
Industry-Friendly Engineering Tools for Wireless
Home Automation Devices

Jia Wang1, Zhibo Pang2, Cheng Pang3, and Valeriy Vyatkin3, 4

1Royal Institute of Technology (KTH), Stockholm, Sweden 2Corporate Research, ABB AB Vasteras, Sweden.
3Aalto University, Finland; 4Luleå University of Technology, Sweden

jiaw@kth.se; pang.zhibo@se.abb.com; {cheng.pang.phd, vyatkin}@ieee.org

Abstract—Although home automation (HA) systems in the
wired domain are widely accepted by consumers, in today's
industry, the mega trend is steering HA systems along a wireless
way. Theoretically, wireless solutions are able to provide HA
systems with more flexibility and thus reducing engineering costs.
In practice, however, deploying wireless HA systems actually
requires more costs and efforts due to the lack of versatile
software tools to support the whole engineering process. This
paper defines and evaluates the engineering workflow and
architecture for home automation systems. The proposed
architecture is studied and implemented based on web
technologies and graphical configuration environments, with the
aim of reducing workloads of HA engineers at every stage. A
prototype has been implemented to demonstrate the technical
feasibility of the proposed architecture.

I. INTRODUCTION

An automation system for residential buildings or homes is
one of the most promising application areas of the Internet-of-
Things (IoT) [1]. State-of-the-art residential houses are
distinguished not only by the sustainability of architecture, but
more importantly by the automation functionality [2, 3].
Thanks to the development and flexibility of wireless
technologies, wireless solutions have brought business
opportunities for device manufacturers due to the vast demands
for products in the wireless domain [4]. As a result, wireless
solutions, such as EnOcean [5], ZigBee [6], and 6LoWPAN
[3], are gaining momentum these days. However, this rapid
development is hampered by the unavailability of appropriate
engineering tools [7]. Thus, the wireless HA industry is
demanding a set of engineering tools to standardize the
engineering process [8] and address issues, such as extensive
manual workloads [9] and terrible interoperability among
different wireless technologies [10].

Significant amount of efforts have been devoted to the
development of engineering tools and workflow for HA
systems. To simplify the installation of HA devices, some
standards are going to integrate commissioning tools into their
products, such as EnOcean and ZigBee. But, there is a lack of
specification for common engineering tools and device
description files that can be shared among the value chain. A
more customer-oriented commercial solution is the Apple
HomeKit framework [11]. It proposes a MiFi license where
HA devices supporting this license can be seamlessly
integrated with iOS devices [11]. However, the mobility of iOS

devices makes HomeKit fragile. When the device is out of
home, the original smart home may immediately lose control.
Similarly, as an industry-oriented solution, DeviceCloud is a
typical example for a cloud-based management platform for
IoT connected devices, which combines service provisioning,
devices real time control, and devices data visualization to
simplify the process of bringing the interaction of products of
any type [12]. However, its defect in console units fails
DeviceCloud to become an industry-friendly HA system. For
discovering and pairing new devices, authors of [13] proposed
an XML-based secure integration approach to avoid loading
additional drivers. To enhance the system interoperability,
authors of [14] presented a technology integrated platform that
is capable of interfacing with building managing systems.
Other efforts are made on the application layer based on the
Model-View-Controller concept [15-17] and on the network
layer by deploying heterogeneous sensor nodes with uniform
interfaces [18]. These interfaces are controlled by a Web based
central control unit [19]. Furthermore, to enhance users’
entertainment experiences, heterogeneous services are
integrated with a goal-driven approach. Once a user declared
his requirements, the system will automatically search for and
set up available services to maximally satisfy the user’s goal
[20]. In short, versatile engineering tools are required for
supporting the whole engineering process.

In this paper, a wireless HA system architecture is
developed to efficiently integrate and engineer (e.g. pre-
configuration, configuration, and commission) heterogeneous
wireless devices. As an industry-friendly engineering tool, it
facilitates works for all roles in the HA industrial value-chain,
including end users and installers who have limited
programming or system skills, system integrators with little
configuration skills of wireless networks, and device
manufacturers providing products with various protocols.
Moreover, since all these roles in the engineering process are
indispensable to implement the final system, the business
benefits of the entire HA value chain has to be well protected
by the proposed architecture.

The remainder of this paper is organized as follows. In
Section II, we elaborate the engineering workflow of HA
systems. In Section III, we explain the architecture and
technical details of the proposed tools. Finally, the
implementation details and experiment results are given in
Section IV. The paper is finally concluded in Section V.

