
Evolutionary Approach to Coverage Testing of
IEC 61499 Function Block Applications

Igor Buzhinsky∗, Vladimir Ulyantsev∗, Jari Veijalainen†, Valeriy Vyatkin‡§∗
∗ Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
† Department of Computer Science and Information Systems, Mattilanniemi 2,

University of Jyvaskyla, FI-40014 University of Jyvaskyla, Finland
‡ Department of Electrical Engineering and Automation, Aalto University, Finland

§ Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden
igor.buzhinsky@gmail.com, ulyantsev@rain.ifmo.ru, jari.veijalainen@jyu.fi, vyatkin@ieee.org

Abstract—The paper addresses the problem of coverage
testing of industrial automation software represented in the
IEC 61499 standard, one of the recent standards for distributed
control system design. Contrary to model-based testing (MBT),
the paper focuses on implementation coverage, not model cov-
erage. An approach based on evolutionary algorithms is pre-
sented which generates coverage test suites for both basic and
composite IEC 61499 function blocks. It employs two third-
party tools, FBDK and EvoSuite. The evaluation of the approach
was performed on a set of control applications for two lab-
scale demonstration plants. Results show that the approach is
applicable and shows good performance at least on basic function
blocks. The generated tests suites helped to discover several
unreachable system parts, which pinpointed errors in the systems
under test.

I. INTRODUCTION

The paper is devoted to automated test suite generation for
control software represented in the IEC 61499 standard [1],
which establishes a way to design distributed control applica-
tions for industrial automation systems in a visually clear way.
Unlike the Model-Based Testing (MBT) [2] approach, we are
interested in test data generation to ensure 100% coverage of
software implementation, not its specification-based models.
Since the coverage of a specification does not imply the
coverage of the whole implementation, this should allow to
test software more thoroughly. While finite-state models play
a central role in the IEC 61499 standard, we will still utilize
several concepts from MBT, such as transition coverage of
finite-state machines [3].

This paper presents a test input data generation method to
handle the stated problem. As systems under test (SUTs), we
employ function blocks (FBs), one of the basic concepts of
the IEC 61499 standard, which encapsulate behavior and state
and thus are similar to the concept of classes in object-oriented
programming. This means that the considered problem, among
the multiple testing levels, is mostly related to unit testing.
Nevertheless, since entire software systems can be represented
in the form of FBs, the scope of the problem is wider.
Generated tests can be utilized in two ways. First, unreachable
code in systems can be identified by examining uncovered
parts. Second, input test data can be augmented with output
data based on a model of the software. This will allow to
search for faults in the software behavior.

As the way to achieve the stated goal, evolutionary com-
putation [4], a general optimization methodology for both
discrete and continuous problems, is applied. Among other
heuristic search-based techniques, this methodology is widely
used in software engineering [4], [5]. This approach has
already been exploited for coverage test generation for general-
purpose systems [6], but, to the best of our knowledge, was
not applied to solve this problem for industrial automation
software and for systems represented using the IEC 61499
standard in particular.

The remainder of this paper is structured as follows. In
Section II, we discuss related research on MBT, source-
based test generation approaches, and evolutionary methods. In
Section III, we introduce the IEC 61499 standard, describe the
SUT models we consider, and define the problem being solved
more formally. Next, in Section IV we describe the proposed
test generation approach and in Section V we evaluate it on
two IEC 61499 conformant systems. The paper is concluded
in Section VI.

II. RELATED RESEARCH

In this section we review works related to our study. First,
several known MBT methods for industrial automation system
are shortly discussed. Second, works about test generation
methods for system implementations are examined. In the end,
we also shortly review the field of evolutionary computation.

A. MBT Approaches for Industrial Automation Systems

Many coverage test generation methods are already known
in the broad field of MBT. The general idea of MBT is to
employ formal models of software, which can be obtained
from its requirements, to analyze them and to generate test
suites which can demonstrate the conformance of the software
to its specification. Methods known from MBT often aim to
achieve coverage properties of specification-based models of
SUTs. Finite-state machines often serve as such models, and
several coverage criteria [2], such as state, transition and path
coverage, are based on them. Since automatic model-based
test generation is a very broad field, we review several works
from the more narrow field of test generation for industrial
automation systems.

