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Abstract— Efficient application of model-based software 
design methodologies in industrial automation requires methods 
and tools for automatic code generation. Formal models can be 
especially useful to avoid ambiguity, to verify and evaluate 
performance, which ultimately will improve the quality and 
reliability of the project and lead to lower design costs. This 
paper proposes methods for implementing state-transition formal 
models, such as finite state and pushdown automata, as well as 
extended Petri nets (A-nets) by means of IEC 61499 function 
blocks. These implementation approaches can be used in the 
design of industrial cyber-physical systems for monitoring, 
diagnostics, conformance checking, detection and selection of 
specified sequences of events and parameterized objects from an 
input stream. One of the proposed applications is illustrated 
using an example of an assembly process with LEGO blocks. 
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I. INTRODUCTION  
Model-based design methodologies are becoming 

increasingly popular in industrial automation. For example, 
applications of model-driven engineering [1] and model 
integrated computing [2] have been reported. To make these 
developments practically usable, methods and tools for 
automatic generation of executable code from the models is 
required. A special class of models are formal models with 
mathematically rigorous semantics. Such models allow one to 
avoid ambiguity and uncertainty in the controller design, and to 
verify and evaluate its performance, which ultimately will 
improve the quality and reliability of the project and lead to 
lower design costs. In the field of industrial automation, formal 
models can be used in the design of control algorithms 
themselves, monitoring and diagnostics, supervisory control, 
conformance checking, detection and selection of specified 
sequences of events and objects from an input stream, etc. 
Sequences recognition is commonly used in compilers [3]. A 
similar task of selection can occur, for example, in assembling 
of some products [4]. Unlike the recognizers in language 
processing, a selection system can explicitly ignore input 
objects if they do not trigger corresponding changes in it. 

In state transition models (STM) the functioning of a 
system or process is represented as sequences of transitions 
from one state to another. The choice of these models is 
explained not least by the requirements of reliability and safety, 
according to which explicit states should be determined in the 

system [5]. There are many kinds of STM such as finite 
automata (FA) [3,5], pushdown automata  (PDA) [3], Petri nets 
(PN) [6], abstract state machines (ASM) [7], etc. In addition to 
the "pure" models, there exist their extensions and 
modifications. However, despite certain similarities, there are 
differences in the complexity and interpretation of transitions 
between states. This determines the need to develop particular 
methods for implementing the models of the main classes. 

In our work we investigate implementation of STM of 
some important types by means of the IEC 61499 standard and 
its use for recognition and selection of sequences of events and 
objects. Currently, the importance of this standard is increasing 
due to the active shifting from centralized to distributed control 
systems. The IEC 61499 provides an architecture and 
component-oriented language for building distributed control 
systems in industrial automation [8].  

The paper is structured as follows. Section II, Section III, 
and Section IV propose methods for implementing non-
deterministic finite automata, deterministic pushdown 
automata, as well as selective A-nets (extended Petri nets) 
based on IEC 61499 function blocks (FBs), accordingly. In 
Section IV, a demo example of using A-nets for assembling 
LEGO constructions is considered too. Finally, conclusions 
and future work are attached in Section V. 

II. IMPLEMENTATION OF FINITE AUTOMATA 
Finite automata and their extensions are the most popular 

models used in industrial automation. There is a wide variety 
of models of this class. Despite this, the basic idea of the FB-
based implementation of the FA-based models remains 
approximately the same.  

In this section, an approach to the implementation of non-
deterministic finite automata (NDFA) is considered. The 
peculiarities of the proposed approach are: 

1) implicit determinization of NDFA in real time ("on the 
fly"). The essential point here is the synchronous nature of the 
functioning of NDFA. 

2) a two-phase execution scheme in which at the first phase 
enabled transitions of the NDFA are fired, and at the second 
phase the new states of the automaton are published.  

3) a token passing mechanism for the simulation of NDFA 
behavior. 
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Within the framework of the proposed approach, it is 
possible to do its further detailed elaboration on the basis of the 
following classification criteria: 

1) semantics of NDFA execution; 

2) whether function blocks represent transitions or states of 
an automaton. In this paper, the state-based approach is 
considered, while a transition-based one has been considered in 
[4]; 

3) the manner of processing the input signals, as well as the 
organization of the second phase of execution (sequential vs. 
parallel). 

For taking into account the third classification criteria, in 
the case when the state-based implementationn is adopted, the 
corresponding structural patterns are proposed. The main 
elements of the patterns are FBs that model the NDFA states 
(also called FB-states), and a FB-dispatcher, which organizes 
the overall computation process. 

Implementation of a NDFA from Fig. 1 is represented in 
Fig. 2 in the form of a FB network and has been carried out in 
NxtStudio [9].  

