
Implementation of state transition models in IEC
61499 and its use for recognition and selection of

sequences of events and objects
Victor Dubinin

Penza State University,
Penza, Russian Federation

victor_n_dubinin@yahoo.com

Artem Voinov
Penza State University,

Penza, Russian Federation
voj49@yandex.ru

Ilya Senokosov
Penza State University,

Penza, Russian Federation
 senokosov.i@yandex.ru

Valeriy Vyatkin
Luleå University of Technology, Sweden,

Aalto University, Helsinki, Finland
vyatkin@ieee.org

Abstract— Efficient application of model-based software
design methodologies in industrial automation requires methods
and tools for automatic code generation. Formal models can be
especially useful to avoid ambiguity, to verify and evaluate
performance, which ultimately will improve the quality and
reliability of the project and lead to lower design costs. This
paper proposes methods for implementing state-transition formal
models, such as finite state and pushdown automata, as well as
extended Petri nets (A-nets) by means of IEC 61499 function
blocks. These implementation approaches can be used in the
design of industrial cyber-physical systems for monitoring,
diagnostics, conformance checking, detection and selection of
specified sequences of events and parameterized objects from an
input stream. One of the proposed applications is illustrated
using an example of an assembly process with LEGO blocks.

Keywords— non-deterministic finite automata; pushdown
automata; extended Petri nets; A-nets; conformance checking;
selection system; LEGO; function block; IEC 61499

I. INTRODUCTION
Model-based design methodologies are becoming

increasingly popular in industrial automation. For example,
applications of model-driven engineering [1] and model
integrated computing [2] have been reported. To make these
developments practically usable, methods and tools for
automatic generation of executable code from the models is
required. A special class of models are formal models with
mathematically rigorous semantics. Such models allow one to
avoid ambiguity and uncertainty in the controller design, and to
verify and evaluate its performance, which ultimately will
improve the quality and reliability of the project and lead to
lower design costs. In the field of industrial automation, formal
models can be used in the design of control algorithms
themselves, monitoring and diagnostics, supervisory control,
conformance checking, detection and selection of specified
sequences of events and objects from an input stream, etc.
Sequences recognition is commonly used in compilers [3]. A
similar task of selection can occur, for example, in assembling
of some products [4]. Unlike the recognizers in language
processing, a selection system can explicitly ignore input
objects if they do not trigger corresponding changes in it.

In state transition models (STM) the functioning of a
system or process is represented as sequences of transitions
from one state to another. The choice of these models is
explained not least by the requirements of reliability and safety,
according to which explicit states should be determined in the

system [5]. There are many kinds of STM such as finite
automata (FA) [3,5], pushdown automata (PDA) [3], Petri nets
(PN) [6], abstract state machines (ASM) [7], etc. In addition to
the "pure" models, there exist their extensions and
modifications. However, despite certain similarities, there are
differences in the complexity and interpretation of transitions
between states. This determines the need to develop particular
methods for implementing the models of the main classes.

In our work we investigate implementation of STM of
some important types by means of the IEC 61499 standard and
its use for recognition and selection of sequences of events and
objects. Currently, the importance of this standard is increasing
due to the active shifting from centralized to distributed control
systems. The IEC 61499 provides an architecture and
component-oriented language for building distributed control
systems in industrial automation [8].

The paper is structured as follows. Section II, Section III,
and Section IV propose methods for implementing non-
deterministic finite automata, deterministic pushdown
automata, as well as selective A-nets (extended Petri nets)
based on IEC 61499 function blocks (FBs), accordingly. In
Section IV, a demo example of using A-nets for assembling
LEGO constructions is considered too. Finally, conclusions
and future work are attached in Section V.

II. IMPLEMENTATION OF FINITE AUTOMATA
Finite automata and their extensions are the most popular

models used in industrial automation. There is a wide variety
of models of this class. Despite this, the basic idea of the FB-
based implementation of the FA-based models remains
approximately the same.

In this section, an approach to the implementation of non-
deterministic finite automata (NDFA) is considered. The
peculiarities of the proposed approach are:

1) implicit determinization of NDFA in real time ("on the
fly"). The essential point here is the synchronous nature of the
functioning of NDFA.

2) a two-phase execution scheme in which at the first phase
enabled transitions of the NDFA are fired, and at the second
phase the new states of the automaton are published.

3) a token passing mechanism for the simulation of NDFA
behavior.

