
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Towards Industrially Usable Agent Technology
for Smart Grid Automation

1Abstract—This work is aimed at facilitating industrial
adoption of agent technology. The paper proposes the hybrid
agent architecture specific to the power system automation
domain. The architecture builds on the Logical Node concept
of IEC 61850 and comprises of a deliberative and a reactive
layers; combining advantages of both. By relying on the
underlined industrial standards IEC 61850 and IEC 61499, the
architecture ensures practical applicability and captures
domain specific concepts in the agent-based system design.
Developed agent-based system was validated in the co-
simulation framework. The architecture provides for rapid
system development, reducing the software development life
cycle. The benefits are in trace-ability of the software
requirements, re-use of software components, ease of re-design,
and direct deployment of the system model.

Index Terms—Agent architecture, Smart Grid, reactive and
deliberative architectures, IEC 61499, IEC 61850, deliberation,
power system automation, distributed grid intelligence.

I. INTRODUCTION

With the introduction of widespread distributed energy
generation, which motivates bi-directional flow of energy,
current electrical grid needs to evolve from energy delivery
network into an energy exchange network i.e. Energy
Internet.

To control such a complex and highly distributed
infrastructure, the Smart Grid has to employ new generation
distributed automation and control systems, i.e. Distributed
Grid Intelligence (DGI). DGI is a network of distributed
nodes performing intelligent control to achieve local goals
and participating in overall Smart Grid operation and control
to achieve system objectives. These nodes are essentially
agents operating autonomously, reacting on the environment

1 Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

 Manuscript received April 1, 2014; revised July 5, 2014 and August 22,
2014; accepted September 28, 2014

 This work has been supported, in part, by FREEDM NSF Centre grant
Y3.E.C12

Gulnara Zhabelova is with Department of Computer Science, Computer
and Space Engineering, Lulea Tekniska Universitet, 971 87 Lulea, Sweden.
(email: Gulnara.zhabelova@ltu.se).

Valeriy Vyatkin is with Department of Computer Science, Computer and
Space Engineering, Lulea Tekniska Universitet, 971 87 Lulea, Sweden and
Department of Electrical Engineering and Automation,
Aalto University, Finland.

Victor Dubinin is with Department of Computer Science, University of
Penza, Russian Federation.(email: victor_n_dubinin@yahoo.com)

and proactively negotiating among themselves to realize
system objectives, exhibiting social behavior. DGI of Smart
Grid is best realized as a distributed multi-agent system
(MAS).

An agent in a broader sense is a system (as an entity) that
can perform autonomous actions based on its interaction with
the environment and other agents [1]. The central notion of
agency is "autonomy" in making decisions and achieving
delegated goals [1, 2]. An intelligent agent exhibits the
following capabilities: reactivity (ability to perceive
environment and respond in timely fashion), "proactiveness"
(goal-directed behaviour, taking initiative to meet assigned
objectives) and social ability (negotiate and cooperate with
other agents) [1].

However, agent technology in the power system domain
is the realm of theory and laboratory simulation [3]. There is
a large gap between laboratory setups and industrial field
systems. Agent-based systems need to be more practical in
order to be applied in the power system automation domain
and begin adapting to the specific requirements.

This work is aimed at facilitating industrial adoption of
agent technology. The proposed practical agent architecture
reflects concepts of power system automation domain and
based on industrial standards IEC 61499 and IEC 61850.

IEC 61850 is a well-accepted standard in industry. It
standardises representation of the automation functions and
communication protocol for power system automation. IEC
61499 is open reference architecture for developing
distributed systems in automation and control domain. As
IEC 61499 addresses challenges of distributed systems
design, the proposed agent architecture inherits advantages
gained by IEC 61499, such as ability to deploy agents on the
standard-compliant field devices.

The rest of the paper is structured as follows. Section II
provides an introduction into the agent architectures and a
discussion on the existing industrial agent architectures.
Section III presents proposed automation agent architecture.
Running examples of its implementation is provided. The
proposed architecture is implemented and described in
section IV on the example of distributed Fault Location
Isolation and Supply Restoration (FLISR) application. This
section also presents results and discussion on the proposed
design of developed agent-based system. The section gives a
comparative analysis of the proposed agent design with the
existing FLISR agent based implementation. The paper ends
with concluding remarks in section V and the future work.

Gulnara Zhabelova, Non Member, Valeriy Vyatkin, Member, IEEE and Victor Dubinin, Non Member

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

II. AGENTS IN POWER SYSTEM APPLICATIONS

A. Agent architectures

Wooldridge in [1] presents a general idea of an agent as a
computer program situated in the environment and capable
of autonomous actions within this environment and able to
initiate those actions to achieve delegated objectives. An
agent will perceive the environment through sensors,
evaluate the current state, make a decision about the action to
take, and act upon the environment through a set of available
actions. An action can have associated pre-conditions. The
key problem is the decision of which action from an
available set of actions an agent should perform to best
satisfy the design objectives.

An agent architecture is a "software architecture for
decision making systems that are embodied in an
environment" [1]. More definitions of agent architecture can
be found in [4,5]. There are three major agent architectures
in agent theory identified by Wooldridge and Jennings in [1]:
reactive, deliberative and hybrid.

Reactive agents base their decisions on the present,
without reference to history; they simply respond to their
environment [1, 2]. The reactive architecture directly links
sensory data to acting capabilities of the agent [4]. That is,
the action to be performed is specified upon possible sensory
input. During operation, the agent needs to continuously read
the inputs and check against the conditions of each action.
However, it is difficult to implement pro-activeness and
goal-oriented behaviour based solely on reactive architecture.
This architecture only looks at the present situation and does
not take into account long term goals.

In the deliberative architecture the goals and plans are
explicitly represented. The most popular deliberative agent
architecture is the Beliefs, Desires and Intentions (BDI) of
Rao and Georgeff [1]. The beliefs are the sensory input
accumulated over time; desires are the delegated goals.
Based on its beliefs and desires, an agent decides on its
intentions, i.e. what it wants to do in the future. The
intentions define the actions the agent is committed to
perform. However, if the situation has changed, the agent can
abandon the intention.

The disadvantage of this architecture is the time needed
for an agent to evaluate the updated beliefs and form an
intention. For complex agents it may take a relatively long
time, and for highly dynamic environments it may be too
long to react to changes.

