, which means for all state transition
traces, no deadlock will happen. Reachability of specific states
of FBs can also be verified with the predicate that ”EF F-
B.fb state” is true, which means that exists a state transition
trace where the state fb_state of FB will be eventually
reached. Compared with the work of [17], we additionally
provide analysis for the schedulability of concurrent tasks,
which will be elaborated in the next section.

VII. DESIGN OF A CNC SYSTEM: A CASE STUDY

In this section, a distributed CNC system is modeled and
verified using the proposed DSML and supporting modeling
environment. Typically, the working process of a CNC system
starts with G-Code files parsing and ends in motion control of
corresponding axes to generate desired trajectory. The motion
control process can be further divided into supervisory control,
trajectory planning and axes position control. These functions
will be deployed to distributed control nodes in this case study.

A. System Modeling

During the design process of the example CNC system, the
platform, function and configuration aspects are synthetically
considered. With respect to the platform aspect, an ARM-
based Beaglebone Black Board (referred as dev1) and a DSP-
based motion control card (referred as dev2) is leveraged
for executing CNC tasks. For each device model, a single
resource model is contained inside (ARM Cortex-A8 for dev1
and TMS320C6713 for dev2). An industrial PC (IPC) is
employed for implementing information exchange between
these two device models. The IPC is connected to dev1 via
TCP/IP protocol, and dev2 is plugged into the IPC through
PCI bus. Since the IPC device is only used for forwarding
motion control commands from dev1 to dev2, modeling of
its functions and configuration will not be elaborated in this
example.

As to the function and the configuration aspect, application
development and task allocation are carried out. The platform

12

Task Scheduler

error

finished
executing

wait
PeriodSignal ?

start[id] ?

finish[id]!

idle

st> task[id].deadline

et>=task[id].bcet&&

st< task[id].deadline

st> task[id].deadline

start[id]!

et = 0, task[id].status = 2

task[id].status = 4

task[id].status = 4

st = 0,

task[id].status = 1

task[id].status = 3

task[id].status = 0,

et = 0

idle

task[0].status==1

scheduling

executing

PeriodSignal?
forall(i:int[0,0])

task[i].status==0

finish[0]?start[selectTask()]!

(a) The generated TA models by Algorithm 1

Dispatcher

cFBDEV_EXO ?cFBCALC_PREO ?

cFBDEV_INITO ?

cEXT_INIT ?

event[front()]!

cFBCALC_INITO ?

cFBINT_EXO ?

enqueue(nFBCALC_PRE)
cEXT_EXT_PRE ?

FBDEV_EXO
FBCALC_PREO

FBDEV_INITO

EXT_INIT

idle

FBCALC_INITO
FBINT_EXO

enqueue(nFBCALC_INIT)

enqueue(nFBCALC_POST)

enqueue(nFBDEV_INIT)

dequeue(),isInit=1

len> 0

enqueue(nFBINT_INIT)
enqueue(nFBDEV_EX)

enqueue(nFBINT_EX)

EXT_EXT_PRE

(b) The generated TA model by Algorithm 2
FB_CALCFB_DEVFB_INT

event[nFBINT_EX]?

event[nFBINT_INIT]?

START

ALG_EX()

cFBINT_INITO!

ALG_INIT()

cFBINT_EXO!

INIT

MAIN

START

event[nFBDEV_INIT]?

cFBDEV_INITO!

ALG_INIT()

cFBDEV_EXO!

ALG_EX()

event[nFBDEV_EX]?

MAIN

INIT

event[nFBCALC_INIT]?

event[nFBCALC_POST]?event[nFBCALC_PRE]?
START

ALG_POST()ALG_PREO()

PRE

INIT

POST

cFBCALC_INITO!

cFBCALC_POSTO!

ALG_INIT()

cFBCALC_PREO!

(c) The generated TA models by Algorithm 3

Fig. 5. The generated UPPAAL models for verifying the PID application

independent application is modeled with the pre-constructed
FB libraries in the system layer. The developed application
is allocated layer by layer to the task models that will be
scheduled on device models. The non-realtime Linux system
and real-time DSP/BIOS system are chosen for CPUs of dev1
and dev2, respectively, to execute the contained tasks. In this
example, both non-realtime and real-time tasks are defined.
The G-Code parsing task is deployed in dev1 while the motion
control tasks are in dev2. The overall platform aspect of the
final system model and the task models are shown in Fig. 6.
The generated control kernel is validated on a prototype X-Y
testbed established as Fig. 7 shows.