 
Fig. 2 shows FB-states (FB1-FB4) and FB-dispatcher 

(FB6). Through event inputs x1..x3 one of input signals comes 
into the NDFA. In the parallel circuit, input signal xi goes 
simultaneously to all relevant FBs. To synchronize the 
completion of the FB group execution, an acknowledgement 
mechanism with counting the number of receipts is used. At 
that, upon completion of processing the input signal xi, which 
can include the change of a current state variable, each FB 
sends the corresponding receipt to the dispatcher. The 
dispatcher collects all receipts (their number is determined by 
the number of relevant FBs on the input signal xi), and then 
initiates the second phase of execution. 

In the second phase, all the FB-states publish in parallel 

their internal states to outputs (for other FB-states) and inform 
the dispatcher about this. When the dispatcher received 
acknowledgements from all the FB-states, signal Out is emited 
that indicates the end of processing the input signal. 

III. IMPLEMENTATION OF PUSHDOWN AUTOMATA 
Finite automata (FA) are fairly simple models and cannot 

describe complex processes, for example, represented by 
context-free (CF) languages. For recognition of CF-languages, 
pushdown automata (PDA) are used. The formal definition of 
PDA can be found, for example, in [3].  

Below a method for implementing deterministic PDA 
based on IEC 61499 FBs is considered. As a baseline 
description, the method uses the graphic representation of PDA 
proposed in [3]. In this case, a transition between two states of 
an automaton has a label <A, B, C> consisting of three 
components: A is an input symbol; B is a symbol of the top of 
the stack; С is a symbol (or a sequence of symbols) which the 
symbol of the top of the stack will be replaced to. It should be 
noted that the stack itself does not appear explicitly in this 
representation. 

Summary of the technique for transforming a PDA to a FB 
implementation is as follows: 

1) each PDA transition is mapped to FB. The advantage of 
this approach is that almost all transitions are modelled by FBs 
of the same type, differing only in some parameters used 
during initialization. An alternative approach is the approach 
when states are represented as FBs. In this case, each FB will 
differ in the number of input/output signals and variables, and 
the complexity of the implementation of each FB-state will be 
larger. 

2) tokens are used to mark transitions enabled by states. A 
token is a dynamic object that can be transferred from one FB-
transition to another FB-transition. If a FB-transition has a 
token, then it can accept input symbols. 

3) to represent the stack, a separate FB is used, which 
implements the operations of pushing and popping an element 
into the stack, as well as comparing the top of the stack with 
the specified value. 

4) PDA states are not explicitly represented in the FB-
implementation.  

 
 

Fig. 1. Example of NDFA 

 
Fig. 2. FB-based implementation of NDFA from Fig. 1 in NxtStudio. 
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IV. IMPLEMENTATION OF PETRI NETS 
Compared to automata-based models, models based on 

Petri nets are more powerful. When one considers the use of 
Petri nets for the recognition of situations or patterns, the 
works [10-12] could be mentioned. In [10], Petri nets are used 
to construct a query to the surveillance video (in terms of 
events) and further to recognize this specified pattern. The 
work [11] provided coloured Petri nets to model the 
recognition of chronicles expressed with logical and temporal 
operators, as well as minimum and maximum time delays. In 
[12], coloured Petri nets are used to determine whether an 
operator (for example, a pilot) correctly implements the 
corresponding guide. In [13], for the implementation of 
conformance checking, the authors proposed Petri nets with 
Data to model data variables, guards, and read/write actions. 

In this work we apply extended Petri nets for recognition 
and selection of sequences of parameterized objects in the form 
<a1, a2, ..., an> from an input stream. The A-nets, originally 
used in [14] for asynchronous modelling of net condition/event 
systems, were chosen as a basis. They are an extension of Petri 
nets in the direction of increasing the modelling and expressive 
capabilities due to the labelling of arcs and the complexity of 
enabling and firing rules that makes it possible to effectively 
process the integer variables. In addition, A-nets can be easily 
extended with control symbols and even actions attached to 
transitions and/or places that moves them to a class of 
transducers. 

A selective A-net is defined as follows: 

(P, T, X, Y, Z, U, WX, WY, WZ, Q, A, G, m0, TF), 

where P is a set of places; T is a set of transitions; X⊆P×T 
is a set of input arcs of transitions with a minimum threshold 
(arcs with a check on “greater”); Y⊆T×P is a set of output 
transitions arcs; Z⊆P×T is a set of input arcs of transitions with 
a maximum threshold (arcs with a check on “less”); U⊆ X×Y is 
a conjugacy relation of input and output arcs; 
WX:X→N0×{N0∪all} is a function of X arcs weights; 
WY:Y→{N+∪*}×{add,reset} is a function of Y arcs weights; 
WZ:Z→N+×{N0∪all} is a function of Z arcs weights; Q: T→N0 
is a transition priority function. The following restriction must 
hold: , [ ( ) ( )]i j i jt t T Q t Q t∀ ∈  ≠  . It makes the functioning of A-
nets deterministic; A is a set of parameters (attributes) of an 
object; G is a set of transition guard functions; m0 is an initial 
marking; TF ⊆ Т  is a set of final transitions. The firing of any 
final transition indicates the end of an objects sequence 
selection. 