Thus, many researchers agree that the combination of
classical deliberative and alternative reactive architectures is
a suitable approach for building agents [1,4].

A hybrid agent combines both reactive and deliberative
architectures usually by introducing a layer of each into one
agent [1,4]. Hybrid architectures implement autonomous
reactive and pro-active agents. Often thanks to the co-
operation layer, it can exhibit social behaviour. For instance,
InteRRaP architecture is proposed by Muller [1,4]. In this
architecture, the sensory data are directly linked to the

behaviour layer, where immediate actions are specified. If
the input data does not find a match in the behaviour layer, it
is passed to the next plan layer, and so on to the higher layers
of the architecture. Whichever layer has chosen the action, it
will pass the action down to the lowest layer, which has to
execute the corresponding action.

A disadvantage of this architecture is the complexity of
coordination of different layers in order to achieve logical
and consistent agent behaviour [4]. There are no formally
defined semantics or methodology for developing agents of
such architecture [4].

B. Agents in an industrial environment

It is a challenge to develop practical agent architecture,
such that the agent would be executable on field devices and
able to operate within industrial environment. In industrial
settings there are tasks, which demand reaction under strict
timing requirements; that limits the amount of possible
computations. Traditional agent reasoning such as deductive
and practical reasoning, used in the classical agent theory,
and others employed in the Artificial Intelligence, are
computationally intensive tasks and require symbolic
representation of the agent's perception, over which they
perform the deliberation process and means-end reasoning.
These processes are expensive in terms of the required
resources and time. Whereas, industrial agents must operate
under time and resource constraints, such as fixed size
memory and fixed processor performance. Additionally, the
agent should be of reasonable complexity so that it is
practical for a domain engineer to design, implement and
execute agent-based systems on field devices.

Several attempts have been made to address this issue in
the domain of automation of manufacturing systems. The
works of Rockwell Automation [6], Ferreira [7], Ulewicz
and Vogel-Heuser [8], Hegny [9] and Lepuschitz [10] have
proposed agent architectures targeting execution platforms
such as Programmable Logic Controllers (PLCs).

The complexity and the resource demand of the
deliberation process, have lead to the solution of splitting the
agents into two parts and two physical platforms. The
decision making algorithms are implemented on high level
languages such as Java, C# or C++ and executed on general
purpose computers (PCs). And the other part performing
time sensitive tasks and interfacing to I/O (actuators and
sensors) are executed on the PLCs. A single agent is
developed using several technologies such as Java and IEC
61131-3.

In the works [6-10] the agent architecture has two parts:
High Level Controller (HLC) and Low Level Controller
(LLC). HLC represent decision making part of the agent,
whereas LLC executes commands from HLC and also
performs direct control of actuators. HLC is often
implemented in JADE, where HLC is designed as a complete
agent [7,9]. HLC MAS is executed on the PC [7-10]. LLC is
implemented on PLC with IEC 61131-3 languages [7-8] or
IEC 61499 [9-10]. The interface between HLC MAS (JADE
or C#) and PLCs is realized with Automation Device

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Specification (ADS). ADS allows for high level programs to
access PLC code and I/O. Alternatively, Rockwell
Automation has implemented HLC in C++ and embedded it
into PLC with the corresponding LLC [6]. In this way an
agent is executed on a single platform. However, the PLC
firmware had to be customised for this project [6].

The mentioned works tend to separate the resource and
time demanding decision making process from time-critical
reactive behaviour of an agent. Additionally, in these agents
HLC passes down the commands to LLC to act on the
environment. This type of agent architecture can be
categorised as vertical layered architecture, according to the
agent’s classification introduced in [1].

The challenge is still remaining, i.e. suitable architecture
enabling an agent to perform on field devices and operate
within industrial environment. Furthermore, separation of the
architecture over several technologies introduces
development, integration and deployment challenges, and
may incur runtime inefficiencies.

The aim of this paper is to propose an architecture
integrating both deliberative and low level control within a
single entity yet executable on field devices. The next
chapter will describe the proposed agent architecture. Since
IEC 61850 and IEC 61499 are well documented and widely
used in research projects, their description is easily
accessible in various publications. Therefore, due to the
paper size limitation, the description of both standards will
be left out.

III. ARCHITECTURE OF AN AUTOMATION AGENT

The agent architecture is based on the IEC 61850 and is
realised using the IEC 61499 reference architecture.

The IEC 61850 standard "Communication networks and
systems for power system utility automation" [11] reflects
the advanced industrial practice for designing substation
automation, control and protection applications. IEC 61850
decomposes the power substation down to objects so-called
Logical Nodes (LN). A LN describes an information model
of a domain specific automation function. For example, a
function “overcurrent protection” is modelled as PIOC LN.
The standard has a complete domain information model
containing classes, their properties, taxonomy and relations
between classes. IEC keeps improving and expanding the
standard adding more information about the domain. Since
the application domain of the proposed agent architecture is
in power system automation, the IEC 61850 information
model provides a perfect foundation for the agent.

IEC 61499 is designed for development of distributed
systems in automation and control. The IEC 61499 standard
"defines an open reference architecture for next generation of
distributed control and automation" [12]. The design
structures used in the standard are Basic Function Block
(FB), Composite FB and Service Interface FB (SIFB);
Application and abstract Device Model. FB encapsulates
automation functions or any programming modules in a
portable and re-usable platform independent form. The

event-driven semantics of IEC 61499 can provide faster
reaction time than the cycle-based execution of industrial
controllers, such as PLCs [12].

A. Overview of the proposed architecture

In the proposed architecture, the agent models LN and its
functionality is determined by the LN’s objectives and
functions. The IEC 61850 decomposition of the domain into
automation functions gives a well-defined and structured
domain model and helps with the agent identification. The
agent inherits the information model of the LN as its beliefs
and the domain specific function of a LN as its desires or
objectives. The beliefs and the desires will define the
intentions of the agent. Therefore the LN determines actions
of the agent. The resultant set of agents is specific to the
power system automation domain, reflecting given
functional and non-functional requirements.

IEC 61850 communication standardize the information
exchange within the power system automation schemes,
however, it is not sufficient for agent communication.

At this stage we do not propose to use IEC 61850
communication services for inter-agent communication.

In order to serve the needs of communicating agents, the
semantics of the messages need to be defined. One
possibility is to consider FIPA developed Agent
Communication Language (ACL) with SL, describing
semantics of the messages. Another possible method is to use
common knowledge representation, such as ontology.

