
Counterexample-Guided Simulation Framework for
Formal Verification of Flexible Automation Systems

Sandeep Patil
Luleå University of Technology,

Luleå, Sweden
sandeep.patil@ltu.se

Valeriy Vyatkin
Luleå University of Technology,

Luleå, Sweden
Aalto University, Helsinki, Finland

vyatkin@ieee.org

Cheng Pang
Aalto University, Helsinki, Finland

cheng.pang.phd@ieee.org

Abstract —This paper proposes a framework for formal

verification of industrial automation software in an intuitive way.
The IEC 61499 function block architecture is assumed to be the
input language, and the Intelligent Mechatronic Components
(IMC) architecture is assumed as an underlying design pattern
for the applications, which implies autonomous control logic in
each IMC and their compositions to systems in a plug-and-play
way. Then the system is automatically verified using model
checking and the counter examples for the failed model checking
properties are played back step-by-step and state-by-state in the
simulation model that most industrial automation control systems
would have built as the basis for initial testing. Net Condition
Event Systems formalism (a modular extension of Petri net) is
used to model the decentralized control logic and discrete-state
dynamics of the plant. The model is then subjected to model
checking using the ViVe/SESA tool chain. The method’s
application is illustrated using a simple pick and place
manipulator. A closed loop model of Plant and Controller is used.
Controller is extensively verified for safety, liveliness and
functional properties of the robot. We then show how a counter
example for deadlock detected by the model checker is played
back in the simulation model for visualizing how exactly the
system deadlocked.

Keywords — NCES, ViVe, SESA, Formal Verification, Closed-
Loop Modeling.

I. INTRODUCTION
Industrial automation is facing challenges related to a

manufacturing change from mass production to mass
customization. As a result, the focus of automation has been
shifting to flexibility, re-configurability, and safety assurance.
With this shift, the existing software verification and
validation (V&V) techniques, such as testing and simulation,
become inadequate. Furthermore, the development of
simulation models is time consuming while does not guarantee
100% validation of the automation control software. To
address this problem, formal verification [1] has been
considered as a proper complementary V&V technique.
Discrete state model checking [2] is one of such approaches,
which is the process of automatically verifying whether a set
of desired formal specifications is satisfied over the target
system (model). While model checking is computationally
resource hungry, it has been successfully used in other areas of
computer system engineering, such as hardware design,
proving its ability to handle problems of reasonably large
complexity [3, 4]. This suggests that model checking can be
applied in the industrial automation domain. There has been an
impressive number of research works towards this goal.

Despite these (moderate) successes and promises the
reality is that formal verification techniques are rarely used in
the development practice by industrial automation engineers. It
seems that the existing tools and methods do not fit to the
processes of automation system engineering.

In this paper we propose a closed-loop verification
framework which we believe will be more efficient and
feasible in model checking of control systems in industrial
automation domain. The framework consists of 4 main steps:
1) Developing a closed-loop function block application of the
control system and a simulation model with initial testing of
the control logic by simulation;
2) Automatic generation (and composition) of formal models
as a closed-loop model;
3) Model checking the resulting formal model and verifying
for a comprehensive set of requirements, which generates
counter examples for any failed properties; and
4) Play back of the counter example from Step 3 in the same
simulation model generated in Step 1.

The rest of the paper is organized as follows; Section II
presents basics about IEC 61499. Section III related work and
in section IV we explain each of the 4 steps of the proposed
framework. Section V presents the verification results and how
a counter example can be played in the simulation model. The
paper will end with conclusions and future work discussion in
section VI.

II. DESIGN MODELS FOR FLEXIBLE AUTOMATION
The International Electrotechnical Commission (IEC) has

come with the IEC 61499 [5] standard for design of
distributed automation systems [6] as an extension of the
popular IEC 61131-3 standard. The standard aims at enhancing
flexibility, interoperability[7] extensibility and re-
configurability of distributed systems by better reusability
components. This model has demonstrated its benefits for
modular mechatronic automation systems [8-11].