In this example, the FB instances CMD TRANSLATOR1
will interpret motion command packet received from PC2DSP.
The concrete motion parameters are sent to TrajectoryTsk
through SEND PARA. The main functioning FBIs in this task
are INTERPOLATOR and PLANNER. The former FBI tackles
with post-processing of the intermediate set-points calculated
by the latter FBI. These intermediate set-points are a series
of desired velocity values generated by the S-Curved velocity
planning algorithm contained in the PLANNER FBI. There-
fore, the pattern of acceleration/deceleration control before
interpolation (ADCBI) can be implemented. The processed
velocity set-points are then sent to the final output task

ExtEventExtEvent

GCodeTskARM_CPU

PCIBUSEthernet

BeagleboneBlack MotionControlCard

TrajectoryTsk
PosControlTsk

TrajectoryTskCommTsk

DSP

SystemTiming constraints of task models in MC Card

TaskName
Period

(us)
Deadline

(us)
BCET

(us)
WCET

(us)

CommTsk
TrajectoryTsk
PosControlTsk

4000
2000
1000

2000
1000
500

30
30
30

500
600
100

Prior

4
7

10

PosControlTsk

CommTsk

START
STOP

DT

EO

[T: E_CYCLE]
CYCLE1

[T: SUBSCRIBE_1]
PC2DSP

INIT
RSP

INITO
IND

QI
ID RD_1

QO

[T: CMD_PARSER]
CMD_PARSER

INIT
REQ_1 INITO

CNF

CMD

Direction

REQ_2

CenY
EX
EY

CenX

[T: PUBLISHER_5]
SEND_PARA

INIT
REQ

INITO
CNF

SD_3

ID
SD_1
SD_2

QI

SD_4
SD_5

QO
STATUS

[T: PUBLISHER_1]
PUB2

INIT
REQ

INITO
CNF

ID
QI QO

STATUS
SD_1

[T: PUBLISHER_1]
PUB1

INIT
REQ

INITO
CNF

ID
QI QO

STATUS
SD_1

[T: SCURVED_TP]
PLANNER

INIT
REQ

INITO
CNF

Radius

Finished
CurSpeed

Execute

StartSpeed
RemainL

EndSpeed
TargetSpeed

Acc

Jup
Dec

Jdown

[T: SUBSCRIBE_5]
RECV_PARA

INIT
RSP

INITO
IND

RD_3
ID

RD_1
RD_2

QI

RD_4
RD_5

QO
STATUS

[T: ARC_INTERPO_CALC]
INTERPOLATOR

INIT
REQ

INITO
CNF

ZCurPos

CenX

RemainL
XCurPos

Execute
IsError
Radius

EX
CenY

Dir
EY

CurSpeed

[T: PUBLISHER_2]
SENDPOS

INIT
REQ

INITO
CNF

ID
SD_1
SD_2

QI
QO

STATUS

IPC

START
STOP

DT

EO

[T: E_CYCLE]
CYCLE0

[T: SUBSCRIBE_2]
FEEDBACK

INIT
RSP

INITO
IND

ID
QI

QO
STATUS
RD_1
RD_2

[T: SUBSCRIBE_2]
RECVPOS

INIT
RSP

INITO
IND

ID
QI

QO
STATUS
RD_1
RD_2

[T:PID]
AXIS_XCONTROL

INIT
PRE

INITO
POSTO

TD

SP
KP
KI

PV

OUT

[T:PID]
AXIS_YCONTROL

INIT
PRE

INITO
POSTO

TD

SP
KP
KI

PV

OUT

[T: TOKENIZE]
FB1

INIT INITO
CNF

FileName
BUFFERO

isError
errorID

REQ
[T: TRANS2MCDATA]

