
Counterexample-Guided Simulation Framework for 
Formal Verification of Flexible Automation Systems  

Sandeep Patil 
Luleå University of Technology, 

Luleå, Sweden  
sandeep.patil@ltu.se 

 

Valeriy Vyatkin 
Luleå University of Technology, 

Luleå, Sweden 
Aalto University, Helsinki, Finland 

vyatkin@ieee.org 

Cheng Pang 
Aalto University, Helsinki, Finland 

cheng.pang.phd@ieee.org 
 

 
Abstract —This paper proposes a framework for formal 

verification of industrial automation software in an intuitive way. 
The IEC 61499 function block architecture is assumed to be the 
input language, and the Intelligent Mechatronic Components 
(IMC) architecture is assumed as an underlying design pattern 
for the applications, which implies autonomous control logic in 
each IMC and their compositions to systems in a plug-and-play 
way. Then the system is automatically verified using model 
checking and the counter examples for the failed model checking 
properties are played back step-by-step and state-by-state in the 
simulation model that most industrial automation control systems 
would have built as the basis for initial testing. Net Condition 
Event Systems formalism (a modular extension of Petri net) is 
used to model the decentralized control logic and discrete-state 
dynamics of the plant. The model is then subjected to model 
checking using the ViVe/SESA tool chain.  The method’s 
application is illustrated using a simple pick and place 
manipulator. A closed loop model of Plant and Controller is used. 
Controller is extensively verified for safety, liveliness and 
functional properties of the robot. We then show how a counter 
example for deadlock detected by the model checker is played 
back in the simulation model for visualizing how exactly the 
system deadlocked.  

Keywords — NCES, ViVe, SESA, Formal Verification, Closed-
Loop Modeling. 

I.  INTRODUCTION 
Industrial automation is facing challenges related to a 

manufacturing change from mass production to mass 
customization. As a result, the focus of automation has been 
shifting to flexibility, re-configurability, and safety assurance. 
With this shift, the existing software verification and 
validation (V&V) techniques, such as testing and simulation, 
become inadequate. Furthermore, the development of 
simulation models is time consuming while does not guarantee 
100% validation of the automation control software. To 
address this problem, formal verification [1] has been 
considered as a proper complementary V&V technique. 
Discrete state model checking [2] is one of such approaches, 
which is the process of automatically verifying whether a set 
of desired formal specifications is satisfied over the target 
system (model). While model checking is computationally 
resource hungry, it has been successfully used in other areas of 
computer system engineering, such as hardware design, 
proving its ability to handle problems of reasonably large 
complexity [3, 4]. This suggests that model checking can be 
applied in the industrial automation domain. There has been an 
impressive number of research works towards this goal.  

Despite these (moderate) successes and promises the 
reality is that formal verification techniques are rarely used in 
the development practice by industrial automation engineers. It 
seems that the existing tools and methods do not fit to the 
processes of automation system engineering.  

In this paper we propose a closed-loop verification 
framework which we believe will be more efficient and 
feasible in model checking of control systems in industrial 
automation domain. The framework consists of 4 main steps: 
1) Developing a closed-loop function block application of the 
control system and a simulation model with initial testing of 
the control logic by simulation; 
2) Automatic generation (and composition) of formal models 
as a closed-loop model; 
3) Model checking the resulting formal model and verifying 
for a comprehensive set of requirements, which generates 
counter examples for any failed properties; and  
4) Play back of the counter example from Step 3 in the same 
simulation model generated in Step 1.  

The rest of the paper is organized as follows; Section II 
presents basics about IEC 61499. Section III related work and 
in section IV we explain each of the 4 steps of the proposed 
framework. Section V presents the verification results and how 
a counter example can be played in the simulation model. The 
paper will end with conclusions and future work discussion in 
section VI. 

II. DESIGN MODELS FOR FLEXIBLE AUTOMATION 
The International Electrotechnical Commission (IEC) has 

come with the IEC 61499 [5] standard  for design of 
distributed automation systems [6] as an extension of the 
popular IEC 61131-3 standard. The standard aims at enhancing 
flexibility, interoperability[7] extensibility and re-
configurability of distributed systems by better reusability 
components. This model has demonstrated its benefits for 
modular mechatronic automation systems [8-11].  