The applicability of these approaches needs to be
investigated in the future work. Agent communication
language is out of scope of this paper.

Let us denote a Logical Node as ln, a set of beliefs as B, a
set of desires as D, and Action as a set of possible actions of
the agent. A logical node can then be defined as a tuple,
containing the agent's beliefs and desires, ݈݊ ൌ ሺܤ, ሻ. Letܦ
LN be a set of such logical nodes, ܰܮ ൌ ሼ݈݊ଵ, ݈݊ଶ, … , ݈݊ሽ.
Then the agent will perform actions defined by the respective
logical node, ܽ݃݁݊ݐ: ܰܮ → .݊݅ݐܿܣ

The proposed agent has a hybrid architecture (according
to the agent’s classification introduced in [1]), combining
deliberative and reactive layers, and has a horizontal layered
architecture, as depicted in Fig. 1. In the horizontal
architecture, the sensory inputs are provided to each layer,
and each layer generates its own actions. The architecture is
made up of a reactive layer, a deliberative layer and beliefs.

The abstract model of the layered architecture with IEC
61499 FB is shown in Fig. 2. The LN defines intentions,
possible actions and dictates the structure of beliefs. The
beliefs of the agent are IEC 61850 defined LN data. There is
a library of modelled plans. A plan is implemented as a basic
FB. The library of possible goals, or intentions, can be
expressed as variables and stored within the plans as post-
conditions or in the interpreter as pre-compiled options for
the deliberation process. The interpreter is a separate FB,
which can process beliefs, intentions and plans, and decide
on a single plan to execute.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Fig. 1. Horizontally layered architecture of the proposed agent.

The reactive layer is represented by Reactive FB and can
take precedence over the deliberative layer to perform its
actions. The reactive behaviour is modelled as the IEC
61499 Execution Control Chart (ECC).

Fig. 2. Abstract FB model of the proposed horizontally layered agent
architecture.

The next section describes reactive layer in detail.

B. Reactive layer of the proposed arcthiecture

In the proposed agent architecture, the reactive layer has
the highest priority to ensure mission critical tasks are
performed in a timely manner. The subsumption architecture
of the reactive layer has first been proposed by Brooks [1]. It
is built on a set of task-accomplishing behaviours [1].
Subsumption is a categorisation of the behaviours, where the
higher layers represent more abstract behaviours. The
behaviour is a function, which selects the action to be
performed based on perception and current beliefs of the
agent. The behaviour modules are arranged into a
subsumption hierarchy, with the lowest layer (behaviour)
having the highest priority. Fig. 3 shows the concept of the
subsumption architecture [1]. Each layer is a behaviour
module, which takes perceptual inputs and maps them to a
suitable action. There might be several actions firing at once,
therefore there needs to be a mechanism (arbitrator) to select
the action with the highest priority.

In the proposed architecture, behaviour is modelled as
IEC 61499 ECC, which is a form of FSM. The ECC defines
the reaction of the basic FB on input events and data, thus
mapping inputs into the appropriate action. An action in the
ECC can be associated with an algorithm and output events.
An algorithm operates over input, output and internal data.
Output events are emitted once an algorithm is executed. An
ECC is realized within a basic FB. Therefore, the behaviour
component of the subsumption architecture is modelled by a

basic FB. Definition of the basic FB formulates the
description of the behaviour module of the agent. The formal
model of IEC 61499 has been proposed by a number of
researchers [13-18]. The proposed agent architecture is based
on the IEC 61499 formal definition by Dubinin and Vyatkin
[18]. The full formal model of IEC 61499 can be found in
[18].

Fig. 3. Behaviour layers of subsumption architecture. An action selection
[1].

A set of task accomplishing behaviours (basic FBs), can
be represented as composite FBs. Formal model of a
composite FB can be found in [18].

In the proposed architecture, priority is assigned to the
behaviours if the actions of these behaviours overlap and
compete. If the fired actions do not compete, then they are
allowed to act simultaneously. Competing actions have to be
arbitrated. Arbitration mechanism is left up to the designer
and its agent specific (function). One method of arbitration is
to group competing actions and resolve them with an
arbitrator, which takes priority of the behaviours into
account. Therefore, there will be one arbitrator per group of
competing actions.

Fig. 4 depicts an example of reactive behaviour of the
CSWI agent. CSWI agent has 2 reactive behaviours:
OperateXCBR and FaultIsolatedKeeper. The first one
operates the local circuit breaker on requests from the
deliberative layer and requests from other CSWI agents.
FaultIsolatedKeeper records the asynchronous event of the
fault isolation, coming from the deliberative layer or other
CSWI agents. These are implemented as ECC within basic
FBs. ECC of the OperateXCBR reactive behaviour is a
simple FSM (Fig. 4). On request from either the deliberative
layer or the another agent, the desired operation on local
circuit breaker is sent to XCBR agent. On the confirmation
of the switch operation, the CSWI agent acknowledges the
operation to the caller and the ECC returns to the original
state.

Fig. 4. OperateXCBR behaviour modelled as ECC of basic FB.

The Behaviour modules of CSWI reactive layer are not
competing, therefore in this instance an arbitrator is not
required.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

As seen from the example, the behaviours contain simple
actions. Simple ECC is easy to understand, debug and verify.

The reactive layer is responsible for situations, which
need immediate attention. However, the agent may also have
long- term goals. The deliberation process is captured in the
deliberative layer of the proposed architecture. The method
of deliberation can take different forms. This is discussed in
the next section.

C. Deliberative layer of the proposed architecture

Deliberation or reasoning process is usually
computationally intensive in terms of both time and memory.
An industrial agent operates under resource constraints of
field devices such as fixed size memory and fixed processor
performance. These limitations restrict the amount of
computation the agent can perform. Thus the reasoning
should be effective and decisive. One such method is
Procedural Reasoning System (PRS) [1]. PRS implements
the BDI architecture and provides the structures of the BDI
concept [19].

The PRS is the basis of the deliberative part of the
proposed architecture.

The reasoning process involves two parts: deliberation
and means-end reasoning. Deliberation resolves what state of
affairs the agent wants to achieve. Means-end reasoning is a
planning process, deciding how to achieve the desired state
of affairs. The agent, through the deliberation process, will
generate intentions, and by means-end reasoning perform
planning and arrive to a plan of execution.