The authors of [7] propose an automated test case genera-
tion approach for industrial automation applications specified

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1213

by UML state charts. Information about test cases is derived
from the state charts which model both the plant’s and the
controller’s behavior. The construction of test cases includes
the automated generation of the test suite model from the test
suite meta-model, which represents the test suite structure.
The approach is tested on a sorting machine software system
represented in the IEC 61499 standard, but it is also applicable
for IEC 61131-3 [8] systems, as they are also based on the
concept of an FB.

Next, in [9], a unit test case generation method, also
based on UML diagrams, is presented specifically for the
IEC 61499 standard. This method complements a complete
software development process also proposed in this paper. Both
state and activity UML diagrams, which represent software
specification on different levels of abstraction, are subject to
test generation. Round-trip path coverage [2] is attempted to
be reached for state diagrams.

Finally, in [10] the MBT approach is augmented with
simplified MBT model creation, which is supported by code
generation from source information in the CAEX format [11],
e.g. information about control loops within the system. The
suggested approach is applied to a SUT represented using the
IEC 61131-3 notation. In this study, Conformiq Designer1 is
used for both creating MBT models and for test generation.

B. Test Generation Methods for Software Implementations

We now move to studies devoted to solving the coverage
test generation problem for software implementations written
in general purpose languages, such as Java or C++.

One of the first approaches to this problem was the one
introduced in [12]. The technique presented in [12] is based on
the constraint satisfaction problem (CSP) and mutation analy-
sis. The generated test data approximates relative adequacy, or
mutation adequacy: a test satisfies the relative adequacy crite-
rion, when it causes a certain number of incorrect programs to
fail. In turn, incorrect programs are the results of mutations, or
small changes, of the original program under test. Algebraic
constraints are generated and then solved in order to ensure the
failure of mutated programs. This approach is not suitable for
coverage test generation, since it ensures mutation adequacy
instead.

In [13], a survey on test data generation methods is
presented. They are separated into three types. The simplest
type is random testing: it just suggests randomly generating
input test data for the SUT, and, quite obviously, it usually does
not perform well in terms of coverage. The second approach is
goal-oriented test data generation, which is subdivided into the
chaining approach and the more successful assertion-oriented
approach. In the former, data dependencies are used to solve
branch predicates, and in the latter, assertions are inserted
into the source code either manually or automatically, and
then the test generator attempts to find any path of program
execution which violates the assertions. Finally, path-oriented
test data generation is the strongest one. In this approach, the
test generator attempts to follow specific control paths.

A complex, combined approach to test generation is taken
in [6], where a tool called EvoSuite is presented. This tool

1http://www.conformiq.com/

supports automated unit test case generation for Java source
code. Generated test suites are compatible with the JUnit
library2. The approach is based on evolutionary computation
[4] and optimizes test suites with respect to source coverage.
Other techniques employed include hybrid search, dynamic
symbolic execution and testability transformation. In addition,
test oracles, which assess the correctness of the program’s
behavior, are automatically created in the form of assertions
which summarize the behavior of the program. The effec-
tiveness of assertions is estimated using mutation testing,
which has already been shortly described when describing the
constraint-based approach [12].

Finally, there is a number of symbolic approaches [14]
to test generation and dynamic approaches which combine
symbolic and concrete execution. Such approaches traverse the
control flow graph (CFG) of the program, maintaining a set
of constraints which are required for the current path to be
executed. Tests are obtained by solving these constraints.

C. Evolutionary Computation

Evolutionary algorithms and metaheuristics in general are
optimization methods applicable for various discrete and con-
tinuous problems. Tasks, for which evolutionary algorithms
are applied, are usually not solvable in polynomial time by
precise algorithms (unless P = NP). Such problems include,
for example, the traveling salesperson problem [15] and the
job shop problem [16]. Evolutionary algorithms usually do not
guarantee that the optimal solution of the considered problem
will be found in a reasonable time. Still, they are effective in
practice.