The standard provides several design artefacts, such as 
basic and composite function blocks. The basic function block 
is used for encapsulating the developer’s code, similar to the 
object-oriented design concept where the function block is a 
class defining the behaviour of multiple instances. The 
function blocks execution is event-driven which models the 
message passing communication in distributed systems. 
Interface of a function block consists of input and output 
events along with traditional data inputs and outputs as shown 
in Fig. 1(b).  
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In order to relate event handling and program execution, 
each basic function block comprises of Execution Control 
Chart (ECC) and set of algorithms as shown in Fig. 1(d) and 
Fig. 1(e). The algorithms can be written in PLC standard 
programming languages (IEC 61131-3) or other languages, 
e.g. C, C#, or Java. The ECC is a state machine containing EC 
states, actions and transitions as shown in Fig. 1(d). The 
transitions are triggered by input events along with some 
Boolean guard conditions. The states have associated actions, 
in which algorithms are invoked. Once the algorithms are 
executed, output events are emitted. For example, the interface 
of the pick and place robot shown in Fig 3(a) can be specified 
using an IEC 61499 function block and its ECC would define 
its control logic [12].  

There are several benefits of the new standard for software 
development, such as model-based design (Fig. 1(b)), 
component-encapsulation and ease of distribution, along with 
improved portability, interoperability and re-configurability of 
software. These benefits should result in design of systems 
with higher flexibility, fault tolerance and scalability than of 
current PLCs. Some of the available tools for IEC 61499 
automation are NxtStudio [13], ISaGRAF [14] and Function 
Block Development Kit (FBDK) [15]. All these software tools 
have inbuilt support for visual simulation in order to support 
testing and validation. The availability of these new powerful 
tools has stipulated the development of automation systems 
with higher degree of logic decentralisation. Quite predictably 

that revealed the fundamental challenges of distributed 
systems verification and validation [16]. 

III. STATE-OF-THE-ART IN VERIFICATION AND VALIDATION 

A. Model checking and different formalisms 
Compared to some formal verification methods, such as 

theorem proving and equivalence checking, model checking 
has three notable advantages:  
1) It enables the unsupervised automatic verification process 
of a system; 
2) It identifies system failure via counter examples; and 
3) It makes use of temporal logic for specifications so that 
model checker can automatically check for different properties 
(including safety properties). 

Fig. 2 shows the typical framework of model checking 
exemplified on a simplistic single-cylinder automation system. 
First step involves formal modelling of the target system in a 
modelling language such as Net Condition/Event Systems 
(NCES)[17]. The second step is to feed the formal model and 
the properties specified using a language such as Computation 
Tree Logic (CTL) to be verified by model checker. In the third 
step the model checker tool such as ViVe/SESA [18] does the 
verification and analyses the state space for the given CTL 
properties and then outputs the counter examples for the failed 
specifications if any. 

 
Fig. 2: Traditional model-checking based verification of automation software. 

Finite state machines are widely used for the modelling of 
control flow and so is the formalism of NCES. There are 
mainly two types of tools that are being researched by 
academia and industries for model checking. Finite state 
machine tools such as UPPAAL [19] and SMV [20] that 
compute sets of reachable states exactly and effectively. There 
are second set of tools based on Petri-net formalism related 
tools like NCES and its flavours such  as DTNCES[21] and 
ViVe/SESA[18], that approximate sets of reachable states.  

B. Related work in model checking of Automation and Control 
Systems 
There has been quite a bit of interested in this area and lot 

of research works exists. In this paper we will limited the 
related work to model checking research to IEC 61499 
function block systems.  

One of the first works in the verification of IEC 61499 
function block system is [22]. There have been many research 
works since then addressing various aspects of 61499 systems 
and its semantics[23]. [24] presents a very good overview of 
IEC 61499 formal modelling and verification. This paper is 
motivated and builds on top of the approach presented in [25]. 
There have been other works that stem from the same 
motivation. [26] presents a complete closed-loop 
implementation and verification framework based on the 
DTNCES formalism. [27] also presents another framework with 
focus on hardware in loop (HiL) and software in loop (SiL) 
verification.  

C. Summary from the litrature 
In summary, the following gaps have been identified from 

the literature analysis and addressed in this paper.  
• State space explosion is an obstacle for applying model-

checking, this paper presents an approach to control the 
state space explosion by applying controller non-
determinism [28]. 

 
Fig. 1: (a) A pick and place robot, (b) Modular and distributed 

application, (c) Modularity inside a resource, (d) Basic function block 
ECC, (e) Algorithm inside basic function block.
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• There is no formal verification tool-chain that integrates 
seamlessly with the IEC61499 development tools. This 
paper presents integration with FBDK (and in general IEC 
61499 tools because the player presented in section IV.E is 
a function block implementation). 