The reasoning engine is referred to as the interpreter. The
interpreter will consider beliefs, desires, possible plans and
current intentions in the deliberation process to select a plan,
which will realize the desired state of affairs.

In procedural reasoning, there is no planning in principle.
Besides, the actions of an industrial agent are known and
restricted at the design time.

By establishing the agent on the basis of well-defined
LN, the purpose of the agent, its desires, intentions and
possible actions are known at the design stage. This allows
designing a library of possible and sound plans. The pre-
compiled plans can simplify the deliberation process and
remove means-end reasoning. The option generation
function is simplified to a match and select, rather than
generating options/goals from scratch. The filter function is
stripped down to the selection of the suitable plan comparing
their utility ratings, priorities or using a meta-level plan. This
results in agent decision making being simpler, faster and
less demanding on resources.

Since the proposed agent is based on an LN, the LN
defines the agent's beliefs and its purpose and intentions. The
domain specific function of the LN defines set of possible
actions of the agent. Therefore, the intentions and all possible
plans can be provided at compile time as a library.

In this manner, the required processing resources can be
reduced. Firstly, by an abridged deliberation process, which
is still sufficient for intention filter function; and secondly,

by substituting means-end reasoning with a library of pre-
compiled plans.

A derived formal model of the proposed deliberative
layer is presented in [20]. A short summary of the
deliberative layer is described below.

Fig. 5 presents control loop of the proposed deliberative
model. Let B_ln be current beliefs of the agent and ݈݁ܤ_݈݊ be
a set of agent's beliefs, then ܤ_݈݊ ⊆ ݈݊_ܦ The desire .݈݊_݈݁ܤ
is pushed into the intention stack at the start up. This will
motivate the agent to operate and generate new intentions.
The rest of the algorithm is the loop. The loop starts updating
the beliefs with the perceptual inputs with function :݁݁ݏ	ܧ	 →
 where Per is a set of perceptions and E is a set of states ,ݎ݁ܲ
of the environment. The intention to be achieved is always at
the top of the stack. The agent gets the intention I_ln from
the stack, and decides how to achieve it. This will result in
selection of a plan ߨ to commit to. This plan is then
executed. The procedure execute(α) performs a given action
ߙ ∈ .The action α may push new intentions into the stack .ߨ
A plan in this architecture is a sequence of actions ߨ ൌ
,ଵߙ ,ଶߙ … , .ߙ

Fig. 5. Control loop of the proposed deliberative agent.

The deliberation process is captured in functions of
option generation ݏ݊݅ݐ: 2௦_ ൈ ݈݊_ݐ݊ܫ ൈ ݈݊_݈݁ܤ →
2 and filter ݂݈݅ݎ݁ݐ: 2 ൈ Գ → ܲ, where ݐ݊ܫ_݈݊ as a set of
intentions, ܫ_݈݊ ∈ ݈݊_݈݊ܽܲ and ݈݊_ݐ݊ܫ ൌ ሼߨଵ, ,ଶߨ … , ሽ is aߨ
set of all plans designed for the agent (a library of plans). An
option generation function selects the possible plans to
achieve, given intention and current beliefs. This set of
possible plans capable to achieve current intention is denoted
as ܲ, ܲ ⊆ From this generated set of possible .݈݊_ݏ݈݊ܽܲ
plans ܲ (options), a filtering function selects one plan ߨ
according to the defined criteria. Let us assume, that the plan
is selected based on utility rating, which is expressed with a
number from a set of natural numbers Գ.

The agent implements single-minded commitment with
while loop in rows 10-21. The while loop is dedicated to a
chosen plan and will continue until there are no actions in the
plan to execute or the intention has been succeeded or
become impossible. The agent is reasonably open-minded.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

The agent maintains an intention as long as it is still believed
necessary to achieve. The ݎ݁݀݅ݏ݊ܿ݁ݎሺܫ_݈݊, ,݈݊_ܤ ሻߨ
function (row 17) checks if the intention, the current plan is
aimed for, is still valid, i.e. there is still a reason to achieve
the intention. If it decides the current intention (lets denote it
as ܫ_݈݊) should be reconsidered, an agent generates new
options and filters out a new plan. And the while loop 10-21
will start executing the new plan.

CSWI agent is depicted on Fig. 7. Deliberative layer of
the CSWI agent has five plans: ProvideAltertnavieSupply,
FaultIsolation, FaultLocated, Restore and GetHelp. There is
an IntentionStack and the reasoning engine - Interpreter.

The interface of the IntentionStack FB allows for plans to
push new intentions and the Interpreter to read the top of the
stack and to delete an intention when necessary. A plan is
implemented with a basic FB. Each plan has input StartPlan
and outputs PlanIsCompleted and newInt associated with
newIntVar. Using the provided interface, the plans can push
new intentions into the CSWI_Stack. Each plan also has a
logic dependent interface for reading current beliefs and
outputing actions. The interface of the Interpreter provides
signals for controlling stack and plans and also reads
necessary beliefs in order to deliberate a suitable intention
and a plan.

The behaviour of the deliberative layer is controlled by
the Interpreter, depicted in Fig. 6. The Interpreter requests
the intention at the top of the stack and starts deliberating.
There are three defined intentions for CSWI agent:
"NormalOperation", "FaultOperation" and "Restore". The
Interpreter performs one plan at a time. Once plan is
completed, the Interpreter updates the intention and starts the
deliberation considering the updated beliefs.

Formalised deliberative and reactive layers compose the
proposed hybrid agent architecture. These two layers have to
work together and synchronize their actions, which are
described next.

Fig. 6. Deliberation of the CSWI agent. ECC of the Interpreter FB.

D. Proposed hybrid architecture

In the proposed hybrid architecture there are two layers
(machines): deliberative and reactive. Both machines are
running concurrently as depicted in Fig. 8. Layers
synchronize by setting or reading a synchronization variable
- flag, a Boolean variable. Only reactive layer sets the flag,
deliberative layer only reads it. When the reactive layer
recognizes the situation to react, it signals to the deliberative
layer by setting the flag. The deliberative layer suspends its
execution and waits for the flag to be cleared. Once the
reactive layer completes its set of actions, it clears the flag.
The deliberative layer resumes its execution and reviews the
goal at the top of the intention stack considering updated
beliefs. The updated beliefs will reflect the changes in the
environment and internal variables of the agent after the
actions of reactive layer. In this way reactive module is given
higher priority, since it can set/clear the flag as it needs.