A transition is enabled if the guard condition is true and 
there is a token concession. It should be noted that 
combinations of arc weights form certain arc patterns that have 
their own semantics — a numerical arc, an unconditional and 
threshold reset arc, a testing arc with a “greater than or equal” 
checking, an inhibitory arc (arc with a “less than” checking), 
conjugate arcs for unconditional copying/adding/moving 
tokens. 

For the integration and embedding selective A-nets to a 
control system based on the IEC 61499 standard, a method for 
their transformation to FB systems is proposed below. The 

main idea is to implement elements of A-nets (places and 
transitions) in the form of separate FBs. At that, a FB-place 
stores the marking of the corresponding place, and also 
performs on it the elementary operations of addition / 
subtraction and reset to zero. FB-transition determines the 
enabling of the corresponding transition of an A-net and sets 
the change of the marking of neighboring FB-places when it 
fires. FB-dispatcher manages the firing of transitions in the A-
net. When interpreting an A-net, the principle of locality of 
changing the marking of places and statuses of transitions in 
the vicinity of the fired transition is used. This optimizes the 
interpretation algorithm and reduces the system response time, 
since the statuses of a few (but not all) transitions are 
recalculated. 

The rule for transforming a transition of selective A-nets to 
a FB is shown in Fig. 3. 

This FB-transition has the following interface. Event 
inputs: INIT is “FB initialization”; fire is “fire the enabled 
transition”; obj is “arrival of a new object”; chpi is “change 
marking of place pi”. Event outputs: INITO is “FB initialization 
completed”; en is “the transition has become enabled”; dis is 
“the transition is no longer enabled”; fired is “the transition has 
fired”. Information inputs: ak is “the k-th parameter of the input 
object”; mi is “a new marking of place pi”; bi (ci) is “the first 
(second) component of the weight of the input arc from place 
pi”; ri (si) is “the first (second) component of the weight of the 
output arc to place qi”. Note: inputs of types b, c, r, s are 
optional, since they can be rigidly embedded inside the FB in 

processing algorithms. However, putting them out allows us to 
build self-modifying systems (by modifying these parameters). 
Information outputs: fpi (fqi) is “the modifier of the action on 
the marking of place pi (qi)”; dpi is “the number of removed 
tokens from place pi”; dqi is “the number of added or assigned 
tokens to place qi”.  

The dispatcher stores the current list of enabled transitions. 
When a signal arrives from input eni, this list is replenished 
with transition ti. When a signal arrives from input disi, the 
transition ti is removed from this list. When a signal arrives at 

 
 

Fig. 3. Transformation of a transition of a selective A-net to a FB 
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the exe input, the dispatcher selects the highest priority enabled 
transition for activation, and issues signal to fire it. 

Below is a demonstration example of the use of selective 
A-nets to build a product line of LEGO constructions (in the 
form of bars with a square cross-section, ending by a triangular 
cover). An instance of such a product line in the form of a 
“house” is shown in Fig. 4. 

 
When building LEGO constructions, objects (i.e. LEGO 

elements) with the following parameters are used: 1) t is a form 
(the possible values are: R is “a rectangular parallelepiped”, T 
is “a triangular prism”); 2) c is a color (the possible values are: 
“green (g)”, “yellow (y)”, “white (w)”, “blue (b)”, “red (r)”); 3) 
s is the ratio of the rectangle sides lengths (the possible values 
are: “2:1”, and “2:2”).  It is assumed that objects move along 
one or more conveyors, and an assembly robot equipped with 
appropriate sensors selects the necessary objects from the flow. 

The order of selection of objects is specified by the A-net 
represented in Fig. 5.  

 
This A-net determines all possible selectable objects’ 

sequences. Firing a transition means that the corresponding 
object is selected. It is considered that the priority of a 
transition is inversely proportional to its number. It should be 
noted that the mechanism of priorities does not restrict the 
possibility of parallelism, but only regulates the functioning of 
A-net while two or more objects arrive simultaneously. The 
final transition is transition t7. An unweighted arc of the A-net 
implies the labelling <1,1>. In principle, certain actions can be 
associated with transitions and places of the A-net, for 
example, technological operations. In the demo above, this is 
not explicitly done. Nevertheless, it can be assumed that there 
is some abstract assembly robot that builds LEGO assemblies.  

In accordance with the method presented above, the A-net 
shown in Fig. 5 was implemented as a FB application. 

V. CONCLUSION 
This paper presents approaches to the IEC 61499 FB–based 

implementation of the most popular in industrial automation 
state transition models. When defining the scope of application, 
the recognition and selection tasks were prioritised, although it 
can be extended without essential problems to control tasks. 
The directions of further research are: 1) the investigation of 
distributed implementation of STM especially with regard to 
their validation and verification; 2) the implementation of more 
complex state transition models, for example, colored timed 
Petri nets and abstract state machines, as well as expanding the 
scope of their use in various fields of industrial automation.  
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Fig. 4. Instance of product line of LEGO structures 

 
 

Fig. 5. Selective A-net for building LEGO constructions 
production line 
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