The basic idea of evolutionary computation is as follows.
Evolutionary algorithms use some particular representations of
possible solutions (also called individuals) and usually reach
new solutions by making small adjustments to previous ones
(these changes are called mutations) or by combining different
solutions (this operation is known as crossover). A quality
measure, fitness function, which maps individuals into the
real axis, guides the evolutionary search, so that the worse
individuals are discarded, and the best ones are retained. This
procedure is known as selection.

The genetic algorithm [17] is one of the earliest evolu-
tionary algorithms proposed. It simultaneously operates with a
number of individuals, called the generation. On each iteration
of this algorithm, individuals are recombined, mutated, and
then selected. Another well-known and a much simpler algo-
rithm is the random mutation hill climber [18], which operates
with a single individual and applies mutations to modify
it. Many further algorithms have been introduced recently,
including, for example, Natural evolution strategies [19] and
the Mutation-based ant colony optimization algorithm [20].

III. PROBLEM STATEMENT

In this section we define the problem we deal with more
precisely. In order to do this, we first shortly review the basic
concepts of the IEC 61499 standard.

2http://junit.org/

1214

Fig. 1. An example of an FB interface

A. IEC 61499 Function Blocks

The IEC 61499 [1] is an open standard for distributed
control and automation. The purpose of its introduction was to
allow the development of distributed control systems, which
can be deployed into many programmable logic controllers
(PLCs), with robust, reusable modules. Nowadays, the standard
is attempted to be used in production: an example is shoe
manufacturing industry [21]. However, according to [22], its
application faces several challenges, including the unfamiliar-
ity of practitioners with the semantics of the standard and
the inability of the standard to address some stages of the
development process.

The IEC 61499 standard requires a control application to
be represented by a number of function blocks (FBs), either
basic or composite ones, which are interconnected to form a
network. An FB is an entity with a defined interface which
can encapsulate both behavior and state. An example of an
FB interface is shown in Fig. 1. It has inputs and outputs in
the form of events and data of common types (e.g. Boolean,
integer). Input events can be associated with input variables:
this means that the FB requests the most recent values of these
variables when the event is received. These associations are
shown in Fig. 1 as vertical lines with boxes to the left of the
FB body. Similar associations exist for outputs.

Basic FBs are implemented using the concept of execution
control charts (ECCs), which are also referred to as Moore
finite-state machines (FSMs). An ECC has several states and
is in exactly one state at each moment of FB execution. One of
the states is the start state. Each state might have algorithms
to be executed when the state becomes active, and might
generate output events. Algorithms are usually implemented
in the Structured Text language. They operate with variables:
input, output or internal ones. Next, states are connected to
each other with transitions. Transitions are usually triggered
by events and are executed if guard conditions are met. Such
conditions are defined over the set of variables of the FB. The
choice of transitions to be executed when an event is received is
always deterministic: situations where several transitions can
execute are arbitrated by the transition declaration order. It
is possible that no transitions are executed when an event
occurs. Moreover, it is possible that one input event causes
several state changes: this is due to spontaneous transitions,
which do not require events to be executed. If there is a
spontaneous transition from the current state with a satisfied
guard condition, then it always executes.

FB invocation by an input event can result in a reaction:

Fig. 2. An example of an ECC in a basic FB

an output event (possibly, several events or even an infinite
sequence of events) and a change of output data variables
associated with the emitted output event. The absence of a
reaction can be explained by not emitting any events, by the
lack of event-data associations (even if the event is emitted,
the new data is not visible outside the FB), or by an infinite
loop in the ECC. When an ECC is idle (i.e. there are no
spontaneous transitions with satisfied guard conditions which
can be executed right now), the FB’s state is fully determined
by the values of its variables and the state of the ECC.

An example of an ECC is shown in Fig. 2. This ECC is
compatible with the interface shown in Fig. 1, and thus can
form a basic FB together with it. The ECC has three states, two
of which (S1 and S2) are associated with algorithms (ALG T
and ALG F), and one of which (S1) has an output action (O1).
Algorithms ALG T and ALG F alter the value of the Boolean
output variable OV.