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1174

II. ENGINEERING WORKFLOW OF HOME AUTOMATION
SYSTEMS

In practical engineering, implementation of wireless HA
systems is accomplished by an engineering workflow [10]
where device manufacturers, integrators, and installers are all
involved. Fig. 1 illustrates the tasks at each stage and the tools
that are needed.

At first stage, device manufacturers usually provide
integrators the product packages, including specifications and
device drivers. Depending on the project scope, integrators
usually divides his work into four parts. The first part is to
generate a project specification, which specifies the
functionalities to realize and the HA devices to select [4]. As
long as drivers are included in their product packages, in the
second stage, integrators will integrate these devices into the
wireless HA system. Therefore, an integration tool will be very
helpful, if loading drivers to the device gateway and modifying
configuration system, automatically. Then, the integrator is
about to generate a user interface (UI) panel for controlling the
HA system. Thus, the tool is needed, in this stage, enable to
customize UI design as well as to configure the system on site.
System remote maintenance will be a task for integrators in the
last stage, if system updating is needed in the future.

When the integration work is done, installers will deploy
the HA system to the user's home. During installation, the
wireless signal preparation is a complicated issue. Therefore,
the framework providing a visual installation environment will
facilitate this process, by visualizing data such as working
channel, signal strength, and transmission rate on the UI panel.
After the installation, the HA system has to be fully tested
before being delivered to end user.

III. PROPOSED HOME AUTOMATION SYSTEM ARCHITECTURE

A. The overall HA system architecture
The overall HA system architecture is outlined in Fig. 2.

The key elements of the Smart Home system included in the
WiHA system are separated into three domains as follows.
More details are available in our previous work [2, 3].

· Automation Device Domain: It comprises all the field
devices including the sensors and actuators, wireless
sensor and actuator network (WSAN) devices (e.g.
routers, bridges), home automation gateway, and
Consumer User Interface (UI) (e.g. smart phone with
apps).

· IT Service Domain: It comprises the backbone system
of various IT services (e.g. energy analytics, home
service, utility billing, and entertainment), public cloud
infrastructure, in-home IT gateway, and Consumer UI.

· Automation Service Domain: It provides internal
services for configuring and updating HA system.

B. The deployment of proposed tools in the HA system
The proposed configuration tools are deployed in the above

domains. In particular, the Device Wrapper is a set of
embedded software executed in the Device Gateway, the
Device Manager is a set of embedded software executed in the
System Access Point, the Application Designer is an
application software executed on the server of system
integrator, and User Interface (UI) is a set of application
software executed on the user devices both for installers and
end consumers. The functionality of each tool is introduced
below and more details are given in the next sub-sections.

Fig. 1. Engineering Workflow of Home Automation Systems.

1175

· Device Wrapper. The Device Wrapper is loaded with
different HA devices’ driver in handling the physical
connection with the HA devices.

· Device Manager. The "always on" Linux/Windows PC
runs an instance of the Device Manager. As the brain
of HA system, the Device Manager controls the HA
system by forwarding commands from the consumer
UI panel to the specified URL. Moreover, the
execution sequence of the commands can be ruled and
scheduled by its sequencer engine.

· Application Designer. The Application Designer is a
web application, utilized to configure the control
function for the system. This tool contains a graphical
UI, with which integrators can easily create a control
panel for the HA system online. Once the design for a
specific control panel is made, this result will be saved
as an XML document in the database. Moreover, the
Application Designer also supports to maintain the
HA system and update software remotely, thus,
facilitating integrators by reducing their travel time
between office and costumers.

· User Interface. When connected to the Devices
Manager, the user-end controller UI application is
updated automatically and immediately, reflecting
changes made by the Application Designer.

C. Device Wrapper
As illustrated in Fig. 3, Device Gateway implements the

server, running the Device Wrapper. Device Wrapper is the
bridge between the Devices Manager and a set of devices
integrated in the home WSAN. Device Wrappers encapsulate
and declare all devices’ drivers APIs as public APIs. Hence,

the Device Manager is able to issue commands as well as to
read data from HA devices by sending REST/HTTP requests
forwarded by the Device Gateway. This tool consists of four
elements as follows:

· Protocol Manager: As various HA devices need to be
integrated in the HA system, Protocol Manager enables
integrator to easily manage and configure drivers
loaded in the Devices gateway. Protocol Manager
provides a unique ID for each driver API. The API
parameters are configured from the XML element
under a particular ID tag.

· Protocol Adaptor: The Protocol Adaptor takes the role
as a translator for the Device Wrapper by parsing XML
information. In order to expose driver interfaces as
resources for the RESTful server, the Protocol Adaptor
maps driver interfaces with the corresponding URL
registered in the XML document. As a result, the HA
device driver instances can be easily searched and built
by the RESTful server.

