
Time-Stamped Event based Execution Semantics
for Industrial Cyber-Physical Systems

Abstract – Cyber-physical systems show their impacts in many
areas including industrial automation. Design and analysis of
cyber-physical automation systems requires an integral model
that takes into account tight coordination of control,
communication and physical plants dynamics, thus creating a
new research domain, namely industrial cyber-physical systems.
This paper proposes a new execution semantics for the IEC
61499 standard that is based on the concepts of discrete-event
systems augmented with timestamping of events to guarantee
real-time constraints for industrial cyber-physical systems. The
proposed execution semantics is implemented in an IEC 61499
execution environment and a case study on building automation
systems is used to verify the results.

Index Terms — Industrial Cyber-Physical Systems; Discrete
Event Systems; Timestamp; Execution Semantics; Deterministic;
IEC 61499 Function Blocks; Real-time Constraints; Building
Automation Systems.

I. INTRODUCTION

 Cyber-physical systems (CPS) is a popular research topic
both in academia and industry motivated by tight integration
between computation, control, communication and social
interaction that is observed in many modern applications of
information and communication technologies (ICT).
Industrial automation is certainly one of such applications. In
a nutshell, the CPS approach to systems design and analysis
stipulates integrated view on computation, control,
communication and physical processes dynamics. Since
computing can reside within every physical component [1], it
is not sufficient to understand properties of physical and
computational components individually, it is important to
understand their interaction [2].

Industrial automation systems experience high influence of
advancements in ICT. With boosted memory size,
computational performance, and network bandwidth,
industrial automation systems are capable of handling
complexities, which could not even be imagined a decade
ago. More importantly, wide adoption of the Ethernet
technology gave a strong boost to distribution of industrial
automation logic [3]. Distributed control software asks for an
adequate model that could cover the diversity of industrial
CPS. The IEC 61499 standard has been developed to address
many related challenges [4]. The IEC 61499 standard

increases the modelling abstraction level by encapsulating
control logic into function blocks and providing support for
nested function blocks. Furthermore, IEC 61499 models are
direct executable where extra steps must be taken for other
modelling languages (e.g. SysML [5] and AutomationML
[6]).

From an execution perspective, two characteristics are
indispensable in industrial CPS. Firstly, execution semantics
must address the real-time constraints of industrial CPS. In
existing industrial automation systems, real-time performance
largely relies on hardware capabilities. Hence, in such
systems, identical programs could result in various system
behaviours as execution times vary from platform to platform.
Secondly, execution semantics must be deterministic.
Deterministic execution means that with given initial states
and sequences of input values, system status shall be
predictable at a specified elapsed time and system operations
could be repeated identically for identical initial states and
input value sequences. Overall, the aim for this paper is to
introduce an execution semantics that is deterministic and
totally independent from deployment platforms.

The rest of the paper is organized as follows: In Section II,
existing IEC 61499 execution semantics and models of
computation investigated in CPS are revised. An execution
semantics for industrial CPS based on discrete-event systems
is introduced in Section III. In Section IV, the model of
computation introduced is extended with real-time
capabilities. Following that, the semantic rules for the
computational model are defined in Section V. In Section VI,
the implementation of the computational model for IEC
61499 function blocks is illustrated and experiences with this
computational model are summarized in Section VII. Finally,
conclusions and topics for future investigation are presented.

II. RELATED WORKS

In CPS research, Eidson et al. [7] proposed the PTIDES
programming model, which is designed as a coordination
language for CPS. PTIDES provides robust distributed real-
time software models, which are independent of hardware
deployment. The PTIDES semantics is based on a tagged-
signal model, which provides deterministic temporal

Wenbin Dai,
Shanghai Jiao Tong University, China,

IEEE Member, w.dai@ieee.org

Cheng Pang
Luleå University of Technology, Sweden,
IEEE Member, cheng.pang.phd@ieee.org

Valeriy Vyatkin,

Luleå University of Technology, Sweden and Aalto
University, Finland, Senior IEEE Member,

vyatkin@ieee.org

James H. Christensen
 Holobloc Inc, US

 james.h.christensen@gmail.com

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1263

semantics [8]. When presented with identical sets of input
events with timestamps, an actor is required to deliver an
identical set of output events with the same timestamps every
time.