Inside a composite FB there is a network of FBs of other
types with event and data connections between them. The
inputs of composite FBs are connected to the inputs of nested
FBs, and the outputs are linked in a similar way. Nested
FBs, either basic or composite, may also have predefined
input variable values. Composite FBs allow reusing various
particular arrangements of lower level FBs.

B. Tests and Test Suites

To define a test, we first consider the FB under test, either
basic or composite, which is the SUT in our case. Assume that
it has input events E1, ..., En and input variables V1, ..., Vm
with finite domains D1, ..., Dm, where domains represent
values of particular data types. Next, Boolean values Wi,j

signify whether the event Ei is associated with the variable Vj .
In addition, consider the element ⊥, which does not belong to
any of Dj , j = 1..m. This element stands for “no value” and
is used when an event is not associated with an input variable.
An input tuple is a tuple (Ei, α1, ..., αm), where αj , j = 1..m
is either from Dj , if Wi,j , or ⊥ otherwise. Thus, an input tuple
only contains the values of the variables a particular event is
associated with. Input tuples can be fed to the FB and thus
trigger its execution steps.

A test is a finite sequence of input tuples. Note that outputs
are not included into tests, because they are not significant for
defining coverage criteria and maximizing them. A test can
describe a series of FB execution steps. It is also assumed that

1215

TABLE I. AN EXAMPLE OF A TEST WITH LENGTH 4

Tuple number Ei α1 (BOOL VAR) α2 (INT VAR)

1 E3 true ⊥
2 E1 ⊥ ⊥
3 E2 false −100
4 E2 false 42

Function
block (.fbt)

Source code
(Java)

Test suites
(JUnit)

1. FBDK
execution

3. EvoSuite
execution

Adjusted
source code

(Java)

2. Source
transformations

Fig. 3. The scheme of the proposed approach

before test execution the FB is in its initial state: all ECCs are
in their start states, and all the variables are initialized with
their default values. An example of a test for an FB with the
interface from Fig. 1 is shown in Table I. Finally, a test suite
is a finite set of tests.

Besides, assume that some coverage criterion is defined.
A coverage criterion is a real-valued function of an FB and a
test suite for this FB. For instance, transition coverage, which
we will use later, is the fraction of all transitions inside the
ECCs of all possible types in the FB which are executed at
least once when all the tests are run. Another example of a
coverage criterion is branch coverage, which is source-based
(assume that the FB is transformed into a source code) and
involves measuring the coverage of various methods and ‘if-
then-else’ branches inside them.

Based on the presented definitions, we formulate the
problem being solved in this paper: design a method which
generates test suites and maximizes known coverage criteria
for given FBs.

IV. COVERAGE TEST GENERATION APPROACH

The proposed coverage test suite generation approach com-
bines FB transformation to Java source code and the evolution-
ary search of test suites which maximize the coverage of the
obtained Java code. Two coverage criteria are considered:

• Transition coverage: the share of executed transitions
in the ECC of a basic FB, or the share of executed
transitions of all nested FBs inside a composite FB.
In the latter case, if there are several nested FBs of
one FB type, their transitions are counted once.

• Branch coverage of the Java source code obtained
from an FB. For a basic FB, this criterion includes
not only the coverage of its transitions, but also the
coverage of all branches in its algorithms. For a
composite FB, this criterion includes the coverage of
the same items of all basic FBs inside it.

The approach is summarized in Fig. 3. The input of the test
generation method is an .fbt XML file which describes the FB
under test. If this FB is composite, XML descriptions of the
nested FBs should also be available. The method comprises
three stages.

Stage 1. A third-party tool, FBDK3, transforms an .fbt
description of the FB under test to a Java source file. For
a basic FB, it creates a class with state, event and variable
declarations, event processing methods and methods for its
algorithms. A class for a composite FB declares its nested
FBs and creates connections between them in its constructor.
This transformation is automated and is implemented as a call
to a Java library supplied with FBDK.