The standard provides several design artefacts, such as
basic and composite function blocks. The basic function block
is used for encapsulating the developer’s code, similar to the
object-oriented design concept where the function block is a
class defining the behaviour of multiple instances. The
function blocks execution is event-driven which models the
message passing communication in distributed systems.
Interface of a function block consists of input and output
events along with traditional data inputs and outputs as shown
in Fig. 1(b).

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1192

In order to relate event handling and program execution,
each basic function block comprises of Execution Control
Chart (ECC) and set of algorithms as shown in Fig. 1(d) and
Fig. 1(e). The algorithms can be written in PLC standard
programming languages (IEC 61131-3) or other languages,
e.g. C, C#, or Java. The ECC is a state machine containing EC
states, actions and transitions as shown in Fig. 1(d). The
transitions are triggered by input events along with some
Boolean guard conditions. The states have associated actions,
in which algorithms are invoked. Once the algorithms are
executed, output events are emitted. For example, the interface
of the pick and place robot shown in Fig 3(a) can be specified
using an IEC 61499 function block and its ECC would define
its control logic [12].

There are several benefits of the new standard for software
development, such as model-based design (Fig. 1(b)),
component-encapsulation and ease of distribution, along with
improved portability, interoperability and re-configurability of
software. These benefits should result in design of systems
with higher flexibility, fault tolerance and scalability than of
current PLCs. Some of the available tools for IEC 61499
automation are NxtStudio [13], ISaGRAF [14] and Function
Block Development Kit (FBDK) [15]. All these software tools
have inbuilt support for visual simulation in order to support
testing and validation. The availability of these new powerful
tools has stipulated the development of automation systems
with higher degree of logic decentralisation. Quite predictably

that revealed the fundamental challenges of distributed
systems verification and validation [16].

III. STATE-OF-THE-ART IN VERIFICATION AND VALIDATION

A. Model checking and different formalisms
Compared to some formal verification methods, such as

theorem proving and equivalence checking, model checking
has three notable advantages:
1) It enables the unsupervised automatic verification process
of a system;
2) It identifies system failure via counter examples; and
3) It makes use of temporal logic for specifications so that
model checker can automatically check for different properties
(including safety properties).

Fig. 2 shows the typical framework of model checking
exemplified on a simplistic single-cylinder automation system.
First step involves formal modelling of the target system in a
modelling language such as Net Condition/Event Systems
(NCES)[17]. The second step is to feed the formal model and
the properties specified using a language such as Computation
Tree Logic (CTL) to be verified by model checker. In the third
step the model checker tool such as ViVe/SESA [18] does the
verification and analyses the state space for the given CTL
properties and then outputs the counter examples for the failed
specifications if any.

Fig. 2: Traditional model-checking based verification of automation software.

Finite state machines are widely used for the modelling of
control flow and so is the formalism of NCES. There are
mainly two types of tools that are being researched by
academia and industries for model checking. Finite state
machine tools such as UPPAAL [19] and SMV [20] that
compute sets of reachable states exactly and effectively. There
are second set of tools based on Petri-net formalism related
tools like NCES and its flavours such as DTNCES[21] and
ViVe/SESA[18], that approximate sets of reachable states.

B. Related work in model checking of Automation and Control
Systems
There has been quite a bit of interested in this area and lot

of research works exists. In this paper we will limited the
related work to model checking research to IEC 61499
function block systems.

One of the first works in the verification of IEC 61499
function block system is [22]. There have been many research
works since then addressing various aspects of 61499 systems
and its semantics[23]. [24] presents a very good overview of
IEC 61499 formal modelling and verification. This paper is
motivated and builds on top of the approach presented in [25].
There have been other works that stem from the same
motivation. [26] presents a complete closed-loop
implementation and verification framework based on the
DTNCES formalism. [27] also presents another framework with
focus on hardware in loop (HiL) and software in loop (SiL)
verification.

C. Summary from the litrature
In summary, the following gaps have been identified from

the literature analysis and addressed in this paper.
• State space explosion is an obstacle for applying model-

checking, this paper presents an approach to control the
state space explosion by applying controller non-
determinism [28].

Fig. 1: (a) A pick and place robot, (b) Modular and distributed

application, (c) Modularity inside a resource, (d) Basic function block
ECC, (e) Algorithm inside basic function block.