There also exist other works in industrial systems research
regarding time-triggered systems and event-triggered systems.
Albert [9] compares event-triggered and time-triggered
concepts and concludes that if all distributed nodes are
synchronized to a global time then there is no jitter for event-
trigger systems. Event-triggered systems provide fast
reactions to asynchronous external events. On the other hand,
time-triggered systems lack of flexibility and scalability since
a small modification requires a complete redesign of the
system. A hybrid event-triggered and time-triggered system is
suggested to provide better performance with improved
flexibility and scalability. Van Den Heuvel et al. [10]
proposes a limited pre-emptive scheduling method by mixing
time-triggered and event-triggered tasks. A table is created
for dispatching both time-triggered and event-triggered tasks.
A synchronous protocol is designed for non-preemptive time-
triggered tasks to ensure that timing constraints are satisfied.
Scarlett et al. [11] evaluates event-triggered and time-trigger
systems based on applying an object-oriented paradigm in
industrial control systems. As a conclusion, time-triggered
systems are more dependable and event-triggered systems are
more responsive and flexible.

Pang et al. [12] propose a unified architecture for time-
driven and event-driven control models, which are the two
fundamental design paradigms applied in distributed control
systems for synchronizing decentralized activities. The
proposed time-complemented event-driven distributed control
model aims at improving the modularity and flexibility of
automation software with satisfactory control performance.

The majority of industrial automation systems are equipped
with programmable logic controllers (PLC). There exists two
international standard for PLCs: IEC 61131-3 [13] and IEC
61499 [14]. Execution semantics is clearly defined in the IEC
61131-3 standard, namely cyclical execution, in which PLCs
repeat the scan cycle indefinitely. For each PLC scan cycle,
PLCs read input values at the beginning of each scan, execute
assigned tasks sequentially and update output values by the
end of each scan. On the other hand, as execution semantics
is not limited in the IEC 61499 standard, several execution
semantics exist.

 There is an IEC 61499 version of cyclical execution
semantics introduced by [15] and [16]. On each scan, each
function block is scheduled in a fixed order inside a function
block network. When this function block is activated, input
event and data variables are updated from its interface,
encapsulated logic is executed, and finally all output event
and data variables are written back to its interface.

The buffered sequential execution model [17] is based on
FIFO-queues. For each function block instance, a FIFO-
queue is used to store input events and events will be
consumed by the function block instance until no input event
is left in the queue. Multithreading execution consists of
several concurrent threads in which each thread consists of a

function block chain [18]. When a function block chain is
triggered by an input event, this thread execution cannot be
pre-empted once started. In this case, function block networks
could be scheduled into multiple concurrent sub-networks.

Li et al. [19] propose a synchronous execution semantics
for IEC 61499 function blocks in which all function block
instances execute once when a clock tick is generated. There
is no input event queue for each function block instance. If
there is more than one event received at a function block
instance during a tick, only one event will be stored for the
next tick.
 To conclude, despite the extensive investigations described
above, there is not yet a comprehensive and well-accepted
model of computation for industrial CPS that integrates a
time-triggered mechanism with event-triggered systems.

III. DISCRETE-EVENT COMPUTATIONAL MODEL FOR IEC
61499 FUNCTION BLOCKS

Discrete event systems (DES) are widely adopted in
various domains. A DES is a discrete-state event-driven
system whose state evolution depends entirely on the
occurrence of asynchronous discrete events over time [20]. A
DES is frequently a combination of time-driven system and
event-driven system. A time-driven system is triggered by
clock ticks and state transitions are synchronized with the
clock. In event-driven systems, state transitions only happen
when events occur. Events are generated asynchronously
which means state changes may happen at various time
intervals.

The key characteristic of the IEC 61499 standard is event-
triggered function blocks. A function block will only be
activated when an event input from its interface is triggered.
On the other hand, time-triggered events can be generated in
various ways via SIFBs in IEC 61499 applications. For
example, SIFBs can poll data at a fixed interval from
industrial fieldbuses. Therefore, the DES concept could be
perfectly fit into an IEC 61499 computational model.