• The main output of the model checker in case of a failed 
specification is a counter example. Analysis of counter 
examples has not been fully addressed in the past research 
works, this paper presents visualisation of counter example 
in the actual simulation models as a compliment to the 
Gantt chart approach in [21, 25, 27] to help on-site 
engineers who have no knowledge about the formal model. 

• There is no proper link between the simulation 
(visualisation) tools and the model checking tools (and the 
counter examples it generates).  

This paper attempts to bridge these gaps by proposing an 
integrated framework for formal verification, the central part of 
which is the simulation-based investigation of 
counterexamples, resulted from model checking. 

IV. THE PROPOSED FRAMEWORK 
Fig. 3 below shows the proposed framework. As mentioned in 
the introduction it is a 4 step process. The first is the actual 
plant-controller model along with simulation. Second step is 
generation of the formal model. Third step is model checking 
and generation of state space and counter example (if any) and 
finally fourth step is to playback the counter example in the 
same simulation model developed in first step by implanting a 
player module in the function block module. The variety of 
simulation environments, e.g. as surveyed in [26, 29] can be 
used for the initial simulation model development.  

 
Fig. 3: The proposed framework 

A. Case Study Example 
To illustrate our approach, we will use a pick and place 

object shown in Fig. 4.  
The system is composed of several mechatronic units as 

follows:  
• There are two horizontal cylinders and a vertical cylinder 

that extract and retract. The left horizontal cylinder is half 
the size of the right cylinder. There is also a suction unit. 
The vertical cylinder picks up the work pieces using the 
suction unit attached to its end. 

• Both horizontal cylinders have two control signals (CGO: 
Cylinder Go Out: extending, CGI: Cylinder Go In: 
Retracting). The vertical cylinder has only one control 

signal (VCGD: Vertical Cylinder Goes Done). When this 
signal is not active, the cylinder moves up (pulled by the 
internal spring). 
Each of the cylinders have their own sensors that indicate 

the cylinder’s home and end positions. There are also sensors 
in each of the three input trays (pp1, pp2 and pp3) and one in 
the slider (pp0) to indicate the presence of a work piece. The 
suction unit has a built-in sensor, vacuum indicating that a 
work piece is sucked. 

 
Fig. 4: Reference object: pick and place robot. 

Fig. 5 shows the desired behaviour, it specifies the state of 
each cylinder and the vacuum unit when picking and dropping 
each of the work pieces. 

 
Fig. 5: Activity diagram of the pick and place robot. 

B. STEP 1: THE FUNCTION BLOCK MODEL 
The function block model is built as a plug-and-play 

application using the IMC’s described in the previous section. 
The methodology used by authors in [21, 30] is applied in 
order to create the function block application of the desired 
system. Fig. 6 below shows the controller for the case study 
example described in the previous section.  

 
Fig. 6: Distributed controller of the robot with Master –Slave architecture 

implemented in IEC 61499 (only the important data and event connections are 
shown). 
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C. STEP 2: GENERATION OF THE FORMAL MODEL IN NCES 
Similar to composition of function block application, the 

NCES model is also built using the plug and play approach 
making use of the pre-existing library models. In fact, in our 
tool-chain the controller’s formal model of the system is 
automatically composed as presented in [31]. 

 
Fig. 7: NCES model of distributed controller of the robot implemented with 

Master –Slave architecture. 

Fig. 7 shows the equivalent NCES model for the function 
block system shown in Fig. 6.  

D. STEP3: MODEL- CHECKING AND GENERATION OF COUNTER 
EXAMPLE 
The formal model is verified using ViVe/SESA [18] model 

checking tools. The properties to be verified are formulated 
using Computation Tree Logic (CTL) properties. Section V 
provides the complete details of model checking results. In 
case of a specification (CTL property in our case) is not true, 
the model-checking tool generates a counter example, which is 
a path in the resulting state space. There could be more than 
one path (counter example) for a single failed property 
(ViVe/SESA model checkers display a list of states where a 
property does not hold with possibly multiple paths to the 
same state). The model checker allows us to specify what 
variables need to be stored (for each state) in the resulting 
counter example trace. The counter example generated is 
stored as a text file consisting of multiple rows and columns. 
Each row refers to one state in the resulting path and each 
column in the row refers to the value of system variable in that 
state. Optionally the trace can also store timestamp of when 
particular events occur, which can be used for continuous 
playback in step 4. By time stamping we do not mean actual 
time when it occurred, but we mean discretized timestamp 
(discrete model time) [32], which we will use for continues 
playback. 