FB5

INIT INITO
CNF

BUFF
MCData
isError
errorID

REQ

[T: REMOVE_COMMENT]
FB2

INIT INITO
CNF

BUFF
BUFFERO

isError
errorID

REQ

[T: G2INTTOKEN]
FB3

INIT INITO
CNF

BUFF
BUFFERO

isError
errorID

REQ

[T: SYNTAX_CHK]
FB4

INIT INITO
CNF

BUFF
BUFFERO

isError
errorID

REQ

[T: EXEC_CODE]
FB6

INIT INITO
CNF

MCData
MCCMD
isError
errorID

REQ

Fig. 6. A prototype CNC system and its FB-based task models

+X -X

-Y

+Y

Fig. 7. The established X-Y testbed for the case study

PoscontrolTsk. The aforementioned PID application is utilized
in this task in the form of CFB (the FBI AXISX CONTROL
and AXIS YCONTROL), which will send the intermediate
position to the external drives during each servo cycle.

B. Non-Functional and Functional Validations

The real-time parameters of these task models are also listed
in Fig. 6. These settings will be verified according to the
criteria defined in the constraint atoms contained in the task
models. Parts of these criteria are listed in Table III. In detail,
Rule 2-4 for FB TA can verify the reachability of concerned
states in the corresponding FBIs.

With respect to verification of task models, both symbolic
and statistical model checking methods are adopted in the
schedulability analysis, as Rule 1 and Rule 2 for task TA in
Table III presents. Symbolic model checking (e.g., Rule 1) is
suitable for verifying simple TA models precisely, while the
statistical methods (e.g., Rule 2, which estimates probability
of whether the predicate ”F TrajectoryTsk.error ∨ CommT-
sk.error ∨ PosControlTsk.error” holds over the range of 0-

13

200000 unit time) can tackle with complicated models under
specific probability and uncertainty. With Rule 2, UPPAAL
can estimate the probability of scheduling failure indicated by
the error state of tasks. The verification results of Rule 2 for
task TA are shown in Table IV. At last, Rule 3 for task TA
is mainly related to the reachability property of the execution
state for the task model, while rule 4 is related with the safety
property.

The list of task parameters given in Fig. 6 can pass all the
proposed verification rules, which means that this group of
settings can be applied during the implementation phase. Cur-
rently the worst-case execution time of FBIs are determined by
the profiling plug-in in the DSP/BIOS developing tool. Some
advanced model-level timing analysis (e.g., [33] and [34]) may
be adopted in future work.

TABLE III
PARTS OF THE VERIFICATION RULES

UPPAAL Models No. Verification Rules (in the form of CTL)

Function Block
TA

1 AG ¬ deadlock
2 EF FB INT.MAIN
3 EF FB DEV.MAIN
4 EF FB CALC.POST

TaskSet & Task
TA

1 AG ¬ deadlock

2
Pr[≤200000] (F TrajectoryTsk.error

∨ CommTsk.error
∨ PosControlTsk.error)

3 EF TrajectoryTsk.executing

4 AG TrajectoryTsk.error ⇒ TrajectoryTsk.st
>TrajectoryTsk.deadline

A preliminary implementation of the modeled CNC system
is established based on the code generators proposed in [35].
The execution graphs of the real-time tasks in the MC card
device with different timing settings are represented in Fig. 8.
They are recorded using the Code Composer Studio tool.
All the tasks are periodic, which can be implemented by the
combination of periodic object (PRD) and software interrupt
object (SWI) provided in the DSP/BIOS system. Each shot of
the periodic task starts with the triggering of PRD handlers.
Then, the PRD handlers will enable the corresponding pre-
configured SWI objects, which contain the concrete functions
of the task. As can be inferred from the execution graphs,
the period settings used by Fig. 8(a) will result in scheduling
failure, because the task with lowest priority CommTsk cannot
be executed normally during every scheduling cycle. Schedul-
ing failures of motion control system will result in delayed
response of motion command or even uncontrolled quick stop
of motor, causing unpredictable dangers. These settings are
also verified according to the rules in Table III, and rule 1
for Task TA return false. The passed task parameter settings

TABLE IV
PROBABILITIES OF SCHEDULING FAILURE IN THE CNC EXAMPLE

No. Confidence (1− α) Uncertainty (ε) Probability

1 0.95, α=0.05 0.05 [0, 0.0973938]
2 0.95, α=0.05 0.01 [0, 0.019956]
3 0.99, α=0.01 0.05 [0, 0.0986743]
4 0.99, α=0.01 0.01 [0, 0.0199441]