1193

• There is no formal verification tool-chain that integrates
seamlessly with the IEC61499 development tools. This
paper presents integration with FBDK (and in general IEC
61499 tools because the player presented in section IV.E is
a function block implementation).

• The main output of the model checker in case of a failed
specification is a counter example. Analysis of counter
examples has not been fully addressed in the past research
works, this paper presents visualisation of counter example
in the actual simulation models as a compliment to the
Gantt chart approach in [21, 25, 27] to help on-site
engineers who have no knowledge about the formal model.

• There is no proper link between the simulation
(visualisation) tools and the model checking tools (and the
counter examples it generates).

This paper attempts to bridge these gaps by proposing an
integrated framework for formal verification, the central part of
which is the simulation-based investigation of
counterexamples, resulted from model checking.

IV. THE PROPOSED FRAMEWORK
Fig. 3 below shows the proposed framework. As mentioned in
the introduction it is a 4 step process. The first is the actual
plant-controller model along with simulation. Second step is
generation of the formal model. Third step is model checking
and generation of state space and counter example (if any) and
finally fourth step is to playback the counter example in the
same simulation model developed in first step by implanting a
player module in the function block module. The variety of
simulation environments, e.g. as surveyed in [26, 29] can be
used for the initial simulation model development.

Fig. 3: The proposed framework

A. Case Study Example
To illustrate our approach, we will use a pick and place

object shown in Fig. 4.
The system is composed of several mechatronic units as

follows:
• There are two horizontal cylinders and a vertical cylinder

that extract and retract. The left horizontal cylinder is half
the size of the right cylinder. There is also a suction unit.
The vertical cylinder picks up the work pieces using the
suction unit attached to its end.

• Both horizontal cylinders have two control signals (CGO:
Cylinder Go Out: extending, CGI: Cylinder Go In:
Retracting). The vertical cylinder has only one control

signal (VCGD: Vertical Cylinder Goes Done). When this
signal is not active, the cylinder moves up (pulled by the
internal spring).
Each of the cylinders have their own sensors that indicate

the cylinder’s home and end positions. There are also sensors
in each of the three input trays (pp1, pp2 and pp3) and one in
the slider (pp0) to indicate the presence of a work piece. The
suction unit has a built-in sensor, vacuum indicating that a
work piece is sucked.

Fig. 4: Reference object: pick and place robot.

Fig. 5 shows the desired behaviour, it specifies the state of
each cylinder and the vacuum unit when picking and dropping
each of the work pieces.

Fig. 5: Activity diagram of the pick and place robot.

B. STEP 1: THE FUNCTION BLOCK MODEL
The function block model is built as a plug-and-play

application using the IMC’s described in the previous section.
The methodology used by authors in [21, 30] is applied in
order to create the function block application of the desired
system. Fig. 6 below shows the controller for the case study
example described in the previous section.

Fig. 6: Distributed controller of the robot with Master –Slave architecture

implemented in IEC 61499 (only the important data and event connections are
shown).

1194

C. STEP 2: GENERATION OF THE FORMAL MODEL IN NCES
Similar to composition of function block application, the

NCES model is also built using the plug and play approach
making use of the pre-existing library models. In fact, in our
tool-chain the controller’s formal model of the system is
automatically composed as presented in [31].

Fig. 7: NCES model of distributed controller of the robot implemented with

Master –Slave architecture.

Fig. 7 shows the equivalent NCES model for the function
block system shown in Fig. 6.

D. STEP3: MODEL- CHECKING AND GENERATION OF COUNTER
EXAMPLE
The formal model is verified using ViVe/SESA [18] model

checking tools. The properties to be verified are formulated
using Computation Tree Logic (CTL) properties. Section V
provides the complete details of model checking results. In
case of a specification (CTL property in our case) is not true,
the model-checking tool generates a counter example, which is
a path in the resulting state space. There could be more than
one path (counter example) for a single failed property
(ViVe/SESA model checkers display a list of states where a
property does not hold with possibly multiple paths to the
same state). The model checker allows us to specify what
variables need to be stored (for each state) in the resulting
counter example trace. The counter example generated is
stored as a text file consisting of multiple rows and columns.
Each row refers to one state in the resulting path and each
column in the row refers to the value of system variable in that
state. Optionally the trace can also store timestamp of when
particular events occur, which can be used for continuous
playback in step 4. By time stamping we do not mean actual
time when it occurred, but we mean discretized timestamp
(discrete model time) [32], which we will use for continues
playback.