E. STEP4: PLAY BACK OF THE COUNTER EXAMPLE FROM STEP 3 
IN THE SAME SIMULATION MODEL GENERATED IN STEP 1 
The player module is implemented as an IEC 61499 

function block that reads the text file generated in step 3 and 
sets the plant model in a predefined state (force set the values 
of model variables in the plant model as given in the counter 
example trace’s first state) in order to see controller behaviour 
for that particular value(s) combination. The user can select 
any state from the state space of the counter example trace and 
view the variable values in that state (in the simulation model). 
For example, the simulation model can be set to a start state 
where cylinder 1 is in extended state and work piece 1 and 3 

are present. In the next state (or in any the preceding state), the 
vertical cylinder also will be extended (to pick work piece 1). 

The player also supports playing the whole counter 
example trace as one continues simulation run making use of 
the timestamps in the trace text file. For example, in the formal 
model, the cylinder position is discretized [32] as 20%, 40%, 
50%, 60%, 80%, 100% extending and similarly retracting. In 
NCES modelling each of the above values constitutes to 1 
place and transition happens between place to place every ‘tick’ 
(fired when no other spontaneous transition are available). So 
in different states of the trace file, the values for position of 
cylinder (0, 20, 40, 50, 60, 80 100) and ‘tick’ value is stored. 
For simulation, we map 1 tick value to 1 time cycle (using 
standard library function block E_CYCLE) of the simulation 
model (cycle value in millisecond is configured by the 
simulation model using E_CYCLE). Hence instead of cylinder 
jumping from start state to end state, it gradually jumps 
according to discretized values. More discretization, the better 
continuous motion in the playback. Increased granularity must 
be used with caution as this might increase the state space and 
probably unreliable results. 

V. MODEL CHECKING WITH VIVE/SESA 
The three cylinders system was checked using the ViVe 

and SESA tool chain. CTL was used to represent safety, 
liveliness and other functional requirements. The advantage of 
these tools is the ease with which properties can be mentioned. 
The properties are presented in terms of the places in the 
NCES models.  

The ViVe tool flattens the whole model consisting of 
different sub modules into one (possibly huge) NCES model, 
the ViVe tools tree view of the flat model is shown in Fig. 8. 
The flattened model can be exposed then to SESA model 
checker. 

For example, to check for the property that says “Opposite 
actuator signals (extend and retract) to the cylinders (C1, C2 in 
case of 3 cylinder model) should never be emitted at the same 
time”, we write the property as “AG (NOT (p136ANDp137))”, 
where places p136 and p137 correspond to global place 
numbers in the flattened NCES model variables. The global 
place numbers used by flattening the model aids in better 
analysis of the counter examples. Because we use a closed-
loop model, the property can also be expressed in terms of the 
plant variables instead of the controller. 

 
Fig. 8: Tree View of the ViVe tool, shows the flat model of the pick and place 

robot. 

In NCES terminology, the tool checks if at all there is a 
possibility that a token can be present in both these places at 
any given time. The base NCES model of the plant (without 
our controlled non-determinism) was timed and deterministic. 
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This model was checked against a set of CTL specifications of 
safe and correct behaviour. Table 1 summarizes all the 
properties that were checked for our use case. 

TABLE 1: LIST OF SAFETY, LIVENESS AND FUNCTIONAL PROPERTIES FOR THE 
PICK AND PLACE ROBOT. 

 Specifications  
 
Safety 

Opposite actuator signals to the horizontal cylinders 
should never be emitted at the same time. 

Safety If the signal to descend the vertical cylinder is emitted, 
the horizontal cylinder should stand still. 

Safety If there is an emission of a control command 
corresponding to movements of the horizontal cylinders 
then the sensor “vcu” of all the vertical cylinders must 
be true. 

Safety The horizontal cylinders can move only if the value of 
sensor “vcu” of all vertical cylinders is true. 

Liveness Absence of deadlocks in the (decentralized) control 
logic. 

Functional If a part is detected by pp1, pp2 or pp3, then in future 
one of the horizontal cylinders will be extended. 

Functional If a part is detected by pp1, pp2 or pp3, then in the 
future, the part will be removed from the tray. 

Functional When the vertical cylinder goes down, both horizontal 
cylinders are (and remain) in their end positions (home 
or end). 

