
Time-Stamped Event based Execution Semantics 
for Industrial Cyber-Physical Systems 

Abstract – Cyber-physical systems show their impacts in many 
areas including industrial automation. Design and analysis of 
cyber-physical automation systems requires an integral model 
that takes into account tight coordination of control, 
communication and physical plants dynamics, thus creating a 
new research domain, namely industrial cyber-physical systems. 
This paper proposes a new execution semantics for the IEC 
61499 standard that is based on the concepts of discrete-event 
systems augmented with timestamping of events to guarantee 
real-time constraints for industrial cyber-physical systems. The 
proposed execution semantics is implemented in an IEC 61499 
execution environment and a case study on building automation 
systems is used to verify the results. 

Index Terms — Industrial Cyber-Physical Systems; Discrete 
Event Systems; Timestamp; Execution Semantics; Deterministic; 
IEC 61499 Function Blocks; Real-time Constraints; Building 
Automation Systems. 

I. INTRODUCTION 

    Cyber-physical systems (CPS) is a popular research topic 
both in academia and industry motivated by tight integration 
between computation, control, communication and social 
interaction that is observed in many modern applications of 
information and communication technologies (ICT). 
Industrial automation is certainly one of such applications. In 
a nutshell, the CPS approach to systems design and analysis 
stipulates integrated view on computation, control, 
communication and physical processes dynamics. Since 
computing can reside within every physical component [1],  it 
is not sufficient to understand properties of physical and 
computational components individually, it is important to 
understand their interaction [2].  

Industrial automation systems experience high influence of 
advancements in ICT. With boosted memory size, 
computational performance, and network bandwidth, 
industrial automation systems are capable of handling 
complexities, which could not even be imagined a decade 
ago. More importantly, wide adoption of the Ethernet 
technology gave a strong boost to distribution of industrial 
automation logic [3]. Distributed control software asks for an 
adequate model that could cover the diversity of industrial 
CPS.  The IEC 61499 standard has been developed to address 
many related challenges [4]. The IEC 61499 standard 

increases the modelling abstraction level by encapsulating 
control logic into function blocks and providing support for 
nested function blocks. Furthermore, IEC 61499 models are 
direct executable where extra steps must be taken for other 
modelling languages (e.g. SysML [5] and AutomationML 
[6]).  

From an execution perspective, two characteristics are 
indispensable in industrial CPS. Firstly, execution semantics 
must address the real-time constraints of industrial CPS. In 
existing industrial automation systems, real-time performance 
largely relies on hardware capabilities. Hence, in such 
systems, identical programs could result in various system 
behaviours as execution times vary from platform to platform. 
Secondly, execution semantics must be deterministic. 
Deterministic execution means that with given initial states 
and sequences of input values, system status shall be 
predictable at a specified elapsed time and system operations 
could be repeated identically for identical initial states and 
input value sequences. Overall, the aim for this paper is to 
introduce an execution semantics that is deterministic and 
totally independent from deployment platforms. 

The rest of the paper is organized as follows: In Section II, 
existing IEC 61499 execution semantics and models of 
computation investigated in CPS are revised. An execution 
semantics for industrial CPS based on discrete-event systems 
is introduced in Section III. In Section IV, the model of 
computation introduced is extended with real-time 
capabilities. Following that, the semantic rules for the 
computational model are defined in Section V. In Section VI, 
the implementation of the computational model for IEC 
61499 function blocks is illustrated and experiences with this 
computational model are summarized in Section VII. Finally, 
conclusions and topics for future investigation are presented. 

II. RELATED WORKS 

In CPS research, Eidson et al. [7] proposed the PTIDES 
programming model, which is designed as a coordination 
language for CPS. PTIDES provides robust distributed real-
time software models, which are independent of hardware 
deployment. The PTIDES semantics is based on a tagged-
signal model, which provides deterministic temporal 
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semantics [8]. When presented with identical sets of input 
events with timestamps, an actor is required to deliver an 
identical set of output events with the same timestamps every 
time.  