E. STEP4: PLAY BACK OF THE COUNTER EXAMPLE FROM STEP 3
IN THE SAME SIMULATION MODEL GENERATED IN STEP 1
The player module is implemented as an IEC 61499

function block that reads the text file generated in step 3 and
sets the plant model in a predefined state (force set the values
of model variables in the plant model as given in the counter
example trace’s first state) in order to see controller behaviour
for that particular value(s) combination. The user can select
any state from the state space of the counter example trace and
view the variable values in that state (in the simulation model).
For example, the simulation model can be set to a start state
where cylinder 1 is in extended state and work piece 1 and 3

are present. In the next state (or in any the preceding state), the
vertical cylinder also will be extended (to pick work piece 1).

The player also supports playing the whole counter
example trace as one continues simulation run making use of
the timestamps in the trace text file. For example, in the formal
model, the cylinder position is discretized [32] as 20%, 40%,
50%, 60%, 80%, 100% extending and similarly retracting. In
NCES modelling each of the above values constitutes to 1
place and transition happens between place to place every ‘tick’
(fired when no other spontaneous transition are available). So
in different states of the trace file, the values for position of
cylinder (0, 20, 40, 50, 60, 80 100) and ‘tick’ value is stored.
For simulation, we map 1 tick value to 1 time cycle (using
standard library function block E_CYCLE) of the simulation
model (cycle value in millisecond is configured by the
simulation model using E_CYCLE). Hence instead of cylinder
jumping from start state to end state, it gradually jumps
according to discretized values. More discretization, the better
continuous motion in the playback. Increased granularity must
be used with caution as this might increase the state space and
probably unreliable results.

V. MODEL CHECKING WITH VIVE/SESA
The three cylinders system was checked using the ViVe

and SESA tool chain. CTL was used to represent safety,
liveliness and other functional requirements. The advantage of
these tools is the ease with which properties can be mentioned.
The properties are presented in terms of the places in the
NCES models.

The ViVe tool flattens the whole model consisting of
different sub modules into one (possibly huge) NCES model,
the ViVe tools tree view of the flat model is shown in Fig. 8.
The flattened model can be exposed then to SESA model
checker.

For example, to check for the property that says “Opposite
actuator signals (extend and retract) to the cylinders (C1, C2 in
case of 3 cylinder model) should never be emitted at the same
time”, we write the property as “AG (NOT (p136ANDp137))”,
where places p136 and p137 correspond to global place
numbers in the flattened NCES model variables. The global
place numbers used by flattening the model aids in better
analysis of the counter examples. Because we use a closed-
loop model, the property can also be expressed in terms of the
plant variables instead of the controller.

Fig. 8: Tree View of the ViVe tool, shows the flat model of the pick and place

robot.

In NCES terminology, the tool checks if at all there is a
possibility that a token can be present in both these places at
any given time. The base NCES model of the plant (without
our controlled non-determinism) was timed and deterministic.

1195

This model was checked against a set of CTL specifications of
safe and correct behaviour. Table 1 summarizes all the
properties that were checked for our use case.

TABLE 1: LIST OF SAFETY, LIVENESS AND FUNCTIONAL PROPERTIES FOR THE
PICK AND PLACE ROBOT.

 Specifications

Safety

Opposite actuator signals to the horizontal cylinders
should never be emitted at the same time.

Safety If the signal to descend the vertical cylinder is emitted,
the horizontal cylinder should stand still.

Safety If there is an emission of a control command
corresponding to movements of the horizontal cylinders
then the sensor “vcu” of all the vertical cylinders must
be true.

Safety The horizontal cylinders can move only if the value of
sensor “vcu” of all vertical cylinders is true.

Liveness Absence of deadlocks in the (decentralized) control
logic.

Functional If a part is detected by pp1, pp2 or pp3, then in future
one of the horizontal cylinders will be extended.