Instead of queuing events at each function block instance,
all events are queued in chronological order at resource level.
The event queue is based on a circular FIFO buffer with a
write pointer and a read pointer. Assuming transition time of
event and data connections is negligible during execution in
an IEC 61499 resource, events will be processed following
their order in the queue. As queue data are specific for each
resource, sets of these values must be stored which a process
can take during the execution.

When events are writing into the queue, execution process
checks whether any free slot is available in the queue, writes
the event into the next available slot and increments the write
pointer. When events are consumed from the queue,
execution process checks whether the queue is empty, fetches
the next event in the queue and calls the step function, and
finally increments the read pointer. Finally, execution process
takes current event queue, processes the active event, and
updates current state of execution.

IV. INTRODUCING TIME INTO DISCRETE-EVENT IEC 61499
FUNCTION BLOCK NETWORK EXECUTION MODEL

1264

In the previous section, an event-triggered model of
computation is defined based on discrete-event systems
theory. In this section, this model will be augmented with
time-triggering concepts. As discussed previously, a time-
stamped event is introduced by Lee et al. [21] which contains
a data structure of current time and priority for CPS. The
proposed time-stamped event is also applicable for industrial
CPS. However, real-time constraints for industrial automation
systems must be considered.

In IEC 61499 applications, events are generated from
external sources via SIFBs, for instance, analogue and digital
inputs via industrial fieldbuses or messages from other PLCs.
Inputs and outputs on industrial fieldbuses are commonly
scanned periodically. PLCs must complete execution and
update outputs between two scans to ensure no task overlap
occurs. When task overlap happens, PLCs will be out of sync
with fieldbuses, which may lead to unexpected system
behaviours. In embedded systems, best-case reaction time is
usually the key index for performance measurement. For
industrial automation, worst-case execution time is constantly
monitored in order to avoid non-deterministic execution.

In order to take real-time constraints into considerations, a
real-time clock must be introduced for providing timestamps
in discrete-event based execution semantics. The premise is
made that all clocks in the same IEC 61499 system
configuration are synchronized. Synchronized clocks provide
a natural number that represents the time elapsed since a
system-defined reference time. An event EIn defined in (1) is
given a definition as:

EIn = (Tinit, Tlast, P)
where Tinit is the original time when this event was created,
Tlast is the last time when this event was handled, and P is the
priority of this event.

The initial time Tinit refers to the first time when an event or
its source appears in an IEC 61499 resource. The value of the
initial time can only be set by event source SIFBs. An event
source SIFB could be event-related SIFBs such as
E_RESTART, E_CYCLE, or communication SIFBs for
accessing fieldbuses and exchanging external messages. Once
an initial time stamp is assigned, this value will be passed to
cascade events on the same event chain. Similar to the event
chain concept proposed in [18], an event chain starts from an
event source function block and terminates when no further
event output is generated from any function block connected
by this event directly or through intermediate function blocks.

Whenever a function block output event is emitted, the last
time stamp Tlast will be updated with the current clock time. It
is possible that more than one event is emitted from the same
function block simultaneously, which means those events
have identical values of last execution time Tlast. In order to
distinguish these events in the event queue, the priority P is
introduced for identifying simultaneous events emitted by the
same function block, and .

Instead of following a simple first-in and first-out principal,
events are listed in the queue by chronological order. When a
new event is emitted, the input function will compare the last
time execution timestamp of this event with all events in the

queue in reverse order. This new event will be inserted into
the queue at the position where the last execution timestamp
of the previous event in the queue is earlier. If the last
execution timestamps of two events are identical, the input
function will terminate searching when the previous event has
a higher priority. As events are already ordered according to
the chronological order, the first event in the queue will
always be the event with longest waiting time. There is no
change required for the output function.

V. SEMANTIC RULES FOR TIME-STAMPED DISCRETE-EVENT
BASED EXECUTION SEMANTICS

Time-stamped discrete-event based execution semantics are
formally defined in previous sections. However, how to
handle events is yet to be investigated. The step function,
particularly event-handling function, will be described in this
section. The event-handling function consists of several
semantic rules. Those semantic rules aim to provide
deterministic system behaviour: given the same initial state
and sequence of input values, the system always produces
identical output values. In this section, only semantics not
covered in the IEC 61499 standard will be defined.

Firstly, initial timestamp value of an event is set only when
it is emitted by event source SIFBs. As described in the
previous section, the initial timestamp can only be set by
event source SIFBs such as E_RESTART, E_CYCLE, or
fieldbuses interface FBs.