There also exist other works in industrial systems research 
regarding time-triggered systems and event-triggered systems. 
Albert [9] compares event-triggered and time-triggered 
concepts and concludes that if all distributed nodes are 
synchronized to a global time then there is no jitter for event-
trigger systems. Event-triggered systems provide fast 
reactions to asynchronous external events. On the other hand, 
time-triggered systems lack of flexibility and scalability since 
a small modification requires a complete redesign of the 
system. A hybrid event-triggered and time-triggered system is 
suggested to provide better performance with improved 
flexibility and scalability. Van Den Heuvel et al. [10] 
proposes a limited pre-emptive scheduling method by mixing 
time-triggered and event-triggered tasks. A table is created 
for dispatching both time-triggered and event-triggered tasks. 
A synchronous protocol is designed for non-preemptive time-
triggered tasks to ensure that timing constraints are satisfied. 
Scarlett et al. [11] evaluates event-triggered and time-trigger 
systems based on applying an object-oriented paradigm in 
industrial control systems. As a conclusion, time-triggered 
systems are more dependable and event-triggered systems are 
more responsive and flexible. 

Pang et al. [12] propose a unified architecture for time-
driven and event-driven control models, which are the two 
fundamental design paradigms applied in distributed control 
systems for synchronizing decentralized activities. The 
proposed time-complemented event-driven distributed control 
model aims at improving the modularity and flexibility of 
automation software with satisfactory control performance. 

The majority of industrial automation systems are equipped 
with programmable logic controllers (PLC). There exists two 
international standard for PLCs: IEC 61131-3 [13] and IEC 
61499 [14]. Execution semantics is clearly defined in the IEC 
61131-3 standard, namely cyclical execution, in which PLCs 
repeat the scan cycle indefinitely. For each PLC scan cycle, 
PLCs read input values at the beginning of each scan, execute 
assigned tasks sequentially and update output values by the 
end of each scan. On the other hand, as execution semantics 
is not limited in the IEC 61499 standard, several execution 
semantics exist. 

 There is an IEC 61499 version of cyclical execution 
semantics introduced by [15] and [16]. On each scan, each 
function block is scheduled in a fixed order inside a function 
block network. When this function block is activated, input 
event and data variables are updated from its interface, 
encapsulated logic is executed, and finally all output event 
and data variables are written back to its interface.  

The buffered sequential execution model [17] is based on 
FIFO-queues. For each function block instance, a FIFO-
queue is used to store input events and events will be 
consumed by the function block instance until no input event 
is left in the queue. Multithreading execution consists of 
several concurrent threads in which each thread consists of a 

function block chain [18]. When a function block chain is 
triggered by an input event, this thread execution cannot be 
pre-empted once started. In this case, function block networks 
could be scheduled into multiple concurrent sub-networks.  

Li et al. [19] propose a synchronous execution semantics 
for IEC 61499 function blocks in which all function block 
instances execute once when a clock tick is generated. There 
is no input event queue for each function block instance. If 
there is more than one event received at a function block 
instance during a tick, only one event will be stored for the 
next tick.  
    To conclude, despite the extensive investigations described 
above, there is not yet a comprehensive and well-accepted 
model of computation for industrial CPS that integrates a 
time-triggered mechanism with event-triggered systems. 

III. DISCRETE-EVENT COMPUTATIONAL MODEL FOR IEC 
61499 FUNCTION BLOCKS 

Discrete event systems (DES) are widely adopted in 
various domains. A DES is a discrete-state event-driven 
system whose state evolution depends entirely on the 
occurrence of asynchronous discrete events over time [20]. A 
DES is frequently a combination of time-driven system and 
event-driven system. A time-driven system is triggered by 
clock ticks and state transitions are synchronized with the 
clock. In event-driven systems, state transitions only happen 
when events occur. Events are generated asynchronously 
which means state changes may happen at various time 
intervals.  

The key characteristic of the IEC 61499 standard is event-
triggered function blocks. A function block will only be 
activated when an event input from its interface is triggered. 
On the other hand, time-triggered events can be generated in 
various ways via SIFBs in IEC 61499 applications. For 
example, SIFBs can poll data at a fixed interval from 
industrial fieldbuses. Therefore, the DES concept could be 
perfectly fit into an IEC 61499 computational model. 