Functional If a part is detected by pp1, pp2 or pp3, then in the
future, the part will be removed from the tray.

Functional When the vertical cylinder goes down, both horizontal
cylinders are (and remain) in their end positions (home
or end).

The liveliness property of the cylinder, can be expressed
as: all the places in the cylinder model become false (have no
token) in future once they were true (had token). The format of
the CTL property is:

AG (pXX -> EF (NOT (pXX))),
where “XX” corresponds to every place of the flattened
controller model.

Let us consider a property defined as, “if only work piece 2
is present, only the right cylinder should extend and the work
piece should be picked up”. Fig. 9(a) shows a valid behaviour
of the above property, left cylinder is still in retracted position
and right cylinder is extended.

Fig. 9: a) Valid behaviour in a deterministic model; b) Invalid
behaviour in a non-deterministic model.

Then the model was checked after non-determinism was
introduced to model one abnormal behaviour of the plant
(work piece disappears) due to unpredictable external
influences (Ex: someone handpicked the work piece). The
same property like in the above was checked i.e. “if only work
piece 2 is present, only the right cylinder should extend and
the work piece should be picked up”. But due to non-
deterministic model, where work piece disappearance was
modelled, the property check failed. The failure scenario is
illustrated in Fig. 9(b), which shows both left and right
cylinders being extended and system in a deadlocked state.
The ViVe/SESA tool also gives us a counter example trace
showing how it failed. The sequence was:

1) All the three work pieces arrived.
2) Cylinder 1 starts to extend to pick up work piece 1.
3) Then work piece 1 and 3 disappear.
4) Cylinder 2 also starts extending and system enters a
deadlocked state.
TABLE 2: NUMBER OF STATES NEEDED TO DETECT A FAILURE AND TIME
TAKEN FOR A NON-DETERMINISTIC NCES MODEL.

No of places where
non determinism

exists

No of States generated
before an error was

detected

Time taken to
generate the

reachability graph
0 532 4 seconds
1 3552 60 seconds
2 5268 90 seconds

In our case both the deterministic and non-deterministic
(controlled) NCES models on a system with 1) Intel dual core
CPUD525@1.8 GHz, with 2GB of RAM, 2) Windows 7
operating system, 3) ViVe 0.37b version – for NCES model,
the state space of the deterministic NCES model was less than
600 states and all the CTL properties were verified to pass.
The verification in ViVe/SESA [31, 32] took less than 4
seconds. As seen from Table 2 even with non-determinism the
time taken to verify the model with NCES is much lesser.
Surprisingly, we also managed to spot the deadlock behaviour
of the plant, hence concluding that the controller was still not
yet up to the mark. In our approach we assemble the model
from modules provided by IMC’s without the need to take care
of synchronization. Our tool chain helped to “plant” non-
determinism modelling failures in particular mechatronic parts
of the plant without causing state explosion. Such ability
greatly enhances the performance of the developer, making
formal verification a practical tool for everyday work. In our
experiment we planted non-determinism in 1 or 2 places only
in order to show the working of our framework.

VI. CONCLUSION
One of the main issues with formal verification is design

and development of formal models and analysis of the counter
examples, which are usually in a format that a control engineer
would not understand. It is also time consuming, needs some
level of understanding and experience in formal modelling.
This paper has given a brief overview of previous research
works to address this issue and presented a 4 step framework
for formal verification of IEC 61499 function block systems
with focus on counter example guided verification to
compliment and add on top of the other research works cited to
address the issue even better. The paper shows how we can
make use of simulation (visualization) model to benefit and
ease the process of model checking. We also used automated
techniques for formal model generation, but added controlled
non-determinism to better model the physical behaviour of the
plant and exemplified how a counter example can be played
back in the simulation to better understand the failures during
model checking. Possible future work directions will concern,
for example:
• Developing a more realistic timed plant modelling pattern

allowing for variable actions duration within a certain
interval.

1196

• Integrating this approach with various simulation
environment vendors such as CIROS by Festo and with
IEC 61499 tool vendors such as 4DIAC and NxtStudio.
Apply to real applications such as load balancing in smart
grids [33].