978-1-7281-2927-3/19/$31.00 ©2019 IEEE 466

Within the framework of the proposed approach, it is
possible to do its further detailed elaboration on the basis of the
following classification criteria:

1) semantics of NDFA execution;

2) whether function blocks represent transitions or states of
an automaton. In this paper, the state-based approach is
considered, while a transition-based one has been considered in
[4];

3) the manner of processing the input signals, as well as the
organization of the second phase of execution (sequential vs.
parallel).

For taking into account the third classification criteria, in
the case when the state-based implementationn is adopted, the
corresponding structural patterns are proposed. The main
elements of the patterns are FBs that model the NDFA states
(also called FB-states), and a FB-dispatcher, which organizes
the overall computation process.

Implementation of a NDFA from Fig. 1 is represented in
Fig. 2 in the form of a FB network and has been carried out in
NxtStudio [9].

Fig. 2 shows FB-states (FB1-FB4) and FB-dispatcher

(FB6). Through event inputs x1..x3 one of input signals comes
into the NDFA. In the parallel circuit, input signal xi goes
simultaneously to all relevant FBs. To synchronize the
completion of the FB group execution, an acknowledgement
mechanism with counting the number of receipts is used. At
that, upon completion of processing the input signal xi, which
can include the change of a current state variable, each FB
sends the corresponding receipt to the dispatcher. The
dispatcher collects all receipts (their number is determined by
the number of relevant FBs on the input signal xi), and then
initiates the second phase of execution.

In the second phase, all the FB-states publish in parallel

their internal states to outputs (for other FB-states) and inform
the dispatcher about this. When the dispatcher received
acknowledgements from all the FB-states, signal Out is emited
that indicates the end of processing the input signal.

III. IMPLEMENTATION OF PUSHDOWN AUTOMATA
Finite automata (FA) are fairly simple models and cannot

describe complex processes, for example, represented by
context-free (CF) languages. For recognition of CF-languages,
pushdown automata (PDA) are used. The formal definition of
PDA can be found, for example, in [3].

Below a method for implementing deterministic PDA
based on IEC 61499 FBs is considered. As a baseline
description, the method uses the graphic representation of PDA
proposed in [3]. In this case, a transition between two states of
an automaton has a label <A, B, C> consisting of three
components: A is an input symbol; B is a symbol of the top of
the stack; С is a symbol (or a sequence of symbols) which the
symbol of the top of the stack will be replaced to. It should be
noted that the stack itself does not appear explicitly in this
representation.

Summary of the technique for transforming a PDA to a FB
implementation is as follows:

1) each PDA transition is mapped to FB. The advantage of
this approach is that almost all transitions are modelled by FBs
of the same type, differing only in some parameters used
during initialization. An alternative approach is the approach
when states are represented as FBs. In this case, each FB will
differ in the number of input/output signals and variables, and
the complexity of the implementation of each FB-state will be
larger.

2) tokens are used to mark transitions enabled by states. A
token is a dynamic object that can be transferred from one FB-
transition to another FB-transition. If a FB-transition has a
token, then it can accept input symbols.

3) to represent the stack, a separate FB is used, which
implements the operations of pushing and popping an element
into the stack, as well as comparing the top of the stack with
the specified value.

4) PDA states are not explicitly represented in the FB-
implementation.

Fig. 1. Example of NDFA

Fig. 2. FB-based implementation of NDFA from Fig. 1 in NxtStudio.

467

IV. IMPLEMENTATION OF PETRI NETS
Compared to automata-based models, models based on

Petri nets are more powerful. When one considers the use of
Petri nets for the recognition of situations or patterns, the
works [10-12] could be mentioned. In [10], Petri nets are used
to construct a query to the surveillance video (in terms of
events) and further to recognize this specified pattern. The
work [11] provided coloured Petri nets to model the
recognition of chronicles expressed with logical and temporal
operators, as well as minimum and maximum time delays. In
[12], coloured Petri nets are used to determine whether an
operator (for example, a pilot) correctly implements the
corresponding guide. In [13], for the implementation of
conformance checking, the authors proposed Petri nets with
Data to model data variables, guards, and read/write actions.

In this work we apply extended Petri nets for recognition
and selection of sequences of parameterized objects in the form
<a1, a2, ..., an> from an input stream. The A-nets, originally
used in [14] for asynchronous modelling of net condition/event
systems, were chosen as a basis. They are an extension of Petri
nets in the direction of increasing the modelling and expressive
capabilities due to the labelling of arcs and the complexity of
enabling and firing rules that makes it possible to effectively
process the integer variables. In addition, A-nets can be easily
extended with control symbols and even actions attached to
transitions and/or places that moves them to a class of
transducers.