Stage 2. The obtained source code is transformed to pre-
pare it for evolutionary test generation, which will be done by
another tool. First, a new Java class is created which includes
the FBDK-generated class as a nested one. For composite
FBs, all their dependencies are also included as nested classes.
Nested classes are marked as private to suppress the generation
of tests which call their methods.

Next, for each input event of the FB under test a public
method is created in the outer class. Thus, only such event
methods are accessible from the outside. Each generated event
method accepts the variables associated with the input event
as arguments, updates variable values of the proper instance of
a nested FBDK-generated class and executes a corresponding
event method on this instance.

Additionally, for each transition in each nested FB class, an
empty private method is added to the outer class. This method
is executed along with the execution of the code corresponding
to the transition. The purpose of these methods is to allow test
generation which optimizes transition coverage (see the next
stage).

Stage 3. The modified source code is fed to EvoSuite4

[6], a tool which generates tests for Java programs using
branch coverage as the fitness function. It implements several
evolutionary algorithms, among which the default steady-state
genetic algorithm [17] is chosen. Depending on the coverage
criterion employed, EvoSuite is configured to either generate
tests to cover the whole class, or to cover only the transition
methods created in the end of the previous stage. The search
is performed for a fixed time span. The result of EvoSuite
execution is a JUnit test suite. As only event methods were
left public in the previous stage of the approach, such test
suites are comprised of sequences of their executions supplied
with input variable values. Here is the example of a test from
Table I as it would appear in the body of a single JUnit test:

ExampleFB fb = new ExampleFB();
fb.service_E3(true);
fb.service_E1();
fb.service_E2(false, -100);
fb.service_E2(false, 42);

The first two stages of the method were implemented in
Java, and a bash script was written for the third stage. The
source code of the whole project is available online5.

V. EXPERIMENTS AND RESULTS

This section describes the conducted experimental evalua-
tion of the proposed approach applied to two sets of FBs and
the obtained results.

3http://www.holobloc.com/doc/fbdk/
4http://www.evosuite.org/
5https://github.com/igor-buzhinsky/indin2015 source

1216

Fig. 4. A scheme of one of the implementations of the pick-and-place
manipulator

A. Systems under Test

We employ two software systems which are designed to
control simple plants in the laboratory environment. The first
system or, more precisely, a set of similar systems, is the
control application for the pick-and place (PnP) manipulator
which was earlier used in [23] to evaluate an approach to a
different problem. One of the implementations of this device
is shown in Fig. 4. This screenshot from FBDK shows two
horizontal and one vertical cylinders connected one to another.
This system of cylinders should pick objects from three plates
and place them into the bin to the left of the plates. The system
consists of 31 basic and 17 composite FBs implemented in
FBDK.

The second system is the application which regulates a heat
production process (HPP). In [10], an IEC 62424 application
is mentioned, and the system we work with is the result of
the redesign of this application for the IEC 61499 standard.
The nxtSTUDIO software6 was used for the redesign. FBs
designed in nxtSTUDIO can be processed with FBDK after
minor adjustments. This version of the system, however, is not
very modular and has only one composite FB. Twelve other
FBs are basic.

The number of input events among the FBs from the
described control systems ranges from 1 to 7 with the median
value of 2. The number of input variables among these FBs is
generally higher: it ranges from 0 to 34 with the median value
of 6. Basic FBs have between 2 and 15 states and between 2
and 21 transitions with median values of 3 and 4, respectively.
Finally, the length of FBs, counted as the number of lines of
resulting Java code, ranges from 92 to 4725 with the median
value of 320. Large code size (i.e. more than 1000 lines of
code) is typical for composite FBs, as they contain the sources
of their dependencies inside.

B. Experiment Setup

For each FB, we executed two experiments for each of both
coverage criteria: transition and branch coverage. As described
in section IV, FBs were transformed into Java source code
which was fed to FBDK. Ten minutes were given to EvoSuite
to generate tests for basic FBs, and twenty minutes were given
for composite ones. The computation was performed on a
PC with a 2.2 GHz Intel Core i7-2670QM CPU. Besides,
if EvoSuite obtained 100% coverage, it could finish its work
earlier.