• Further investigating the computational impact of the
“planted” and incremental non-determinism methodology
over range of other embedded control systems.

• Time-synchronisation proposed in [34, 35] can be applied
for alignment of simulation models interpretation with
player. However, formal model of the corresponding
function block semantics is yet to be developed.

VII. ACKNOWLEDGEMENTS
This work was supported, in part, by the grant 381940 of

Luleå University of Technology, and SAUNA project of the
The Finnish Research Programme on Nuclear Power Plant
Safety 2015 – 2018 (SAFIR2018) program.

REFERENCES
[1] R. Drechsler, Advanced Formal Verification. Norwell, MA, USA: Kluwer

Academic Publishers, 2004.
[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.

Cambridge: The MIT Press, 1999.
[3] L. Fix, "Fifteen Years of Formal Property Verification in Intel," in 25

Years of Model Checking, G. Orna and V. Helmut, Eds., ed: Springer-
Verlag, 2008, pp. 139-144.

[4] C. Kern and M. R. Greenstreet, "Formal verification in hardware design: a
survey," ACM Trans. Des. Autom. Electron. Syst., vol. 4, pp. 123-193,
1999.

[5] "Programmable Logic Controllers — Part 3: Programming Languages,
IEC Standard 61131-3," Third ed, 2013.

[6] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent
Automation: State-of-the-Art Review," IEEE Transactions on Industrial
Informatics, vol. 7, pp. 768-781, 2011.

[7] S. Patil, J. Yan, V. Vyatkin, and C. Pang, "On composition of mechatronic
components enabled by interoperability and portability provisions of IEC
61499: A case study," in Emerging Technologies & Factory Automation
(ETFA), 2013 IEEE 18th Conference on, 2013, pp. 1-4.

[8] V. Vyatkin, S. Karras, and T. Pfeiffer, "Architecture for automation
system development based on IEC 61499 standard," in Industrial
Informatics, 2005. INDIN '05. 2005 3rd IEEE International Conference
on, 2005, pp. 13-18.

[9] C. Maffezzoni, L. L. Ferrarini, and E. Carpanzano, "Object-oriented
models for advanced automation engineering - modular modeling in an
object oriented database," Control Engineering Practice, vol. 7, pp. 957-
968, 1999.

[10] C. Pang and V. Vyatkin, "Systematic Closed-Loop Modelling in IEC
61499 Function Blocks: A Case Study," in 13th IFAC Symposium on
Information Control Problems in Manufacturing (INCOM 2009),
Moscow, Russia, 2009, pp. 199-204.

[11] M. Sorouri, S. Patil, V. Vyatkin, and Z. Salcic, "Software Composition
and Distributed Operation Scheduling in Modular Automated Machines,"
Industrial Informatics, IEEE Transactions on, vol. PP, pp. 1-1, 2015.

[12] C. Pang and V. Vyatkin, "IEC 61499 Function Block Implementation of
Intelligent Mechatronic Component," in 8th IEEE Conference on
Industrial Informatics (INDIN 2010), Osaka, Japan, 2010, pp. 1124-1129.

[13] nxtControl. (2012). nxtSTUDIO. Available: www.nxtcontrol.com
[14] ICS Triplex ISaGRAF. ISaGRAF Workbench. Available:

http://www.isagraf.com/
[15] FBDK – Function Block Development Kit. Available: www.holobloc.com
[16] K. H. Hall, R. J. Staron, and A. Zoitl, "Challenges to Industry Adoption of

the IEC 61499 Standard on Event-based Function Blocks," presented at
the 5th IEEE International Conference on Industrial Informatics, 2007.

[17] M. Rausch and H. M. Hanisch, "Net condition/event systems with
multiple condition outputs," in Emerging Technologies and Factory

Automation, 1995. ETFA '95, Proceedings., 1995 INRIA/IEEE Symposium
on, 1995, pp. 592-600 vol.1.

[18] V. Vyatkin, P. Starke, and H.-M. Hanisch. (1999-2002). ViVe and SESA
Model Checkers. Available:
http://www.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html

[19] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D'Argenio, A. David, A.
Fehnker, et al., "UPPAAL - Now, Next, and Future," presented at the
Proceedings of the 4th Summer School on Modeling and Verification of
Parallel Processes, 2001.