Instead of queuing events at each function block instance, 
all events are queued in chronological order at resource level. 
The event queue is based on a circular FIFO buffer with a 
write pointer and a read pointer. Assuming transition time of 
event and data connections is negligible during execution in 
an IEC 61499 resource, events will be processed following 
their order in the queue. As queue data are specific for each 
resource, sets of these values must be stored which a process 
can take during the execution.  

When events are writing into the queue, execution process 
checks whether any free slot is available in the queue, writes 
the event into the next available slot and increments the write 
pointer. When events are consumed from the queue, 
execution process checks whether the queue is empty, fetches 
the next event in the queue and calls the step function, and 
finally increments the read pointer. Finally, execution process 
takes current event queue, processes the active event, and 
updates current state of execution. 

IV. INTRODUCING TIME INTO DISCRETE-EVENT IEC 61499 
FUNCTION BLOCK NETWORK EXECUTION MODEL 
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In the previous section, an event-triggered model of 
computation is defined based on discrete-event systems 
theory. In this section, this model will be augmented with 
time-triggering concepts. As discussed previously, a time-
stamped event is introduced by Lee et al. [21] which contains 
a data structure of current time and priority for CPS. The 
proposed time-stamped event is also applicable for industrial 
CPS. However, real-time constraints for industrial automation 
systems must be considered.  

In IEC 61499 applications, events are generated from 
external sources via SIFBs, for instance, analogue and digital 
inputs via industrial fieldbuses or messages from other PLCs. 
Inputs and outputs on industrial fieldbuses are commonly 
scanned periodically. PLCs must complete execution and 
update outputs between two scans to ensure no task overlap 
occurs. When task overlap happens, PLCs will be out of sync 
with fieldbuses, which may lead to unexpected system 
behaviours. In embedded systems, best-case reaction time is 
usually the key index for performance measurement. For 
industrial automation, worst-case execution time is constantly 
monitored in order to avoid non-deterministic execution.     

In order to take real-time constraints into considerations, a 
real-time clock must be introduced for providing timestamps 
in discrete-event based execution semantics. The premise is 
made that all clocks in the same IEC 61499 system 
configuration are synchronized.  Synchronized clocks provide 
a natural number that represents the time elapsed since a 
system-defined reference time. An event EIn defined in (1) is 
given a definition as: 

EIn = (Tinit, Tlast, P) 
where Tinit is the original time when this event was created, 
Tlast is the last time when this event was handled, and P is the 
priority of this event. 

The initial time Tinit refers to the first time when an event or 
its source appears in an IEC 61499 resource. The value of the 
initial time can only be set by event source SIFBs. An event 
source SIFB could be event-related SIFBs such as 
E_RESTART, E_CYCLE, or communication SIFBs for 
accessing fieldbuses and exchanging external messages. Once 
an initial time stamp is assigned, this value will be passed to 
cascade events on the same event chain. Similar to the event 
chain concept proposed in [18], an event chain starts from an 
event source function block and terminates when no further 
event output is generated from any function block connected 
by this event directly or through intermediate function blocks. 

Whenever a function block output event is emitted, the last 
time stamp Tlast will be updated with the current clock time. It 
is possible that more than one event is emitted from the same 
function block simultaneously, which means those events 
have identical values of last execution time Tlast. In order to 
distinguish these events in the event queue, the priority P is 
introduced for identifying simultaneous events emitted by the 
same function block, and . 

Instead of following a simple first-in and first-out principal, 
events are listed in the queue by chronological order. When a 
new event is emitted, the input function will compare the last 
time execution timestamp of this event with all events in the 

queue in reverse order. This new event will be inserted into 
the queue at the position where the last execution timestamp 
of the previous event in the queue is earlier. If the last 
execution timestamps of two events are identical, the input 
function will terminate searching when the previous event has 
a higher priority. As events are already ordered according to 
the chronological order, the first event in the queue will 
always be the event with longest waiting time. There is no 
change required for the output function.  

V. SEMANTIC RULES FOR TIME-STAMPED DISCRETE-EVENT 
BASED EXECUTION SEMANTICS 

Time-stamped discrete-event based execution semantics are 
formally defined in previous sections. However, how to 
handle events is yet to be investigated. The step function, 
particularly event-handling function, will be described in this 
section. The event-handling function consists of several 
semantic rules. Those semantic rules aim to provide 
deterministic system behaviour: given the same initial state 
and sequence of input values, the system always produces 
identical output values. In this section, only semantics not 
covered in the IEC 61499 standard will be defined. 