6http://www.nxtcontrol.com/en/engineering/

TABLE II. OBTAINED COVERAGE VALUE STATISTICS

FB type, cov-
erage criterion

Min First quartile Median Third quartile Max

Basic, branch 60.0% 88.3% 92.6% 94.8% 98.8%

Composite,
branch

35.4% 79.5% 84.5% 91.0% 94.8%

Basic,
transition

55.6% 100.0% 100.0% 100.0% 100.0%

Composite,
transition

5.7% 92.0% 100.0% 100.0% 100.0%

C. Results

The results of the experiments are outlined in Table II,
where basic statistics are shown for all four groups of exper-
iments. The results are combined for both SUTs. The data
suggests the following conclusions. First, transition coverage
was generally easier to achieve. Perfect (100%) result was
achieved for more than 75% basic FBs (in fact, for 42 out of
43) and for more than 50% (11 out of 18) composite FBs. This
can be explained by the fact that achieving transition coverage
is an easier goal: there is no need to cover all execution paths of
ECC algorithms. Coverage values are also better for basic FBs
independently of coverage criteria, and this can be explained
by the size difference and the fact that perfect coverage is
not always required for composite FBs, unless they represent
whole software systems.

After the results had been obtained, the generated tests
were run in the Eclipse IDE7 with the EclEmma plugin8,
which integrates Eclipse with JUnit. Uncovered FB parts
were manually examined. Based on this examination, several
deductions were made:

• Some small parts of the automatically generated code
appeared to be inaccessible due to the way FBDK
generates code. An example of such part is a branch in
an event processing method for the case of an invalid
event (i.e. an event which matches none of the input
events and thus is impossible in normal situations) If
such parts are not considered in branch coverage, then
18 out of 43 basic FBs and 4 out of 18 composite FBs
are perfectly covered by the generated test suites.

• In EvoSuite, branch coverage assumes the coverage
of each combination of conditions in an ‘if’ decision.
If this condition is weakened to just cover ‘then’ and
‘else’ branches in each decision, then additionally 6
basic FBs and 1 composite FB can be considered as
completely covered.

• Some basic FBs, especially from the PnP application,
contained algorithms which were not associated with
any state and thus were inaccessible. This can be
considered as a fault of the software design, but
one does not need tests to understand that they are
unreachable.

Since the evolutionary approach does not guarantee the
optimality of solutions, we also attempted to cover the uncov-
ered parts in basic FBs manually. Gaps in branch coverage of
two FBs were covered by augmenting the test suite generated

7https://eclipse.org/
8http://www.eclemma.org/

1217

for the branch criterion with a test from the corresponding
transition-based test suite. For another FB, it was quite easy
to modify one of the automatically generated tests to improve
its branch coverage. Finally, we identified one basic FB with
several states inaccessible due to a forgotten update of an
internal variable and two basic FBs with algorithm branches
inaccessible due to badly written ‘if’ decisions. For example,
one algorithm inside an FB from the HPP system contained
the following decision: AI.value < PRESET_H.value
& AI.value >= PRESET_H.value, which is obviously
unsatisfiable.

In addition, we were able to explain the low coverage
results for two composite FBs. The first FB from the PnP
system, which had got 35.4% and 5.7% for branch and
transition coverage respectively, had missing event connections
from its input interface to nested FBs. Some parts of the
second FB, the only composite FB in the HPP system, which
had got 64.4% for both branch and transition coverage, were
inaccessible due to fixed default values of several variables. It
also included faulty basic FBs with inaccessible parts.

VI. CONCLUSION

A method which generates input test data for IEC 61499
function blocks and tries to maximize test suite coverage
has been proposed in the paper. The obtained results and
their manual examination suggest that the proposed method
has encouraging performance (at least on basic FBs) and
is applicable in practice. In particular, it helped to identify
several faults in the SUTs, which made some of their parts
unreachable.