1 ms

Task
Ready

Task
Executing

Periodical tick generates,all the CNC task
 are ready

Execution of PoscontrolTsk
(Highest Priority)

Execution of TrajctoryTsk (Medium Priority)

CommTsk cannot be executed
(Schedule Failure)

Periodical tick generates,PoscontrolTsk
 and TrajectoryTsk are ready

Task
Ready

Task
Executing

Execution of PoscontrolTsk

Execution of TrajctoryTsk

(a) Execution graph of motion control tasks with the period settings:
4000/1000/1000 us for CommTsk/TrajectoryTsk/PosControlTsk

1 ms

Execution of PoscontrolTsk
(Highest Priority)

Execution of TrajctoryTsk (Medium Priority)

Execution of CommTsk (Lowest Priority)

Task
Ready

Task
Executing

Task
Ready

Task
Executing

Execution of PoscontrolTsk

Periodical tick generates,all the CNC task
are ready

Periodical tick generates,only
PoscontrolTsk is ready

(b) Execution graph of motion control tasks with the period settings:
4000/2000/1000 us for CommTsk/TrajectoryTsk/PosControlTsk

Fig. 8. Execution graph of the real-time tasks in the MC card device

0 50 100 150 200 250 300

-5000

0

5000

10000

15000

20000

25000

pu
ls

es
(n

/m
s)

set-points index(n)

Axis Y
Axis X

Trajectory

Fig. 9. The output set-points of Axis X and Axis Y and the trajectory

listed in Fig. 6, however, can ensure scheduling correctness of
all tasks, as can be inferred from Fig. 8(b). In this sense, our
approach can meet the requirement of dependability at the
early design stage, which cannot be provided by traditional
methods.

The functional correctness is then proved by a use case.
A G-Code file for generating circular trajectory is transmitted
to dev1 which executes the parsing task. Following that, the
motion control tasks are executed. The sampled position set-
points of both Axis X and Axis Y generated by dev2 are
presented in Fig. 9, along with the desired circular trajectory.
According to the results of functional and non-functional
verifications, the feasibility of our proposal can be proved in
terms of the capability of dependable design of a low-level
automation control system.

C. Quantitative Assessments of Generated Code

Finally, quantitative assessments of our approach are con-
ducted regarding the capability of taming design complexity.
Since there are no common metrics for evaluating domain
model complexity, we carry out quantitative assessments of
the generated code instead. The generated code of the MIC
approach is evaluated, compared with our legacy manual
coded motion control kernel software, using several soft-
ware engineering metrics, including 1) CountDeclFileCode,
2) AvgCyclomatic, 3) MaxCyclomatic, 4) MaxNesting and 5)

14

9 11.66
8 9.67

567

35

3.17 6
1.85

73

CountDeclFileCode AvgCyclomatic MaxNesting TotalAvgEssential MaxCyclomatic
0

20

40

400

450

500

550

600

Traditional Approach
MIC Approach

Fig. 10. Metrics for complexity of the source code

TotalAvgEssential. In detail, Metric 1 is the total number of
source files; Metric 2 is the average cyclomatic complexity
for all nested functions or methods; Metric 3 is the maximum
cyclomatic complexity; Metric 4 is the maximum nesting level
of control constructs in all functions while Metric 5 is the
average essential complexity. These complexity metrics can
indicate the modularity and maintainability of the program.

In this paper, the metrics are evaluated using a commercial
code analysis tool, Understand. The assessment results are
shown in Fig. 10. It is shown that almost all metrics have
better values for our approach, meaning that the complexity
can be effectively reduced using the proposed MIC approach,
in spite of the increase of the total source files. Since our
code generator will generate a source and head file for each
models, the CountDeclFileCode can reflex the complexity of
models. Higher modularity is achieved by decomposing the
monolithic motion control software into multiple FB-based
tasks. Thus, complexity of the main components, such as
trajectory planner, interpolator, etc., can be reduced. In this
sense, the effectiveness of the proposed solution can be proved
regarding industrial automation systems design.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a model-based solution to design low-
level control system applied to the industrial automation
domain. The main goal is to enhance the abstraction level,
dependability as well as flexibility of the design process. The
MIC approach is adopted, and accordingly a domain-specific
modeling language and the corresponding modeling environ-
ment is developed. The IEC 61499 standard is leveraged as the
reference for defining meta-models of our DSML. Both formal
structural and behavioral semantics are explicitly specified as
the ground of formal model verifications. To ensure flexibility,
both syntax and semantics definitions are encoded as external
XML files of a meta-programmable modeling environment.
Verifications of the modeled artifacts with respect to non-
functional and functional properties are attained by a model-to-
model transformation approach. A case study is demonstrated
to exhibit the feasibility of the proposed solution.