Firstly, initial timestamp value of an event is set only when 
it is emitted by event source SIFBs. As described in the 
previous section, the initial timestamp can only be set by 
event source SIFBs such as E_RESTART, E_CYCLE, or 
fieldbuses interface FBs. 

Secondly, for any FB type, the initial timestamp value of 
an output event will be identical to that of its triggering input 
event. For a BFB or an SIFB, the initial timestamp value of 
an activated input event will be copied to the output event(s) 
emitted. For a CFB, the initial timestamp value of an 
activated input event will be carried by internal events 
through the internal FB network (FBN) and duplicated at 
output event(s). 

Next, for any FB type, the last execution timestamp value 
of an event is updated with current clock time and priority is 
set when it is emitted from a function block. Last execution 
timestamp of an event will be only updated at function block 
right interface (output side). The last execution timestamp 
retains its values during propagation via event connections.  

 
Fig. 1: BFB Simultaneous EC State Event Output 

In a BFB, if there are two or more output events with 
identical last execution timestamps emitted from the same EC 
state, priorities for these events are set according to their 
orders in the XML file. As illustrated in Fig. 1, an output 
event that appears earlier in the XML file will be set with 
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higher priority. For instance, the priority of the first listed 
output event will be set to the highest priority, zero. 

 
Fig. 2: SIFB Simultaneous Service Transaction Event Output 

In an SIFB, if there are two or more output events with 
identical last execution timestamps emitted from the same 
service sequence, priorities for these events are set according 
to their orders in the XML file. As shown in the Fig. 2, an 
event that appears earlier in the output primitives will be set 
with higher priority. Again, priority of the first output event 
will be set to the highest priority, zero. 

In an FBN, if there are two or more output events merged 
into one event input, events will be queued and processed by 
chronological order. The downstream function block may be 
invoked several times by upstream function blocks during one 
fieldbus scan cycle. However, the downstream function block 
is not necessarily activated continuously as there might be 
other events scheduled between events from upstream 
function blocks.  

In an FBN, if there are two or more input events split from 
same event output, input event from event connection which 
appears earlier in the XML representation is set with higher 
priority. As shown in the Fig. 3 below, when an event output 
is connected to more than one FB event input, execution of 
downstream FBs will be scheduled in order of event 
connections placed in the XML file. 

 
Fig. 3: FBN Event Split. 

    Overall, the determinism of the proposed time-stamped 
discrete-event based execution semantics is built based on 
sequential execution orders that are distinguished by 
timestamps and priorities. The one-dimensional array event 
queue introduced at the IEC 61499 resource level ensures that 
there is only one event activated simultaneously. Parallel 
execution is not limited in the IEC 61499 standard, as any 
function block shall only be activated by single input event 
simultaneously [22]. Although parallel execution would 
provide better performance, from the determinism 
perspective, the sequential execution is selected. The 
proposed semantic rules provide guidelines for assigning 
different priorities for simultaneous events ordered by time. 

VI. IMPLEMENTATION 

As described in [23], an IEC 61499 runtime Function Block 
Service Runtime (FBSRT) based on service-oriented 
architecture (SOA) is developed for bridging flexibility and 
interoperability. In FBSRT, each function block is running as 
an individual software service that communicates with other 
function blocks via messaging only. The proposed time-
stamped discrete-event executions semantics is implemented 
in the FBSRT as illustrated in Fig. 4.  

 
Fig. 4: FBSRT Implementation for Time-stamped Discrete-
Event Execution Semantics. 

In the resource manager, a new event queue is introduced as 
well as read and write pointers for the queue. As introduced 
in previous sections, two new functions are implemented: 
event input function QueueEvent() for queuing events by 
chronological order  and event output function 
ProcessEventQueue() for process next event in the queue. 
The event output function will be invoked continuously until 
there is no more events left in the queue. 