A selective A-net is defined as follows:

(P, T, X, Y, Z, U, WX, WY, WZ, Q, A, G, m0, TF),

where P is a set of places; T is a set of transitions; X⊆P×T
is a set of input arcs of transitions with a minimum threshold
(arcs with a check on “greater”); Y⊆T×P is a set of output
transitions arcs; Z⊆P×T is a set of input arcs of transitions with
a maximum threshold (arcs with a check on “less”); U⊆ X×Y is
a conjugacy relation of input and output arcs;
WX:X→N0×{N0∪all} is a function of X arcs weights;
WY:Y→{N+∪*}×{add,reset} is a function of Y arcs weights;
WZ:Z→N+×{N0∪all} is a function of Z arcs weights; Q: T→N0
is a transition priority function. The following restriction must
hold: , [() ()]i j i jt t T Q t Q t∀ ∈ ≠ . It makes the functioning of A-
nets deterministic; A is a set of parameters (attributes) of an
object; G is a set of transition guard functions; m0 is an initial
marking; TF ⊆ Т is a set of final transitions. The firing of any
final transition indicates the end of an objects sequence
selection.

A transition is enabled if the guard condition is true and
there is a token concession. It should be noted that
combinations of arc weights form certain arc patterns that have
their own semantics — a numerical arc, an unconditional and
threshold reset arc, a testing arc with a “greater than or equal”
checking, an inhibitory arc (arc with a “less than” checking),
conjugate arcs for unconditional copying/adding/moving
tokens.

For the integration and embedding selective A-nets to a
control system based on the IEC 61499 standard, a method for
their transformation to FB systems is proposed below. The

main idea is to implement elements of A-nets (places and
transitions) in the form of separate FBs. At that, a FB-place
stores the marking of the corresponding place, and also
performs on it the elementary operations of addition /
subtraction and reset to zero. FB-transition determines the
enabling of the corresponding transition of an A-net and sets
the change of the marking of neighboring FB-places when it
fires. FB-dispatcher manages the firing of transitions in the A-
net. When interpreting an A-net, the principle of locality of
changing the marking of places and statuses of transitions in
the vicinity of the fired transition is used. This optimizes the
interpretation algorithm and reduces the system response time,
since the statuses of a few (but not all) transitions are
recalculated.

The rule for transforming a transition of selective A-nets to
a FB is shown in Fig. 3.

This FB-transition has the following interface. Event
inputs: INIT is “FB initialization”; fire is “fire the enabled
transition”; obj is “arrival of a new object”; chpi is “change
marking of place pi”. Event outputs: INITO is “FB initialization
completed”; en is “the transition has become enabled”; dis is
“the transition is no longer enabled”; fired is “the transition has
fired”. Information inputs: ak is “the k-th parameter of the input
object”; mi is “a new marking of place pi”; bi (ci) is “the first
(second) component of the weight of the input arc from place
pi”; ri (si) is “the first (second) component of the weight of the
output arc to place qi”. Note: inputs of types b, c, r, s are
optional, since they can be rigidly embedded inside the FB in

processing algorithms. However, putting them out allows us to
build self-modifying systems (by modifying these parameters).
Information outputs: fpi (fqi) is “the modifier of the action on
the marking of place pi (qi)”; dpi is “the number of removed
tokens from place pi”; dqi is “the number of added or assigned
tokens to place qi”.

The dispatcher stores the current list of enabled transitions.
When a signal arrives from input eni, this list is replenished
with transition ti. When a signal arrives from input disi, the
transition ti is removed from this list. When a signal arrives at

Fig. 3. Transformation of a transition of a selective A-net to a FB

468

the exe input, the dispatcher selects the highest priority enabled
transition for activation, and issues signal to fire it.

Below is a demonstration example of the use of selective
A-nets to build a product line of LEGO constructions (in the
form of bars with a square cross-section, ending by a triangular
cover). An instance of such a product line in the form of a
“house” is shown in Fig. 4.

When building LEGO constructions, objects (i.e. LEGO

elements) with the following parameters are used: 1) t is a form
(the possible values are: R is “a rectangular parallelepiped”, T
is “a triangular prism”); 2) c is a color (the possible values are:
“green (g)”, “yellow (y)”, “white (w)”, “blue (b)”, “red (r)”); 3)
s is the ratio of the rectangle sides lengths (the possible values
are: “2:1”, and “2:2”). It is assumed that objects move along
one or more conveyors, and an assembly robot equipped with
appropriate sensors selects the necessary objects from the flow.