Secondly, for any FB type, the initial timestamp value of
an output event will be identical to that of its triggering input
event. For a BFB or an SIFB, the initial timestamp value of
an activated input event will be copied to the output event(s)
emitted. For a CFB, the initial timestamp value of an
activated input event will be carried by internal events
through the internal FB network (FBN) and duplicated at
output event(s).

Next, for any FB type, the last execution timestamp value
of an event is updated with current clock time and priority is
set when it is emitted from a function block. Last execution
timestamp of an event will be only updated at function block
right interface (output side). The last execution timestamp
retains its values during propagation via event connections.

Fig. 1: BFB Simultaneous EC State Event Output

In a BFB, if there are two or more output events with
identical last execution timestamps emitted from the same EC
state, priorities for these events are set according to their
orders in the XML file. As illustrated in Fig. 1, an output
event that appears earlier in the XML file will be set with

1265

higher priority. For instance, the priority of the first listed
output event will be set to the highest priority, zero.

Fig. 2: SIFB Simultaneous Service Transaction Event Output

In an SIFB, if there are two or more output events with
identical last execution timestamps emitted from the same
service sequence, priorities for these events are set according
to their orders in the XML file. As shown in the Fig. 2, an
event that appears earlier in the output primitives will be set
with higher priority. Again, priority of the first output event
will be set to the highest priority, zero.

In an FBN, if there are two or more output events merged
into one event input, events will be queued and processed by
chronological order. The downstream function block may be
invoked several times by upstream function blocks during one
fieldbus scan cycle. However, the downstream function block
is not necessarily activated continuously as there might be
other events scheduled between events from upstream
function blocks.

In an FBN, if there are two or more input events split from
same event output, input event from event connection which
appears earlier in the XML representation is set with higher
priority. As shown in the Fig. 3 below, when an event output
is connected to more than one FB event input, execution of
downstream FBs will be scheduled in order of event
connections placed in the XML file.

Fig. 3: FBN Event Split.

 Overall, the determinism of the proposed time-stamped
discrete-event based execution semantics is built based on
sequential execution orders that are distinguished by
timestamps and priorities. The one-dimensional array event
queue introduced at the IEC 61499 resource level ensures that
there is only one event activated simultaneously. Parallel
execution is not limited in the IEC 61499 standard, as any
function block shall only be activated by single input event
simultaneously [22]. Although parallel execution would
provide better performance, from the determinism
perspective, the sequential execution is selected. The
proposed semantic rules provide guidelines for assigning
different priorities for simultaneous events ordered by time.

VI. IMPLEMENTATION

As described in [23], an IEC 61499 runtime Function Block
Service Runtime (FBSRT) based on service-oriented
architecture (SOA) is developed for bridging flexibility and
interoperability. In FBSRT, each function block is running as
an individual software service that communicates with other
function blocks via messaging only. The proposed time-
stamped discrete-event executions semantics is implemented
in the FBSRT as illustrated in Fig. 4.

Fig. 4: FBSRT Implementation for Time-stamped Discrete-
Event Execution Semantics.

In the resource manager, a new event queue is introduced as
well as read and write pointers for the queue. As introduced
in previous sections, two new functions are implemented:
event input function QueueEvent() for queuing events by
chronological order and event output function
ProcessEventQueue() for process next event in the queue.
The event output function will be invoked continuously until
there is no more events left in the queue.

There is a new service inserted in the FBSRT known as
timing service. The timing service offers current time for all
other services in FBSRT by implementing the IEEE 1588
precision time protocol (PTP) [24]. The IEEE 1588 PTP is a
precision time synchronization protocol for networked control
systems based on a master-slave configuration. The IEEE
1588 PTP is capable of synchronizing all slave clocks in
nanosecond level. However, due to time precision limitation
on PLCs (on most x86, x64, and ARM architectures, the
minimum time scale is one millisecond), time of IEC 61499
resources could be synchronized at millisecond level. If more
precise time is required, IEEE 1588-enabled hardware could

1266

be used for providing more accurate master clock time.