The performed study has several limitations. To begin
with, as code generated by FBDK is quite rigid, the number
of available coverage criteria is very limited. In addition to
default branch coverage, transition coverage was implemented,
but more complex criteria, such as path or loop coverage,
are not supported. This issue can be overcome by using a
separate FB representation, which does not depend on FBDK.
Another limitation is connected with the nature of evolutionary
algorithms, which do not always generate perfect solutions. To
partially resolve it, it is possible to replace the third stage
of the method (EvoSuite execution) with one of symbolic
constraint-based approaches [14]. Next, we have not cared
about output data which can be added to generated test suites
so that they could check the correctness of FB outputs. Lastly,
the used SUTs do not completely represent the complexity
of industrial automation software, as they were designed to
control relatively simple devices.

ACKNOWLEDGEMENTS

This work was financially supported by the Government of
Russian Federation, Grant 074-U01.

REFERENCES

[1] International Standard IEC 61499-1: Function Blocks – Part 1: Archi-
tecture, 2nd ed. Geneva: International Electrotechnical Commission,
2012.

[2] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Eds.,
Model-based testing of reactive systems: advanced lectures. Lecture
Notes in Computer Science. Springer, 2005, vol. 3472.

[3] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduction
to algorithms. MIT press, 2001.

[4] M. Harman, “Software engineering meets evolutionary computation,”
Computer, vol. 44, no. 10, pp. 31–39, 2011.

[5] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[6] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering. ACM, 2011, pp. 416–419.

[7] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test case generation approach for industrial automation systems,” in
5th International Conference on Automation, Robotics and Applications
(ICARA 2011). IEEE, 2011, pp. 57–62.

[8] International Standard IEC 61131-3: Programmable controllers –
Part 3: Programming languages, 2nd ed. Geneva: International
Electrotechnical Commission, 2003.

[9] T. Hussain and G. Frey, “UML-based development process for IEC
61499 with automatic test-case generation,” in 11th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA 2006). IEEE,
2006, pp. 1277–1284.

[10] J. Peltola, S. Sierla, P. Aarnio, and K. Koskinen, “Industrial evaluation
of functional model-based testing for process control applications using
caex,” in 18th IEEE Conference on Emerging Technologies and Factory
Automation (ETFA 2013). IEEE, 2013, pp. 1–8.

[11] International Standard IEC 62424: Specification for representation of
process control engineering requests in P&IDs. Geneva: International
Electrotechnical Commission, 2008.

[12] R. DeMilli and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910, 1991.

[13] J. Edvardsson, “A survey on automatic test data generation,” in 2nd
Conference on Computer Science and Engineering. ECSEL, 1999, pp.
21–28.

[14] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[15] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artificial Intelligence Review, vol. 13,
no. 2, pp. 129–170, 1999.

[16] F. Della Croce, R. Tadei, and G. Volta, “A genetic algorithm for the
job shop problem,” Computers & Operations Research, vol. 22, no. 1,
pp. 15–24, 1995.

[17] L. Davis et al., Handbook of genetic algorithms. Van Nostrand
Reinhold New York, 1991, vol. 115.

[18] M. Mitchell, J. H. Holland, and S. Forrest, “When will a genetic
algorithm outperform hill climbing?” Advances in Neural Information
Processing Systems, vol. 6, pp. 51–58, 1994.

[19] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural evolution
strategies,” in 2008 IEEE Congress on Evolutionary Computation (CEC
2008). IEEE, 2008, pp. 3381–3387.

[20] D. Chivilikhin and V. Ulyantsev, “MuACOsm: a new mutation-based
ant colony optimization algorithm for learning finite-state machines,” in
15th Genetic and Evolutionary computation conference (GECCO 2013).
ACM, 2013, pp. 511–518.

[21] M. Colla, A. Brusaferri, and E. Carpanzano, “Applying the IEC-61499
model to the shoe manufacturing sector,” in 11th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA 2006). IEEE,
2006, pp. 1301–1308.

[22] K. Thramboulidis, “IEC 61499 in factory automation,” in Advances
in Computer, Information, and Systems Sciences, and Engineering.
Springer, 2006, pp. 115–124.

[23] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of intelligent
mechatronic systems with decentralized control logic,” in 17th IEEE
Conference on Emerging Technologies and Factory Automation (ETFA
2012). IEEE, 2012, pp. 1–7.

1218

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