The order of selection of objects is specified by the A-net
represented in Fig. 5.

This A-net determines all possible selectable objects’

sequences. Firing a transition means that the corresponding
object is selected. It is considered that the priority of a
transition is inversely proportional to its number. It should be
noted that the mechanism of priorities does not restrict the
possibility of parallelism, but only regulates the functioning of
A-net while two or more objects arrive simultaneously. The
final transition is transition t7. An unweighted arc of the A-net
implies the labelling <1,1>. In principle, certain actions can be
associated with transitions and places of the A-net, for
example, technological operations. In the demo above, this is
not explicitly done. Nevertheless, it can be assumed that there
is some abstract assembly robot that builds LEGO assemblies.

In accordance with the method presented above, the A-net
shown in Fig. 5 was implemented as a FB application.

V. CONCLUSION
This paper presents approaches to the IEC 61499 FB–based

implementation of the most popular in industrial automation
state transition models. When defining the scope of application,
the recognition and selection tasks were prioritised, although it
can be extended without essential problems to control tasks.
The directions of further research are: 1) the investigation of
distributed implementation of STM especially with regard to
their validation and verification; 2) the implementation of more
complex state transition models, for example, colored timed
Petri nets and abstract state machines, as well as expanding the
scope of their use in various fields of industrial automation.

REFERENCES
[1] T. Strasser, G. Ebenhofer, M. Rooker, I. Hegny, “Multi-Domain Model-

Driven Design of Industrial Automation and Control Systems,”
Proceedings of 13th IEEE International Conference on Emerging
Technologies and Factory Automation, Hamburg, Germany, September
15–18, 2008.

[2] K. Thramboulidis, “Model-Integrated Mechatronics – Toward a New
Paradigm in the Development of Manufacturing Systems,” IEEE
Transactions on Industrial Informatics. 2005, Vol. 1, Issue 1, pp. 54–61.

[3] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition), Pearson; 3 edition,
2006, 560 p.

[4] V. Dubinin, I. Senokosov, V. Vyatkin, “Auto-Generation of Distributed
Automation Software Based on Formal Product Line Specification,” In:
Mařík V., Wahlster W., Strasser T., Kadera P. (eds) Industrial
Applications of Holonic and Multi-Agent Systems. HoloMAS 2017.
Lecture Notes in Artificial Intelligence, vol. 10444. Springer, Cham,
pp.80–91.

[5] A.A. Shalyto, N.I. Tukkel, “SWITCH Technology: An Automated
Approach to Developing Software for Reactive Systems,” Programming
and Computer Software, 2001, Volume 27, Issue 5, pp. 260–276.

[6] T. Murata. “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, Volume: 77 , Issue: 4 , 1989, pp. 541–580.

[7] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide, Specification and
Validation Methods,” Oxford : University Press, 1995, pp. 9–36.

[8] Vyatkin V. Function Blocks for Embedded and Distributed Control
Systems Design, Third Edition. – Instrumentation Society of America
(ISA), 2016, 261 p.

[9] nxtControl Web site. – URL:http://www.nxtcontrol.com/
[10] N. Ghanem, D. DeMenthon, D. Doermann, L. Davis, “Representation

and Recognition of Events in Surveillance Video Using Petri Nets,”
Conference on Computer Vision and Pattern Recognition (CVPRW '04),
2004.

[11] C. Choppy, O. Bertrand, P. Carle, “Coloured Petri Nets for Chronicle
Recognition,” Int. Conf. on Reliable Software Technologies - Ada-
Europe 2009. Lecture Notes in Computer Science, vol 5570, Springer,
pp. 266–281.

[12] V.R. Fernández, A.G. Pardo, D. Camacho, “Automatic Procedure
Following Evaluation using Petri net-based Workflows,” IEEE
Transactions on Industrial Informatics, Volume: 14, Issue: 6, 2018,
pp.2748-2759.

[13] M. de Leoni, J. Munoz-Gama, J. Carmona, W.M.P. van der Aalst,
“Decomposing Alignment-Based Conformance Checking of Data-
Aware Process Models,” Lecture Notes in Computer Science, vol 8841,
2014, pp. 3–20.

[14] V.N. Dubinin, “Asynchronous modeling of NCES-nets,” News of higher
educational institutions. Volga region. Technical science. 2009, № 2,
pp. 3–14. (in Russian)

Fig. 4. Instance of product line of LEGO structures

Fig. 5. Selective A-net for building LEGO constructions
production line

469

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