· RESTful server: The RESTful server handles all
REST/HTTP requests from the Device Manager and
then it builds a specific interface out of a bunch of
interfaces of drivers. Hence, when interacting with a
particular device, at the high level, the application may
simply send a command using “GET” or “POST”
method. At the low level, the function related device

Fig. 2. Home Automation System Overview.

Fig. 3 Home Automation System Architecture.

1176

drivers will be built and communicate to the particular
serial port to enable hardware functions.

D. Device Manager
As mentioned in the previous section, the Device Manager

is the central control unit of the HA system. The following list
shows technical details in this tool:

· The Device Discoverer sets up a connection between
the Device Manager and the customer UI application.
It supports device auto-discovery by listening for
application requests on certain ports. Moreover, the
multicast group IP address is applied to secure such
connection. When sending connection requests to a
specific port, only the device with the authenticated IP
address can set up the TCP connection with a
particular Device Manager.

· Command Factory: The output of Application
Designer provides each function command a unique
ID, which is mapped with the particular URL of the
RESTful server implemented in the Device Gateway.
This file is a XML-based document saved in the
database. After being synchronized with the database,
the Command Factory is able to extract information
and combine commands with URLs listed in XML
elements. Finally, the command factory turns these
combinations into Java object instances as REST
resources for the RESTful server.

· The Database Connector is responsible for setting up
the connection between the Device Manager and the
database in the Application Designer. After being
confirmed and synchronized with the database, all
resources such as XML documents and UI images will
be downloaded to the Device Manager.

· Channel Quality Detector: Some existing network tools
(e.g. Kismet) can be used to monitor wireless channel
quantity and the diagnosing results are saved in XML-
based documents. To realize the diagnosis function,
Channel Quality Detector is responsible for extracting
signal strength and channel information from the XML
document and making them available for the RESTful
server.

· Scheduler: This module is responsible for arranging
commands on the basis of the pre-set orders and
executing them at a particular time, e.g. wake up HA
owner early when it rains.

· 3rd Party Service Interface: Enables the Device
Manager to get access to data and integrates services
provided by 3rd party companies, such as the
geographical position information and weather
forecast information

· Communicator: Handles communication between
Device Manager and other components. By using the
“GET” or “POST” method, this module is responsible
for sending REST/HTTP requests to a specific module.

E. Application Designer
Usually, configuring and commissioning are two tough

tasks for non-technician users to complete. The Application
Designer is to bridge the gap between design flexibility and
the underlying technology requirements. Moreover, design
results can be saved as reusable templates, which significantly
improve the engineering efficiency.

· Command Designer: This module is a handy tool to
design each UI element (e.g. buttons and labels) with a
particular function triggering command. This module
provides each command with a unique ID mapping
with a particular HTTP request URL of the Device
Wrapper. Finally, function designs and related
mapping relations are represented in the Devices
Specification File as an XML-based document saved in
the database.

· Configuration Manager: This module provides wizard
steps with which the integrator can follow to pre-set
configuration options for HA devices. The pre-set
configuration options then will reflect on the installer
UI panel. For example, in a complex HA project,
paring switches with each actuator is usually a
headache work for installers. Thus, the installer UI
panel, that enables installers to change HA devices
paring relationship on site, will improve the
engineering efficiency.

F. User Interface
The Customer UI is a remote control application working

on mobile devices. It allows consumers to remotely control
HA devices. The technical details are listed below:

· Controller Finder: As mentioned above, the Device
Manager listens on the multicast group to discover
client devices. Therefore, the Controller Finder is
responsible for adding IP addresses of potential client
devices into the multicast group in the Devices
Manager.

· Customer UI: When setting up the Customer UI, this
application may firstly send a REST/HTTP request to
the Device Manager, from which to load the UI
Specification File. After parsing this XML-based
document to modify the HTML file, the Customer UI
is reflected on the user console panel. Moreover, the
Customer UI is also able to display data received from
sensors via the Communicator module.

· Command Trigger is responsible for listening user’s
actions (e.g. press a button) and then triggers
commands (i.e. turn on the light) by sending a request
to a specific URL based on the Device Specification
File. In addition, this module also acts as a reception
for data from sensors or 3rd party services.

1177

IV. IMPLEMENTATION AND DEMONSTRATION

A. Implementation Details
In order to evaluate the proposed system, two performance

tests have been experimented. In this the first experiment,
6LoWPAN plugs from Watteco NKE Electronics and ZigBee
bulbs from Philips Hue are selected to demonstrate the
integration capability of the proposed system. In this case, the
HA gateway needs to be equipped with a 6LoWPAN USB
Broad Router that enables the HA gateway to access the
6LoWPAN plugs. Part of the hardware setup is shown in Fig.
4.