Future work in this direction is envisaged as follows:
• The ontology technology can be integrated in the meta-

model layer for achieving more advanced semantic anal-
ysis;

• Correctness-proof on the model transformation procedure
can be conducted for validation on the preservation of
concerned properties;

• Model-based simulation in the early development stage
can also be achieved through similar transformation ap-
proaches. Particularly, simulation of the communication
process is desired.

• Evaluation of other formal languages with possibly higher
industrial maturity of supporting tools.

REFERENCES

[1] G. Pritschow, K.-H. Wurst, C. Kircher, and M. Seyfarth, “Control
of reconfigurable machine tools,” in Changeable and Reconfigurable
Manufacturing Systems, pp. 71–100, Springer, 2009.

[2] V. Lesi, Z. Jakovljevic, and M. Pajic, “Towards plug-n-play numerical
control for reconfigurable manufacturing systems,” in Proc. IEEE 21st
Int. Conf. Emerging Technologies and Factory Automation (ETFA),
pp. 1–8, Sept. 2016.

[3] D. Yu, Y. Hu, X. W. Xu, Y. Huang, and S. Du, “An open CNC system
based on component technology,” IEEE Transactions on Automation
Science and Engineering, vol. 6, pp. 302–310, Apr. 2009.

[4] S. Wang and K. G. Shin, “Constructing reconfigurable software for ma-
chine control systems,” IEEE Transactions on Robotics and Automation,
vol. 18, pp. 475–486, Aug. 2002.

[5] IEC 61499-1:2012, Function Blocks. Geneva, Switzerland: International
Electrotechnical Commission, 2012.

[6] IEC 61131-3:2013, Programmable Controllers, Part 3: Programming
Languages. Geneva, Switzerland: International Electrotechnical Com-
mission, 2013.

[7] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review,” IEEE Transactions on Industrial
Informatics, vol. 7, pp. 768–781, Nov. 2011.

[8] F. Serna, C. Catalan, A. Blesa, J. M. Rams, and J. M. Colom, “Control
software design for a cutting glass machine tool based on the COSME
platform. case study,” in Proc. IEEE Int. Conf. Automation Science and
Engineering, pp. 501–506, Aug. 2011.

[9] A. Blesa, C. Cataln, F. Serna, J. M. Colom, C. Larrea, and J. M.
Rams, “Function blocks for the design of control applications based
on EtherCAT fieldbus,” in Proc. IEEE Int. Conf. Industrial Technology
(ICIT), pp. 1876–1883, Mar. 2015.

[10] M. Minhat, V. Vyatkin, X. Xu, S. Wong, and Z. Al-Bayaa, “A novel open
cnc architecture based on step-nc data model and IEC 61499 function
blocks,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 560 – 569, 2009.

[11] C. Pang, S. Patil, C. W. Yang, V. Vyatkin, and A. Shalyto, “A portability
study of IEC 61499: Semantics and tools,” in Proc. 12th IEEE Int. Conf.
Industrial Informatics (INDIN), pp. 440–445, July 2014.

[12] W. Dai, V. N. Dubinin, and V. Vyatkin, “Automatically generated layered
ontological models for semantic analysis of component-based control
systems,” IEEE Transactions on Industrial Informatics, vol. 9, pp. 2124–
2136, Nov. 2013.

[13] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai, “Composing domain-specific design environments,”
Computer, vol. 34, pp. 44–51, Nov. 2001.

[14] V. Vyatkin, H. M. Hanisch, C. Pang, and C. H. Yang, “Closed-loop
modeling in future automation system engineering and validation,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 39, pp. 17–28, Jan 2009.