There is a new service inserted in the FBSRT known as 
timing service. The timing service offers current time for all 
other services in FBSRT by implementing the IEEE 1588 
precision time protocol (PTP) [24]. The IEEE 1588 PTP is a 
precision time synchronization protocol for networked control 
systems based on a master-slave configuration. The IEEE 
1588 PTP is capable of synchronizing all slave clocks in 
nanosecond level. However, due to time precision limitation 
on PLCs (on most x86, x64, and ARM architectures, the 
minimum time scale is one millisecond), time of IEC 61499 
resources could be synchronized at millisecond level. If more 
precise time is required, IEEE 1588-enabled hardware could 
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be used for providing more accurate master clock time. 

 
Fig. 5: Lighting Subsystem: Network Diagram. 
    The implementation is verified with a building automation 
system, in particular lighting subsystem of a manufacturing 
plant. As shown in Fig. 5, four workshops are located on this 
floor and each workshop has four ballasts. Ballasts in each 
room could be adjusted individually or by groups (2 or 4 in 
this case). The DALI protocol [25] is used for connecting 
ballasts with PLCs. For each workshop, a separated PLC is 
used and PLCs are inter-connected by standard Ethernet 
connections. 

The IEC 61499 system configuration for this 
manufacturing plant is given in Fig. 6 below. For each 
workshop, a ballast control function block FB_Ballast is 
deployed for providing features supported by the DALI 
fieldbuses. For example, direct on/off and step up/down by 
time etc. A control panel is placed in each workshop that is 
represented by a SIFB FB_CP.  Two SIFBs FB_DALIIN and 
FB_DALIOUT are used for accessing the DALI fieldbuses. A 
BFB FB_Scenario is designed to coordinate all workshops to 
perform a particular lighting scenario. 

 

VII. DISCUSSIONS 

    During the implementation processes, there are several 
findings need to be shared. First of all, as the proposed 
execution semantics affected by orders in XML file (for 
instance, orders of BFB EC state output events and SIFB 
service sequences), indication of different priorities must be 
provided by IEC 61499 tools in order to avoid confusion of 
users during design, development, and testing stages. Users 
shall be allowed to modify priorities (orders) in IEC 61499 
tools for deterministic. 

Secondly, as events are no longer pure notification, the 
data structure embedded in an event could be used in BFB or 
SIFB algorithms. In existing IEC 61499 software design 
processes, timers must be placed separately outside BFBs and 
once timer is up, an extra event must be used for notification. 
Alternatively, timestamp can be passed into function blocks 
as input variables, but this requires huge manual works. By 
applying the proposed approach, the initial timestamp and the 
last execution timestamp of an event could be used as 
variables directly. Also the current timestamp is available for 
algorithms by invoking timing services. This will bring 
benefits for time-related features using IEC 61499. 
     Finally, the existing approach for the time-stamped 
discrete-event execution semantic is based on sequential 
execution: there is always one event being processed at any 
time in an IEC 61499 resource. Parallel execution provides 
better performance by dividing event chains into multiple 
concurrent threads that utilizes maximum hardware resources. 
However, from the determinism perspective, there are two 
issues: first, the proposed event queue is a 1-D array, which 
cannot hold two or more simultaneous events; second, it is 
impossible that all concurrent threads could complete 
execution at same time. Varying in execution time of multiple 
threads will cause non-determinism.  For event queues, 
increasing dimension from 1-D array to 2-D array will be a 
feasible solution. For the non-determinism issue, one feasible 
solution is to force other threads to wait until all threads 
terminate execution. However, the compensation to this 
solution is again performance. 

 
Fig. 6: Lighting Subsystem: IEC 61499 System Design. 
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VIII. CONCLUSIONS AND FUTURE WORK 

One typical characteristic for industrial CPS is diversity: 
various PLCs cooperate with each other via networks to 
provide control for complex industrial processes. A time-
stamped discrete-event based IEC 61499 execution semantics 
is proposed for covering real-time constraints and 
deterministic execution behaviours in industrial CPS 
execution. The proposed execution semantics embeds 
timestamps with discrete-event systems and schedules 
function block network execution by chronological order. The 
deterministic execution is guaranteed by time-based event 
handling mechanism defined in the semantic rules.  

For the future work, the time-stamped discrete-event based 
model of computation will be experimented with parallel 
execution semantics. How to measure real-time constraints 
needs to be investigated. Furthermore, performance analysis 
for the proposed execution semantics needs to be performed 
to compare with other execution semantics.  
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