Fig. 5: Lighting Subsystem: Network Diagram.
 The implementation is verified with a building automation
system, in particular lighting subsystem of a manufacturing
plant. As shown in Fig. 5, four workshops are located on this
floor and each workshop has four ballasts. Ballasts in each
room could be adjusted individually or by groups (2 or 4 in
this case). The DALI protocol [25] is used for connecting
ballasts with PLCs. For each workshop, a separated PLC is
used and PLCs are inter-connected by standard Ethernet
connections.

The IEC 61499 system configuration for this
manufacturing plant is given in Fig. 6 below. For each
workshop, a ballast control function block FB_Ballast is
deployed for providing features supported by the DALI
fieldbuses. For example, direct on/off and step up/down by
time etc. A control panel is placed in each workshop that is
represented by a SIFB FB_CP. Two SIFBs FB_DALIIN and
FB_DALIOUT are used for accessing the DALI fieldbuses. A
BFB FB_Scenario is designed to coordinate all workshops to
perform a particular lighting scenario.

VII. DISCUSSIONS

 During the implementation processes, there are several
findings need to be shared. First of all, as the proposed
execution semantics affected by orders in XML file (for
instance, orders of BFB EC state output events and SIFB
service sequences), indication of different priorities must be
provided by IEC 61499 tools in order to avoid confusion of
users during design, development, and testing stages. Users
shall be allowed to modify priorities (orders) in IEC 61499
tools for deterministic.

Secondly, as events are no longer pure notification, the
data structure embedded in an event could be used in BFB or
SIFB algorithms. In existing IEC 61499 software design
processes, timers must be placed separately outside BFBs and
once timer is up, an extra event must be used for notification.
Alternatively, timestamp can be passed into function blocks
as input variables, but this requires huge manual works. By
applying the proposed approach, the initial timestamp and the
last execution timestamp of an event could be used as
variables directly. Also the current timestamp is available for
algorithms by invoking timing services. This will bring
benefits for time-related features using IEC 61499.
 Finally, the existing approach for the time-stamped
discrete-event execution semantic is based on sequential
execution: there is always one event being processed at any
time in an IEC 61499 resource. Parallel execution provides
better performance by dividing event chains into multiple
concurrent threads that utilizes maximum hardware resources.
However, from the determinism perspective, there are two
issues: first, the proposed event queue is a 1-D array, which
cannot hold two or more simultaneous events; second, it is
impossible that all concurrent threads could complete
execution at same time. Varying in execution time of multiple
threads will cause non-determinism. For event queues,
increasing dimension from 1-D array to 2-D array will be a
feasible solution. For the non-determinism issue, one feasible
solution is to force other threads to wait until all threads
terminate execution. However, the compensation to this
solution is again performance.

Fig. 6: Lighting Subsystem: IEC 61499 System Design.

1267

VIII. CONCLUSIONS AND FUTURE WORK

One typical characteristic for industrial CPS is diversity:
various PLCs cooperate with each other via networks to
provide control for complex industrial processes. A time-
stamped discrete-event based IEC 61499 execution semantics
is proposed for covering real-time constraints and
deterministic execution behaviours in industrial CPS
execution. The proposed execution semantics embeds
timestamps with discrete-event systems and schedules
function block network execution by chronological order. The
deterministic execution is guaranteed by time-based event
handling mechanism defined in the semantic rules.

For the future work, the time-stamped discrete-event based
model of computation will be experimented with parallel
execution semantics. How to measure real-time constraints
needs to be investigated. Furthermore, performance analysis
for the proposed execution semantics needs to be performed
to compare with other execution semantics.

REFERENCES

[1] R. Baheti and H. Gill, "Cyber-Physical Systems," IEEE Control
Systems Society, 2011.

[2] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems,
A Cyber-Physical Systems Approach, First ed.: LeeSeshia.org,
2011.

[3] V. Vyatkin, "Software Engineering in Industrial Automation:
State-of-the-Art Review," IEEE Transactions on Industrial
Informatics, vol. 9(3), pp. 1234-1249, 2013.

[4] A. Zoitl and H. Prahofer, "Guidelines and Patterns for Building
Hierarchical Automation Solutions in the IEC 61499 Modeling
Language," IEEE Transactions on Industrial Informatics, vol.
PP(99), pp. 1-1, 2012.