[20] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, et al., "NuSMV 2: An OpenSource Tool for Symbolic Model
Checking," in Computer Aided Verification. vol. 2404, E. Brinksma and
K. Larsen, Eds., ed: Springer Berlin / Heidelberg, 2002, pp. 241-268.

[21] C. Gerber, Implementation and Verification of Distributed Control
Systems vol. 7: Logos Verlag Berlin GmbH, 2011.

[22] V. Vyatkin and H. M. Hanisch, "A modeling approach for verification of
IEC1499 function blocks using net condition/event systems," in Emerging
Technologies and Factory Automation, 1999. Proceedings. ETFA '99.
1999 7th IEEE International Conference on, 1999, pp. 261-270 vol.1.

[23] S. Patil, V. Dubinin, C. Pang, and V. Vyatkin, "Neutralizing Semantic
Ambiguities of Function Block Architecture by Modeling with ASM," in
Perspectives of System Informatics. vol. 8974, A. Voronkov and I.
Virbitskaite, Eds., ed: Springer Berlin Heidelberg, 2015, pp. 76-91.

[24] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, "One
Decade of IEC 61499 Modeling and Verification-Results and Open
Issues," in 13th IFAC Symposium on Information Control Problems in
Manufacturing, V.A. Trapeznikov Institute of Control Sciences, Russia,
2009.

[25] V. Vyatkin and H. M. Hanisch, "Formal modeling and verification in the
software engineering framework of IEC 61499: a way to self-verifying
systems," in Emerging Technologies and Factory Automation, 2001.
Proceedings. 2001 8th IEEE International Conference on, 2001, pp. 113-
118 vol.2.

[26] C. Gerber, I. Ivanova-Vasileva, and H.-M. Hanisch, "A Data processing
Model of IEC 61499 Function Blocks with Integer-Valued Data Types,"
in Workshop on Intelligent Manufacturing Systems (IMS), 2008, pp. 239-
244.

[27] S. Preusse, Technologies for Engineering Manufacturing Systems Control
in Closed Loop vol. 10: Logos Verlag Berlin GmbH, 2013.

[28] S. Patil, S. Bhadra, and V. Vyatkin, "Closed-loop formal verification
framework with non-determinism, configurable by meta-modelling," in
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics
Society, 2011, pp. 3770-3775.

[29] C. Yang, V. Vyatkin, and C. Pang, "Model-Driven Development of
Control Software for Distributed Automation: A Survey and an
Approach," IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, pp. 292-305, 2014.

[30] M. Sorouri, S. Patil, and V. Vyatkin, "Plug-and-Play IEC 61499 function
blocks for distributed control design of Intelligent Mechatronic Systems,"
The University of Auckland, Auckland, Submitted for INDIN Conference
2012.

[31] S. Patil, V. Vyatkin, and M. Sorouri, "Formal verification of Intelligent
Mechatronic Systems with decentralized control logic," in Emerging
Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference
on, 2012, pp. 1-7.

[32] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, "Closed-loop
modeling in future automation system engineering and validation," IEEE
Transactions on Systems, Man, and Cybernetics—Part C: Applications
and Reviews, vol. 39, pp. 17-28, 2009.

[33] S. Patil, V. Vyatkin, and B. McMillin, "Implementation of FREEDM
Smart Grid distributed load balancing using IEC 61499 function blocks,"
in Industrial Electronics Society, IECON 2013 - 39th Annual Conference
of the IEEE, 2013, pp. 8154-8159.

[34] C. Pang, J. Yan, V. Vyatkin, and S. Jennings, "Distributed IEC 61499
material handling control based on time synchronization with IEEE
1588," in Precision Clock Synchronization for Measurement Control and
Communication (ISPCS), 2011 International IEEE Symposium on, 2011,
pp. 126-131.

[35] C. Pang, J. Yan, and V. Vyatkin, "Time-Complemented Event-Driven
Architecture for Distributed Cyber-Physical Systems," IEEE Transactions
on Systems, Man and Cybernetics: Systems, 2014.

1197

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