The liveliness property of the cylinder, can be expressed 
as: all the places in the cylinder model become false (have no 
token) in future once they were true (had token). The format of 
the CTL property is:  

AG (pXX -> EF (NOT (pXX))), 
where “XX” corresponds to every place of the flattened 
controller model.  

Let us consider a property defined as, “if only work piece 2 
is present, only the right cylinder should extend and the work 
piece should be picked up”. Fig. 9(a) shows a valid behaviour 
of the above property, left cylinder is still in retracted position 
and right cylinder is extended. 

 
Fig. 9: a) Valid behaviour in a deterministic model; b) Invalid 
behaviour in a non-deterministic model. 

Then the model was checked after non-determinism was 
introduced to model one abnormal behaviour of the plant 
(work piece disappears) due to unpredictable external 
influences (Ex: someone handpicked the work piece). The 
same property like in the above was checked i.e. “if only work 
piece 2 is present, only the right cylinder should extend and 
the work piece should be picked up”. But due to non-
deterministic model, where work piece disappearance was 
modelled, the property check failed. The failure scenario is 
illustrated in Fig. 9(b), which shows both left and right 
cylinders being extended and system in a deadlocked state. 
The ViVe/SESA tool also gives us a counter example trace 
showing how it failed. The sequence was:  

1) All the three work pieces arrived. 
2) Cylinder 1 starts to extend to pick up work piece 1. 
3) Then work piece 1 and 3 disappear. 
4) Cylinder 2 also starts extending and system enters a 
deadlocked state. 
TABLE 2: NUMBER OF STATES NEEDED TO DETECT A FAILURE AND TIME 
TAKEN FOR A NON-DETERMINISTIC NCES MODEL. 

No of places where 
non determinism 

exists 

No of States generated 
before an error was 

detected 

Time taken to 
generate the 

reachability graph 
0 532 4 seconds 
1 3552 60 seconds 
2 5268 90 seconds 

In our case both the deterministic and non-deterministic 
(controlled) NCES models on a system with 1) Intel dual core 
CPUD525@1.8 GHz, with 2GB of RAM, 2) Windows 7 
operating system, 3) ViVe 0.37b version – for NCES model, 
the state space of the deterministic NCES model was less than 
600 states and all the CTL properties were verified to pass. 
The verification in ViVe/SESA [31, 32] took less than 4 
seconds. As seen from Table 2 even with non-determinism the 
time taken to verify the model with NCES is much lesser. 
Surprisingly, we also managed to spot the deadlock behaviour 
of the plant, hence concluding that the controller was still not 
yet up to the mark. In our approach we assemble the model 
from modules provided by IMC’s without the need to take care 
of synchronization. Our tool chain helped to “plant” non-
determinism modelling failures in particular mechatronic parts 
of the plant without causing state explosion. Such ability 
greatly enhances the performance of the developer, making 
formal verification a practical tool for everyday work. In our 
experiment we planted non-determinism in 1 or 2 places only 
in order to show the working of our framework. 

VI. CONCLUSION 
One of the main issues with formal verification is design 

and development of formal models and analysis of the counter 
examples, which are usually in a format that a control engineer 
would not understand. It is also time consuming, needs some 
level of understanding and experience in formal modelling. 
This paper has given a brief overview of previous research 
works to address this issue and presented a 4 step framework 
for formal verification of IEC 61499 function block systems 
with focus on counter example guided verification to 
compliment and add on top of the other research works cited to 
address the issue even better. The paper shows how we can 
make use of simulation (visualization) model to benefit and 
ease the process of model checking. We also used automated 
techniques for formal model generation, but added controlled 
non-determinism to better model the physical behaviour of the 
plant and exemplified how a counter example can be played 
back in the simulation to better understand the failures during 
model checking. Possible future work directions will concern, 
for example:  
• Developing a more realistic timed plant modelling pattern 

allowing for variable actions duration within a certain 
interval. 
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• Integrating this approach with various simulation 
environment vendors such as CIROS by Festo and with 
IEC 61499 tool vendors such as 4DIAC and NxtStudio. 
Apply to real applications such as load balancing in smart 
grids [33]. 

• Further investigating the computational impact of the 
“planted” and incremental non-determinism methodology 
over range of other embedded control systems.  

• Time-synchronisation proposed in [34, 35] can be applied 
for alignment of simulation models interpretation with 
player. However, formal model of the corresponding 
function block semantics is yet to be developed.    
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