Let R denote the reactive layer and D the deliberative
layer. R and D are formally described as tuples:

ܴ ൌ ሺܳோ, Σோ, ோݍ
,⟶ோሻ and ܦ ൌ ሺܳ, Σ, ݍ

 ,⟶	ሻ,
where

ܳோ ൌ ሼܴ1, ܴ2ሽ, 	ܳ ൌ ሼ2ܦ,1ܦሽ are finite sets of states of
respective machines;

Fig. 7. CSWI agent. Internal structure: reactive behaviours, plans, intention stack and interpreter.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

ோݍ
 ൌ ܴ1, ݍ	

 ൌ ; are initial states	1ܦ

Σோ ൌ ሼܽ, ܾሽ, Σ ൌ ሼܽ, ܾሽ are the finite alphabets of the
machines, which are described later;

⟶ோ,⟶ are transition functions, such that

⟶ோ:ܳோ ൈ Σோ → ܳோ, and ⟶:ܳ ൈ Σ → ܳ,

mapping a state and a letter from the alphabet, to a state.

The flag is set, when it is assigned value "true", and flag
is cleared, when it has value "false".

݂݈ܽ݃ ൌ .flag is set. This is denoted as a - ;݁ݑݎݐ

݂݈ܽ݃ ൌ .flag is cleared. This is denoted as b - ;݁ݏ݈݂ܽ

Then, a and b compose alphabets of the reactive and
deliberative machines, i.e. Σோ ൌ Σ ൌ ሼܽ, ܾሽ is a finite
alphabet of corresponding machines.

Fig. 8. System with concurrent processes R and D, and their parallel
composition.

For a transition representation in the form → ሺݍଵ, ܽሻ ൌ

ଵݍ ଶ, the following short hand notation will be usedݍ
ఈ
→ .ଶݍ

State R1 is the state when the reactive machine monitors
the inputs. When the inputs require an action, reactive
machine moves to the state R2, where it performs actions.
The deliberative machine starts in state D1. This state is
normal operation, while state D2 is entered when the reactive
machine sets the flag. The deliberative layer returns to the
state D1 when flag is cleared. Both machines have the same
set of traces (action sequences) ܮ ൌ 	 ሼܾܽሽ∗	ሼܾܽሽ∗ሼܽሽ	.

In the proposed agent, the layers exist in a parallel
composition and so they construct the hybrid architecture as
a synchronous product of the concurrent machines. Reactive
and deliberative machines synchronise on transitions with
common alphabet {a, b}.

The semantics of the resultant system is

൳ݐ݊݁݃ܣ∥൷ ൌ ሺܳ∥, Σ∥, ∥ݍ
,⟶∥ሻ ൌ ܴ ∥ .ܦ

The transition function ⟶∥ has σ-transition if the
following condition is satisfied.

For any state ሺݍଵ, ଶሻݍ ∈ ܳ∥, for every ߪ ∈Σ∥ such that

ଵݍ
ఙ
ଵᇱݍ→ and ݍଶ

ఙ
→ ଶݍ

ᇱ , then ሺݍଵ, ଶሻݍ
ఙ
→∥ ሺݍଵᇱ , ଶݍ

ᇱ ሻ.

From all the possible transitions of the composition
 only transitions between states R1D1 to R2D2 ,∥ݐ݊݁݃ܣ
satisfy above definition. Thus,

ሺܴ1, 1ሻܦ

→ ሺܴ2, ,2ሻ, and ሺܴ2ܦ 2ሻܦ

→ ሺܴ1,1ܦሻ.

Fig. 8 demonstrates the parallel composition of reactive
and deliberative machines. The set of action sequences or
traces of the hybrid architecture is ܮ∥ ൌ 	 ሼܾܽሽ∗	ሼܾܽሽ∗ሼܽሽ.

The section has presented the formal description of the
proposed automation agent architecture, including
deliberative and reactive layers and their combination.
Combining these two architectures into a system may help
satisfy requirements of resource limitation and time
constraints of the automation agents, by utilizing pre-
compiled library of plans and intentions, and modelling
reactive behaviours with FSMs.

As an example of agents with hybrid architecture, Fig. 7
depicts a CSWI agent. The figure shows the internal
structure of the CSWI agent. In this case deliberative and
reactive layers do not perform competing actions, therefore
there is no need for a synchronisation mechanism.

In order to demonstrate one of the implementations of
synchronisation mechanism, let us assume CSWI agent has
slightly different goals, and so reactive and deliberative
layers perform competing actions. The corresponding FBs
have been modified to illustrate the example.

Fig. 9 illustrates the synchronization mechanism of the
CSWI agent.

As it can be seen, the deliberative layer does not set flag
and does not output the flag. The deliberative layer only
reads the flag and only acts when the flag is cleared. As seen
from the ECC of CSWI_Interpreter, every deliberation state
is taken only if flag is cleared. The machine suspends at the
states start and Deliberation. The deliberative machine does
not stay in the planning states, it signals a plan and moves
back to the start state. A plan executes a single action every
time it receives DoPlan event from the interpreter. Thus, a
plan completes a single action and stops, waiting for the
interpreter. The interpreter will not leave "start" state if flag
is set. In this way the deliberative machine suspends its
actions. If flag is set when the interpreter is in the
Deliberation state, it will not leave the state until the flag has
been cleared.

When the flag is cleared, the deliberation continues with
the current intention. At the intention states, the machine
deliberates with new updated beliefs. Here it can choose a
different plan or evaluate the current intention to be
impossible or succeeded and so get a new intention from the
stack. If the flag is set, when CSWI_Interpreter is in
intention states, then it will return to the start state and wait
for flag to be cleared.

In the reactive layer, behavior modules will set the flag
before they start their actions. Fig. 9 shows the behavior
OperateSwitch. Before operating the switch, it sets the flag.
On confirmation from the switch, the module completes its
actions and returns to the initial state, where the flag will be
cleared. Flags from each behavior are merged with an OR
block. This ensures that flag is set as long as at least one of
the behavior modules keeps it set.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

The next section will describe the implementation of the
proposed architecture.

IV. AUTOMATION AGENT IN A DISTRIBUTED FLISR

APPLICATION

 The above agent architecture was applied on a FLISR
application, which was developed with the earlier version of
the architecture in [21]. The short description of the scenario
is presented below; more details can be found in [22].