[5] P. Pihlanko, S. Sierla, K. Thramboulidis, and M. Viitasalo, "An
industrial evaluation of SysML: The case of a nuclear
automation modernization project," in 18th IEEE International
Conference on Emerging Technologies & Factory Automation
(ETFA 2013), Cagliari, Italy, 2013, pp. 1-8.

[6] R. Drath, "Let's talk AutomationML What is the effort of
AutomationML programming?," in 17th IEEE International
Conference on Emerging Technologies & Factory Automation
(ETFA 2012), Krakow, Poland, 2012, pp. 1-8.

[7] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and Z. Jia,
"Distributed Real-Time Software for Cyber-Physical Systems,"
Proceedings of the IEEE, vol. 100(1), pp. 45-59, 2012.

[8] Y. Zhao, J. Liu, and E. A. Lee, "A Programming Model for
Time-Synchronized Distributed Real-Time Systems," in 13th
IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS 2007), Bellevue, WA, US, 2007, pp. 259-
268.

[9] A. Albert, "Comparison of Event-Triggered and Time-
Triggered Concepts with Regard to Distributed Control
Systems," Embedded World 2004, pp. 235-252, 2004.

[10] M. M. H. P. Van Den Heuvel, R. J. Bril, Z. Xiaodi, S. Md
Jakaria Abdullah, and D. Isovic, "Limited preemptive
scheduling of mixed time-triggered and event-triggered tasks,"
in 18th IEEE International Conference on Emerging
Technologies & Factory Automation (ETFA 2013), Cagliari,
Italy, 2013, pp. 1-9.

[11] J. J. Scarlett and R. W. Brennan, "Re-evaluating Event-

Triggered and Time-Triggered Systems," in 11th IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA 2006), Prague, Czech Republic,
2006, pp. 655-661.

[12] C. Pang, J. Yan, and V. Vyatkin, "Time-Complemented Event-
Driven Architecture for Distributed Automation Systems,"
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. PP(99), pp. 1-1, 2014.

[13] Programmable controllers — Part 3: Programming languages,
IEC Standard 61131-3, 2013.

[14] Function blocks — Part 1: Architecture, IEC Standard 61499-
1, 2012.

[15] P. Tata and V. Vyatkin, "Proposing a novel IEC61499 runtime
framework implementing the Cyclic Execution semantics," in
7th IEEE International Conference on Industrial Informatics
(INDIN 2009) Cardiff, Wales, UK, 2009, pp. 416-421.

[16] V. Vyatkin and J. Chouinard, "On Comparisons of the
ISaGRAF Implementation of IEC 61499 with FBDK and other
Implementations," in 6th IEEE International Conference on
Industrial Informatics (INDIN 2008), Daejeon, Korea, 2008,
pp. 289-294.

[17] G. Cengic and K. Akesson, "On Formal Analysis of IEC 61499
Applications, Part B: Execution Semantics," IEEE Transactions
on Industrial Informatics, vol. 6(2), pp. 145-154, 2010.

[18] A. Zoitl, Real-Time Execution for IEC 61499, 2nd ed.:
International Society of Automation, 2009.

[19] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, "A
Synchronous Approach for IEC 61499 Function Block
Implementation," IEEE Transactions on Computers, vol.
58(12), pp. 1599-1614, 2009.

[20] Introduction to Discrete Event Systems, C. Cassandras and S.
Lafortune, Eds., 2nd ed.: Springer US, 2008.

[21] E. A. Lee, "Modeling concurrent real-time processes using
discrete events," Annals of Software Engineering, vol. 7(1-4),
pp. 25-45, 1999.

[22] T. Strasser, A. Zoitl, J. H. Christensen, Su, x, and C. nder,
"Design and Execution Issues in IEC 61499 Distributed
Automation and Control Systems," IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 41(1), pp. 41-51, 2011.

[23] W. Dai, V. Vyatkin, J. Christensen, and V. Dubinin, "Bridging
Service-Oriented Architecture and IEC 61499 for Flexibility
and Dynamic Reconfigurability," IEEE Transactions on
Industrial Informatics, vol. in press, 2015.

[24] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, IEEE
Standard 1588-2008.

[25] Digital addressable lighting interface — Part 101: General
requirements — System, IEC Standard 62386-101, 2014.

1268

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