[15] S. Patil, V. Dubinin, and V. Vyatkin, “Formal modelling and verification
of iec61499 function blocks with abstract state machines and smv
- execution semantics,” Dependable Software Engineering: Theories,
Tools, and Applications, pp. 300–315, Jan. 2015.

[16] L. H. Yoong and P. S. Roop, “Verifying IEC 61499 Function blocks
using Esterel,” IEEE Embedded Systems Letters, vol. 2, pp. 1–4, Mar.
2010.

[17] M. Stanica and H. Guéguen, “Using timed automata for the verification
of IEC 61499 applications,” in IFAC Workshop on Discrete Event
Systems (WODES’04), pp. 375–380, 2004.

[18] G. S. Doukas and K. C. Thramboulidis, “A real-time Linux execution
environment for function-block based distributed control applications,”
in Proc. INDIN ’05. 2005 3rd IEEE Int. Conf. Industrial Informatics,
pp. 56–61, Aug. 2005.

15

[19] A. Zoitl, R. Smodic, C. Sunder, and G. Grabmair, “Enhanced real-time
execution of modular control software based on IEC 61499,” in Proc.
IEEE Int. Conf. Robotics and Automation ICRA 2006, pp. 327–332, May
2006.

[20] P. Lindgren, M. Lindner, A. Lindner, V. Vyatkin, D. Pereira, and L. M.
Pinho, “A real-time semantics for the IEC 61499 standard,” in Proc.
IEEE 20th Conf. Emerging Technologies Factory Automation (ETFA),
pp. 1–6, Sept. 2015.

[21] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 Appli-
cations, part b: Execution semantics,” IEEE Transactions on Industrial
Informatics, vol. 6, pp. 145–154, May 2010.

[22] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” IEEE Trans-
actions on Computers, vol. 58, pp. 1599–1614, Dec 2009.

[23] J. Sztipanovits and G. Karsai, “Model-integrated computing,” Computer,
vol. 30, pp. 110–111, Apr. 1997.

[24] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits, “Compo-
sition and cloning in modeling and meta-modeling,” IEEE Transactions
on Control Systems Technology, vol. 12, pp. 263–278, Mar. 2004.

[25] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE, vol. 91,
pp. 145–164, Jan. 2003.

[26] I. Garca-Magario, R. Fuentes-Fernndez, and J. J. Gmez-Sanz, “A frame-
work for the definition of metamodels for computer-aided software
engineering tools,” Information and Software Technology, vol. 52, no. 4,
pp. 422 – 435, 2010.

[27] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 Applica-
tions, part A: Modeling,” IEEE Transactions on Industrial Informatics,
vol. 6, pp. 136–144, May 2010.

[28] I. Garca-Magario, R. Fuentes-Fernndez, and J. J. Gmez-Sanz, “Guide-
line for the definition of emf metamodels using an entity-relationship
approach,” Information and Software Technology, vol. 51, no. 8, pp. 1217
– 1230, 2009.

[29] J. Tretmans, “Model based testing with labelled transition systems,”
in Formal Methods and Testing, pp. 1–38, Springer Berlin Heidelberg,
2008.

[30] S. Patil, V. Dubinin, and V. Vyatkin, “Formal verification of IEC61499
function blocks with abstract state machines and SMV – modelling,” in
2015 IEEE Trustcom/BigDataSE/ISPA, vol. 3, pp. 313–320, Aug 2015.

[31] J. Bengtsson and W. Yi, Timed Automata: Semantics, Algorithms and
Tools, pp. 87–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[32] A. Agrawal, “Graph rewriting and transformation (GReAT): a solution
for the model integrated computing (MIC) bottleneck,” in Proc. 18th
IEEE Int. Conf. Automated Software Engineering, pp. 364–368, Oct.
2003.

[33] M. M. Y. Kuo, L. H. Yoong, S. Andalam, and P. S. Roop, “Determining
the worst-case reaction time of IEC 61499 function blocks,” in Proc.
8th IEEE Int. Conf. Industrial Informatics, pp. 1104–1109, July 2010.

[34] L. Lednicki, J. Carlson, and K. Sandström, “Model level worst-case
execution time analysis for IEC 61499,” in Proceedings of the 16th
International ACM Sigsoft Symposium on Component-based Software
Engineering, CBSE ’13, (New York, NY, USA), pp. 169–178, ACM,
2013.