Raspberry Pi, a low cost embedded Linux PC which has
512 MB of RAM and a 100Mbps Ethernet port, takes the role
of the HA gateway using the Raspbian Image as the operation
system. The Device Manager acts as the HA gateway add-in,
running the OpenRemote open source code [21] with the size
of 144.8 MB. As an add-in for the device gateway, the Device
Wrapper is written by the Python language, and its RESTful
server is implemented by the Bottle RESTful server
framework with the total size of 48 MB.The database is based
on SQLite database running on the Raspberry Pi. The
Designer is implemented by the OpenRemote Web application
(73.5 MB) mounted on the Apache server in another PC.
Finally, the command scheduling is implemented based on the

open Door event processing language.
When logging into the application, at the start-up, the

following options are available for users to choose: UI
designer view or command designer view. The former one
enables user to craft the console panel by simply dragging and
dropping design elements onto the “panel” area (Fig. 5). The
latter one assists users to bind UI elements with command
functions that have been configured in the “window” view.

Fig. 6 shows the snapshot of how the user operates console
panel to get into the “configuration mode”. Firstly, the user
needs to select a particular IP address of a Device Manager
hardware out of the given list. Then, the user may choose the
panel identity, whereby the application designed before will
be reflected on the mobile device (Fig. 6 right). In the
configuration mode, the controlled object of the physical
switch can be changed by clicking the identity button of the
Hue light.

B. Performance Tests
In order to evaluate the proposed system, two performance

tests have been experimented. In this the first experiment, the
system performance is valued from Trigger Command Round
Trip Time (RTT). Trigger Command RTT is a latency result of
a simple closed loop, which starts from the moment that the
system access point issues a command to Device Gateway and
ends up when the system access point gets response from the
server of Device Gateway. Similarly, in the second experiment,
Execute command RTT is measured. It starts from the moment
that Devices Gateway sends command to a particular HA
device and ends up when receiving response from the HA
device.

 The data captured from the experiment are plotted in Fig. 7.
In this experiment, we used the 6LoWPAN plug as an example
to measure the latency of the wireless HA system. In this
system, all devices shown in Fig. 4 are set up and connected to
a local office network.

 From the plotted data (Fig. 7), it is obviously shown that
Execute command RTT is much longer than Trigger command
RTT. This suggests the system latency is mainly caused by the
data transmission delay, i.e. the time it takes to transmit
packages in the 6LoWPAN network, rather than the data
processing delay and the command execution delay caused by
the system.

In the second experiment, “turning on” commands are
continuously issued to the 6LoWPAN plug. From the statistics
of the execute command RTT listed in Table 1, it is shown

Fig. 4. The Prototyping System.

Fig. 6. Screenshot of the Controller Application User Interface.
Fig. 5. Screenshot of the Designer Application User Interface.

1178

that the average time the 6LoWPAN plug responses to the
driver with the 6LoWPAN network ranges from 174.0ms to
650ms. Meanwhile, the average time that the Device Wrapper
acquires HTTP commands from the Device Manager and
triggers the corresponding driver ranges from 50.0ms to
35.3ms. The above results show that, when controlling
different HA devices, the main limitation of the system
response time is caused by the latency of HA devices' sub-
network, i.e. 6LoWPAN network where the wireless plug has
connected to.

V. CONCLUSION

Efficient HA engineering tools is a crucial precondition
for the further growth of wireless HA industry. This paper
defines and evaluates the engineering workflow and
engineering for home automation. Then, the architecture of an
industrial friendly HA system is proposed, with the aim of
reducing workloads of HA engineers at every stage. Finally, a
proof-of-principle minimal system is implemented based on
web technologies. Preliminary result of functional test
confirms the feasibility of the proposed tools and indicates
response time of system is acceptable for home automation.
And this latency could be further reduced if optimizing the
response performance of the HA devices' sub-network.

REFERENCES

[1] Z. Pang, "Technologies and Architectures of the Internet-of-Things(IoT)
for Health and Well-being," Doctoral thesis, School of Information and
Communication Technology, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2013.

[2] Z. Pang, Y. Cheng, M. E. Johansson, and G. Bag, "Preliminary Study on
Industry-Friendly and Native-IP Wireless Communication for Building
Automation " in 1st International Conference on Industrial Networks
and Intelligent Systems (INISCom 2015), Tokyo, Japan, 2015, p.
accepted.