A. The FLISR scenario description

The sample distribution network is depicted on Fig. 10.
The distribution utility consists of three 11kV feeders
supplied by three different zone substations. Distribution
substations are positioned along each feeder as demanded by
customers’ loads. In the initial state the switches ROS3,
ROS4 and ROS 9 are open. All other switches are closed.

The scenario begins with a tree falling on the 11kV
mains, causing a permanent fault on feeder F1 between CB1
and ROS1. The feeder protection trips circuit breaker CB1 at
zone substation B. Sectionalizing switches ROS1 and ROS2
do not register the passage of fault current. After an
attempted automatic reclosure, CB1 goes to lockout.
Switches ROS1 and ROS2 are no longer energized, and they
propagate a “call for help” towards a zone substation of the
adjacent feeders. CB2 at zone substation A, and CB3 at zone
substation C, respond with information about the headroom
(excess capacity) available. This information propagates
back down feeders F2 and F3. Switches ROS3 and ROS4,
compare the available excess capacities with their respective
loads. The switches agree on the steps necessary to restore
supply: The mid-section of feeder F1 will transferred to
feeder F2; the tail-section will be transferred to feeder F3;
the head section will have to await repair. In the meantime,
the control centre sends the crew to repair the located fault

and then sends a command to the nodes of the system to
restore pre-fault states.

Fig. 10. Sample distribution network. Fault events and actions.

To simplify permutations of this scenario, only good
paths are modelled (assume that all operations are
successful).

B. Implementation of the agent architecture

The distributed components of the system collaborate to
perform fault location, fault isolation and supply restoration
tasks. The automation functions identified for the given
scenario are overcurrent protection, protection trip
conditioning, autoreclosing, switch control, circuit breaker,
switch and current measurement. These functions are
modelled with the following LNs: PIOC, PTRC, RREC,
XCBR, CSWI, XSWI, TCTR and CILO. CILO LN was not
considered in the implementation to simplify the scenario.

Modelling an agent-based system for the scenario is
straight forward following the proposed architecture, where

Fig. 9. CSWI agent. Synchronisation between deliberative and reactive layers. ECC of the CSWI_Interpreter FB and ECC of the Plan_OperateSwitch
FB are presented.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

each LN maps to an agent. Fig. 11 presents FB network for
the CB1 section of developed agent-based system.

Agents TCTR, XCBR, XSWI, RREC, PTRC are reactive
agents and have only the reactive layer. These agents are not
involved in the collaborative tasks mentioned above. More
interesting examples are agents CSWI and PIOC. They have
both layers: reactive and deliberative. PIOC is responsible
for fault detection and location tasks. CSWI agent performs
fault isolation and supply restoration tasks.

An example of pure reactive agent, is RREC modelled
with RREC_Reactive FB. This agent performs the auto-
reclosing function of the circuit breaker. On a trigger from
PTRC agent, that indicates detection of the fault and tripping
of the circuit breaker, RREC starts the so-called "dead
timer". This is the time is given for any temporary faults to
be cleared before the RREC attempts to re-close XCBR.
RREC closes the XCBR and starts the reclaim timer. If the
detected fault is temporary, then the reclaim time elapses and
RREC comes back to normal state. However, if the fault is
permanent, then the XCBR will trip the second time, before
the timer expires. In this case the RREC agent goes to
lockout state and informs local PIOC agent about the
permanent fault. When permanent fault has been cleared, on
the command "Restore" RREC agent returns to the normal
state. As seen from the example, the behaviours contain
simple actions. Simple ECC are easier to understand, debug
and verify.

Agents with hybrid architecture are CSWI and PIOC.
CSWI agent is described above in section III.

The PIOC agent has the same architecture with its own
library of plans and reactive behaviours.

The deliberative layer performs procedural reasoning,
given a library of plans and intentions, while the reactive
layer performs time critical operations and modelled as ECC
(i.e. FSM) of the basic FBs.

Instantiating these LN agents following the system
topology, allows modelling the FLISR application for the
whole distribution system. The agents of the same type, e.g.
CSWI are the instances of the same FB CSWI_agent. Fig. 11
presents excerpt of the system for position of CB1. The
agents at each ROS and CB have the same set of FBs and
interconnections as CB1. This can be seen at the system level
scale of the complete agent-based system given in Fig. 12.

This demonstrates re-use of software components (agents).

The developed agent-based system was tested using a co-
simulation framework. The following section will present the
simulation set up and the results of the experiment.

C. Discussion and results

The described use case observes that agents in power
system automation may have only a reactive layer, a
deliberative layer or both.

Another observation is that an LN, modelling an
automation function, is highly specialised. Therefore, the
respective agent inherits well-defined goals, plans and
actions. This provides a domain engineer with well-defined
framework to design an agent's model and its behaviour.

The proposed agent architecture is designed for the
application domain. It allows the capture of power system
automation concepts naturally, rather than forcing the
problem domain to fit a generic agent architecture.

As shown in this case study, IEC 61499 is a migration
pathway for agent-based solutions to industrial practice. The
reported agent-based FLISR solution was developed in
nxtStudio and first was simulated using IEC 61499 softPLCs
and then deployed to industrial hardware ADAM 6650 of
Advantech.

The testbed for the experiment is depicted on Fig. 12.
The simulation set up consists of six devices and a PC for
displaying HMI. The devices and a PC are networked with
Ethernet. The agents that correspond to a feeder are deployed
to one device, and agents that belong to a tie switch section
are also deployed to one device. Therefore, there are five
devices. The sixth device is softPLC, executing FBs related
to HMI. The experiment was conducted using co-simulation
framework [23]. The agent-based FLISR application is
coupled with the Matlab model of the distribution system.
Agents XCBR and TCTR are interfaced to the circuit
breakers and current measurement units correspondingly.
Communication is performed using UDP communication
function blocks. Matlab simulation runs in parallel with the
IEC 61499 agent-based system. More details on the co-
simulation framework can be found [23].

The fault is simulated on the section of circuit breaker
CB1 (Fig. 10), as described in section IV. The simulation
results are shown on the Fig. 12. The fault was cleared in

Fig. 11. Agent-based FLISR application. An agent network for section CB1 is shown only.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0.03 seconds of the simulation time after the reclosure.
Supply to sections ROS1 and ROS2 was restored almost
immediately, in 0.025 seconds of the simulation time. As it
can be seen, the sections ROS1 and ROS 2 have restored the
supply from feeders 2 and 3 correspondingly. It has to be
noted, that the simulation time is of a different scale from the
real time. The fault clearance time and time taken to restore
supply in this experiment is dependent on the computational
power of the processor to perform Matlab simulation and run
softPLCs, and also on communication delays. What is
important in this experiment is that the agents of the system
were able to successfully perform FLISR algorithm in a
distributed collaborative manner.