[35] S. Li, D. Li, F. Li, and N. Zhou, “CPSiCGF: A code generation frame-
work for CPS integration modeling,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1234 – 1244, 2015.

Nan Zhou Nan Zhou received the B.Eng. degree
in mechanical engineering and automation from the
South China University of Technology, Guangzhou,
China, in 2013, where he is currently pursuing
the Ph.D. degree with the School of Mechanical
and Automotive Engineering. His current research
interests include embedded system design theory
and methodology, IEC 61499 function blocks, mo-
tion control systems, real-time ethernet and formal
method for industrial cyber-physical systems.

Di Li Di Li received the B.Eng. and M.Eng. degrees
in aircraft engine and power engineering from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, in 1985 and 1988, and the Ph.D.
degree in automatic control theory and application
from the South China University of Technology,
Guangzhou, China, in 1993. She was a Visiting
Scholar with The University of Sydney, Sydney,
NSW, Australia, and a Senior Research Fellow with
Vanderbilt University, Nashville, TN, USA, and in
Japan and Singapore. She is currently a Professor

with the School of Mechanical and Automotive Engineering, South China U-
niversity of Technology. She has directed over 50 research projects, including
the National High Technology Research and Development Program of China
(863 Program) and the National Natural Science Foundation of China. She
has authored or co-authored over 180 scientific papers. Her research interests
include embedded systems, computer vision, and cyber-physical systems.

Valeriy Vyatkin Valeriy Vyatkin (M’03,SM’04)
received Ph.D. degree from the State University of
Radio Engineering, Taganrog, Russia, in 1992. He
is on joint appointment as Chaired Professor of De-
pendable Computation and Communication System-
s, Lulea University of Technology, Lulea, Sweden,
and Professor of Information and Computer Engi-
neering in Automation at Aalto University, Helsinki,
Finland. He is also co-director of the international
research laboratory of Computer Technologies at
ITMO University, St. Petersburg, Russia. Previously,

he was a Visiting Scholar at Cambridge University, U.K., and had permanent
academic appointments with the University of Auckland, Auckland, New
Zealand; Martin Luther University of Halle-Wittenberg, Halle, Germany,
as well as in Japan and Russia. His research interests include dependable
distributed automation and industrial informatics; software engineering for
industrial automation systems; and distributed architectures and multi-agent
systems applied in various industry sectors, including smart grid, material
handling, building management systems, and reconfigurable manufacturing.

Dr. Vyatkin was awarded the Andrew P. Sage Award for the best IEEE
Transactions paper in 2012.

Victor Dubinin Victor Dubinin received the Diplo-
ma degree in computer engineering, the Ph.D. de-
gree, and Sc.D. degree in computer science from the
University of Penza, Penza, Russia, in 1981, 1989,
and 2014, respectively. From 1981 to 1989, he was
a Researcher, from 1989 to 1995, he was a Senior
Lecturer, and from 1995 to 2015, he was an Asso-
ciate Professor with the University of Penza. Since
2015, he has been a Professor with the Department
of Computer Science, University of Penza. He held
a Visiting Researcher position with the University of

Auckland, Auckland, New Zealand, in 2011, and with the Lulea University
of Technology, Lulea, Sweden (2013C2017). His research interests include
formal methods for specification, verification, synthesis, and implementation
of distributed and discrete event systems.

Dr. Dubinin received DAAD-grants to work as a Guest Scientist at Martin-
Luther-University, Halle-Wittenberg, Germany, in 2003, 2006, and 2010.

Chengliang Liu Chengliang Liu was born in Shan-
dong, China, in 1964. He received the B.Eng. degree
from the Shandong University of Technology, Shan-
dong, and the M.Eng. and Ph.D. degrees from South-
east University, Nanjing, China, in 1991 and 1998,
respectively. He has been invited as a Senior Scholar
at the University of Michigan, Ann Arbor, and the
University of Wisconsin-Madison, Madison, since
2001. He is currently with the Institute of Mecha-
tronics, Shanghai Jiao Tong University, Shanghai,
China. His current interests include mechatronic

systems, MEMS/NEMS design, intelligent robot control, web-based remote
monitoring techniques, and 3S (GPS, GIS, RS) systems.