[3] Z. Pang, Y. Cheng, M. E. Johansson, and G. Bag, "Preliminary Study on
Wireless Home Automation Systems with Both Cloud-Based Mode and
Stand-Alone Mode," in 17th IEEE International Conference on
Computational Science and Engineering (CSE 2014), Chengdu, China,
2014, pp. 970-975.

[4] J. Ploennigs, H. Dibowski, U. Ryssel, and K. Kabitzsch, "Holistic
Design of Wireless Building Automation Systems," in 16th IEEE
International Conference on Emerging Technologies & Factory
Automation (ETFA 2011), Toulouse, France, 2011, pp. 1-9.

[5] Veris Industries."EnOcean Alliance defines intelligent commissioning of
smart buildings". News Release July 2014.

[6] K. Bong Wan and J. Seong-Soon, "A New Commissioning and
Deployment Method for Wireless Sensor Networks," in 3rd
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2009), Sliema, Malta, 2009, pp.
232-237.

[7] H. Dibowski, J. Ploennigs, and K. Kabitzsch, "Automated Design of
Building Automation Systems," IEEE Transactions on Industrial
Electronics, vol. 57(11), pp. 3606-3613, 2010.

[8] S. Runde, A. Heidemann, A. Fay, and P. Schmidt, "Engineering of
Building Automation Systems — State-of-the-Art, Deficits,
Approaches," in 15th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2010), Bilbao, Spain,
2010, pp. 1-8.

[9] S. Runde and A. Fay, "Software Support for Building Automation
Requirements Engineering—An Application of Semantic Web
Technologies in Automation," IEEE Transactions on Industrial
Informatics, vol. 7(4), pp. 723-730, 2011.

[10] S. Wang, J. Xing, and P. Wang, "Flexible Integration of BAS of
buildings in Service and under construction " in 2nd 2011 International
Conference on Electrical and Control Engineering (ICECE), Yichang,
China, 2011, pp. 4514-4518.

[11] Apple Inc. (2015). Homekit [Online]. Available:
https://developer.apple.com/homekit/

[12] Etherios. (2015). DeviceCloud [Online]. Available:
www.etherios.com/products/devicecloud

[13] D. Kümper and R. Tönjes, "Remote Configuration and Deployment of
Sensor Drivers for a Medical Bluetooth Sensor Gateway " in 2011 IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Lucca, Italy, 2011, pp. 1-6.

[14] M. S. Aslam, A. Guinard, A. McGibney, S. Rea, and D. Pesch, "Wi-
Design, Wi-Manage, Why Bother?," in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, Dublin, Ireland,
2011, pp. 730-744.

[15] L. Barta, D. Boyle, B. O’Flynn, and E. Popovici, "Simplified
Commissioning and Maintenance for Wireless Sensor Networks: a
Novel Software Tool," in 26th International Conference on Architecture
of Computing Systems (ARCS 2013), Prague, Czech Republic, 2013, pp.
1-6.

[16] C.-H. Yang, V. Vyatkin, and C. Pang, "Model-Driven Development of
Control Software for Distributed Automation: A Survey and an
Approach," IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44(3), pp. 292-305, 2014.

[17] C. Pang, V. Vyatkin, Y. Deng, and M. Sorouri, "Virtual Smart Metering
in Automation and Simulation of Energy-Efficient Lighting System," in
18th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2013), Cagliari, Italy, 2013, pp. 1-8.

[18] D. Adolf, E. Ferranti, and S. Koch, "SmartScript - A Domain-Specific
Language for Appliance Control in Smart Grids," in 3rd IEEE
International Conference on Smart Grid Communications
(SmartGridComm 2012), Tainan, Taiwan, 2012, pp. 465-470.

[19] J. Cecilio and P. Furtado, "Architecture for Uniform (Re)Configuration
and Processing Over Embedded Sensor and Actuator Networks," IEEE
Transactions on Industrial Informatics, vol. 10(1), pp. 53-60, 2014.

[20] S. Mayer, N. Inhelder, R. Verborgh, and R. Van de Wallet, "User-
friendly Configuration of Smart Environments," in 2014 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOM), Budapest, Hungary, 2014, pp. 163-165.

[21] OpenRemote [Online]. Available: http://www.openremote.org

Table 1. Statistics of Round Trip Time (RTT) of the HA System.

Execute Command
 RTT

Trigger command
RTT

Min RTT (ms) 174.0 50.0
Average RTT (ms) 206.9 64.3
Max RTT (ms) 650.0 198.0
Sigma(ms) 39.5 35.3

Fig. 7: Screenshot of the Console Application User Interface.

1179

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