 The experiments were conducted simulating fault on
sections ROS1 and ROS2, and in both cases the fault was
correctly located, isolated and healthy sections had the
alternative supply restored correspondingly.

D. Comparison of the implementations

The other implementation of the FLISR with IEC 61499
is presented in [21, 22]. The work studied the feasibility of
the industrial agent based on IEC 61499 and IEC 61850. The
paper demonstrated that agents modelled as "intelligent LN"
(iLN) are capable of performing FLISR actions without
central control intervention.

An CSWI agent developed in [21] is depicted in Fig. 13.
As it can be seen, the agent does not have a well structured
architecture. It is a result of "ad-hoc" prototyping,
customised for the problem. This "ad-hoc" approach is
widely exploited in the works on agents for power system
automation as reported in the literature.

The system in [21] was developed with no intention of
further re-use or extension. The system cannot be re-
produced, the agents are unique for this solution. As seen
from the Fig. 13 behaviour of the CSWI agent is not explicit.

In contrast, the proposed implementation of the CSWI
agent has well defined architecture. Fig. 7 shows clearly two
reactive behaviours, five plans, the intention stack and the
interpreter. The design process is methodological and

therefore agents are re-producible. From Fig. 7 the behaviour
of CSWI agent can be understood.

The complexity of the CSWI agents in both works have
been measured using McCabe's metrics [24]. This estimates
cyclomatic complexity of the ECC of each FBs within the
CSWI agent. CSWI agent in [21] implementation achieved
average score of 4. Similar results have been obtained for
proposed CSWI agent - 3.8. Good practice is when McCabe's
complexity measure is below 10. The proposed formal
architecture, although resulted in a greater number of FBs
within CSWI, did not affect overall complexity of the agent.

The benefit of the proposed architecture also can be
realized when maintaining, extending or changing the agent
behaviour.

All components of the proposed agent architecture are
loosely coupled. Table 1 illustrates coupling within the
proposed CSWI agent. The coupling is estimated as a
number of input and output events and data connections
between the corresponding FBs. As it can be seen the plans
do not affect each other. Some plans push new intentions into
the stack. Interpreter and plans often have 2 connections, to
start the plan and inform of plan completion. Reactive
behaviours often do not interact with the deliberative layer at
all. In this case, plan FautIsolation sends operate command
to reactive behaviour OperateXCBR, and receives the
confirmation creating 4 connections including data for each
event. Interpreter adds and deletes intentions from the
intention stack, and requests for the top intention.

Thanks to the loose coupling of components, the
proposed agent architecture is scalable and maintainable. For
instance, introduction of a new plan will only affect the
interpreter, adding an additional intention state and a
transition.

In contrast, in [21], CSWI agent's decision making tightly
couples various behaviors. A single FB combines several
behaviors, e.g. Fault FB (Fig. 13). Fault performs behaviors
of "fault isolation" and "search for alternative supply". Each
additional behavior to the existing structure of CSWI agent,
will require a unique approach, addressing challenges of its

Fig. 12. The testbed architecture used for agent-based FLISR application.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

integration with the existing components. An introduction of
a new behavior will have an unpredictable effect on the
agent.

V. CONCLUSION

This work is aimed at facilitating industrial adoption of
the agent technology. The paper proposed an agent
architecture based on industrial standards IEC 61850 and
IEC 61499.

The designed agent-system is functionally complete:
agents handle faults at any location within the distribution
network. Functional requirements were captured with
defined LNs, which are the base of the agent architecture. In
this way, the architecture ensures that the requirements are
carried through to the final system design.

The control system designed with the agent technology is
scalable and flexible. The architecture simplified FLISR
design, by reusing software components implementing
agents. The agents are instantiated according to the LN types
of primary devices that constitute each feeder and required
automation functions. Such an approach can be taken to re-
design the system for new topologies or changes in

requirements.

REFERENCES
[1] M. Wooldridge, An introduction to Multiagent Systems. UK: John

Wiley & Sons Ltd, 2009.
[2] M. Wooldridge and N. R. Jennings, "Intelligent Agents: Theory

and Practice", The knowledge Engineering Review, vol. 10, no. 2,
1995.

[3] P. Leitao, V. Marik, and P. Vrba.(2013). Past, Present, and Future
of Industrial Agent Applications. IEEE Trans. Ind. Inf.[Online].
9(4), pp. 2360-2372. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=63
19392

[4] S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent
systems for manufacturing control: A design methodology.
Germany: Springer-Verlag, 2004.

[5] L. S. Sterling and K. Taveter, Art of the agent oriented modeling.
USA: MIT, 2009.

[6] P. Vrba, P. Tichy, V. Marik, K. H. Hall, R. J. Staron, F. P.
Maturana, and P. Kadera.(2011). Rockwell Automation's Holonic
and Multiagent Control Systems Compendium. IEEE Trans. Sys.,
Man, and Cybern., Part C: App. and Reviews. [Online]. 41(1), pp.
14-30. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=55
45420

[7] P. Ferreira, S. Doltsinis, A. Anagnostopoulos, F. Pascoa, and N.
Lohse. (2013). A performance evaluation of industrial agents.

TABLE 1. COUPLING BETWEEN CSWI AGENT COMPONENTS.

CSWI Agent

components
Interpreter

Intention
stack

Plan Get
Help

Plan Provide
alternative supply

Plan Fault
Located

Plan
Restore

Plan Fault
Isolation

Reactive
Operate XCBR

Reactive Fault
Isolated Keeper

Interpreter n/a - - - - - - - -
Intention stack 5 n/a - - - - - - -
Plan Get Help 2 2 n/a - - - - - -
Plan Provide
alternative supply 2 2 0 n/a - - - - -

Plan Fault Located 2 2 0 0 n/a - - - -
Plan Restore 3 0 0 0 0 n/a - - -
Plan Fault Isolation 2 2 0 0 0 0 n/a - -
Reactive Operate
XCBR 0 0 4 0 0 0 4 n/a -

Reactive Fault
Isolated Keeper 0 0 3 0 0 0 1 0 n/a

Fig. 13. CSWI agent in FBDK implementation.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Presented at IECON. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=67
00365

[8] S. Ulewicz, D. Schutz, and B. Vogel-Heuser. (2012). Design,
implementation and evaluation of a hybrid approach for software
agents in automation. Presented at ETFA. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=64
89766

[9] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M.
Merdan. (2008). Integrating software agents and IEC 61499
realtime control for reconfigurable distributed manufacturing
systems. Presented at SIES.[Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=45
77710

[10] W. Lepuschitz, M. Vallee, M. Merdan, P. Vrba, and J. Resch.
(2009). Integration of a heterogeneous Low Level Control in a
multi-agent system for the manufacturing domain. Presented at
ETFA.[Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=53
47061

[11] International Electrotechnical Comission, "IEC 61850
Communication networks and systems for power utility
automation," ed. 2, Switzerland, 2009.

[12] Fulnction blocks - Architecture, IEC standard 61499-1, 2005.
[13] V. Dubinin and V. Vyatkin. (2006). Towards a Formal Semantic

Model of IEC 61499 Function Blocks. Presented at IEEE Conf. on
INDIN. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=40
53354

[14] V. Vyatkin and H.-M. Hanisch (2001). Formal modeling and
verification in the software engineering framework of IEC 61499:
a way to self-verifying systems. Presented at the IEEE ETFA.
[Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=99
7677

[15] G. Cengic and K. Akesson. (2010). On Formal Analysis of IEC
61499 Applications, Part A: Modeling. IEEE Trans. Ind. Inf.
[Online]. 6(2), pp. 136-144. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=54
05074

[16] A. Luder and C. Schwab. (2005). Formal models for the
verification of IEC 61499 function block based control
applications. Presented at the IEEE ETFA. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=16
12508

[17] Y. Li Hsien, G. D. Shaw, P. S. Roop, and Z. Salcic. (2012).
Synthesizing Globally Asynchronous Locally Synchronous Systems
With IEC 61499. IEEE Trans. Sys., Man, and Cyber., Part C:
App.and Reviews. [Online]. 42(6), pp. 1465-1477. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=61
98367

[18] V. Dubinin and V. Vyatkin. (2007). On definition of a Formal
Model for IEC 61499 Function Blocks. EURASIP Journal on
Ebmedded Systems. [Online]. Available:
http://jes.eurasipjournals.com/content/2008/1/426713

[19] M. Wooldridge, Reasoning about Rational Agents. MA: The MIT
Press.

[20] G. Zhabelova, "Software architecture and design methodology for
distributed agent-based automation of Smart Grid," Ph.D
dissertation, Dept. of Elect. and Comp. Eng., Auckland Univ.,
Auckland, New Zealand, 2013.

[21] G. Zhabelova and V. Vyatkin. (2012). Multi-agent Smart Grid
Automation Architecture based on IEC 61850/61499 Intelligent
Logical Nodes. IEEE Trans. Ind. Elect. [Online]. 59(50), pp. 2351-
2362. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=60
18303

[22] G. Zhabelova, "Investigation of intelligent smart grid automation
implementation by means of IEC 61499 and IEC 61850," M.E.

thesis, dept. Elect. and Comp. Eng., Auckland Univ., Auckland,
New Zealand, 2009.

[23] C. Yang, G. Zhabelova, C. Yang, and V. Vyatkin. (2013).
Cosimulation Environment for Event-Driven Distributed Controls
of Smart Grid. IEEE Trans. Ind. Inf. [Online]. 9(3), pp. 1423-1435.
Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=64
94291

[24] T. J. McCabe. (1976). A Complexity Measure. IEEE Trans.
Software Eng. [Online]. SE-2(4), pp. 308-320. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=17
02388

Gulnara Zhabelova graduated with Diploma
degree in Robotics and Mechatronics in 2006,
received ME in Automation and Control degree in
2008 from Karaganda State Technical University,
Karaganda, Kazakhstan and ME in Computer
Systems in 2009 and PhD in Electrical and
Electronics Engineering in 2013 from University
of Auckland, Auckland, New Zealand. Currently
she is with the Lulea University of Technology.
Prior to this, she was with the Industrial
Informatics Lab at The University of Auckland.

Her current work is on application of ICT and agent technology in Smart
Grid. Her interests are in Agent technology, its formal definition, theory
and application in wide practical domain: Automation and Control,
Protection in Energy generation, transmission, distribution and
consumption; Building automation, Demand Side management, Advanced
Metering Infrastructure (AMI), Energy markets and policies.

Valeriy Vyatkin (M’03–SM’04) received Ph.D.
degree from the State University of Radio
Engineering, Taganrog, Russia, in 1992. He is on
joint appointment as Chaired Professor of
Dependable Computation and Communication
Systems, Luleå University of Technology, Luleå,
Sweden, and Professor of Information and
Computer Engineering in Automation at Aalto
University, Helsinki, Finland. Previously, he was a
Visiting Scholar at Cambridge University, U.K.,
and had permanent academic appointments with the
University of Auckland, Auckland, New Zealand;

Martin Luther University of Halle-Wittenberg, Halle, Germany, as we'll as
in Japan and Russia.His research interests include dependable distributed
automation and industrial informatics; software engineering for industrial
automation systems; and distributed architectures and multi-agent systems
applied in various industry sectors, including smart grid, material handling,
building management systems, and reconfigurable manufacturing.
Dr. Vyatkin was awarded the Andrew P. Sage Award for the best IEEE
Transactions paper in 2012.

Victor N. Dubinin received the Diploma degree in
computer science and the Ph.D. degree from the
University of Penza, Penza, Russia, in 1981 and
1989, respectively. From 1981 to 1989, he was a
Researcher and from 1989 to 1995, he was a Senior
Lecturer at the University of Penza. Since 1995, he
has been an Associate Professor with the
Department of Computer Science at the University
of Penza. In 2003, 2006, and 2010, he was awarded
DAAD-grants to work as a Guest Scientist at
Martin-Luther-University, Halle-Wittenberg,
Germany. He held Visiting Researcher position at

the University of Auckland, New Zealand (2011), and at the Lulea
University of Technology, Sweden (2013, 2014). His research interests
include formal methods for specification, verification, synthesis, and

implementation of distributed and discrete event systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

